20 datasets found
  1. K

    El Dorado County, California Parcels

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Aug 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    El Dorado, California (2022). El Dorado County, California Parcels [Dataset]. https://koordinates.com/layer/110056-el-dorado-county-california-parcels/
    Explore at:
    geodatabase, shapefile, kml, geopackage / sqlite, csv, mapinfo mif, pdf, mapinfo tab, dwgAvailable download formats
    Dataset updated
    Aug 10, 2022
    Dataset authored and provided by
    El Dorado, California
    Area covered
    Description

    Geospatial data about El Dorado County, California Parcels. Export to CAD, GIS, PDF, CSV and access via API.

  2. Mosquito Fire Structure Status Map - El Dorado County

    • catalog.data.gov
    • data.ca.gov
    • +2more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CAL FIRE (2024). Mosquito Fire Structure Status Map - El Dorado County [Dataset]. https://catalog.data.gov/dataset/mosquito-fire-structure-status-map-el-dorado-county-4fab7
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Forestry and Fire Protectionhttp://calfire.ca.gov/
    Area covered
    El Dorado County
    Description

    This map feeds into a web app that allows a user to examine the known status of structures damaged by the wildfire. If a structure point does not appear on the map it may still have been impacted by the fire. Specific addresses can be searched for in the search bar. Use the imagery and topographic basemaps and photos to positively identify a structure. Photos may only be available for damaged and destroyed structures.For more information about the wildfire response efforts, visit the CAL FIRE incident page.

  3. d

    Mosquito 2022 DINS Public View El Dorado County

    • catalog.data.gov
    • data.ca.gov
    • +4more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CAL FIRE (2024). Mosquito 2022 DINS Public View El Dorado County [Dataset]. https://catalog.data.gov/dataset/mosquito-2022-dins-public-view-el-dorado-county-1564b
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    CAL FIRE
    Area covered
    El Dorado County
    Description

    This database was designed in response to the Director Memorandum - "Effective January 1, 2019 all structure greater than 120 square feet in the State Responsibility Area (SRA) damaged by wildfire will be inspected and documented in the DINS Collector App."To document and structure damaged or destroyed by the Mosquito wildland fire open the associated Field Map app.NOTE - this feature service is configured to not allow record deletion. If a record needs to be deleted contact the program manager below.This is the schema developed and used by the CAL FIRE Office of State Fire Marshal to assess and record structure damage on wildland fire incidents. The schema is designed to be configured in the Esri Collector/Field Maps app for data collection during or after an incident.

  4. K

    El Dorado County, California Buildings

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Aug 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    El Dorado, California (2022). El Dorado County, California Buildings [Dataset]. https://koordinates.com/layer/110057-el-dorado-county-california-buildings/
    Explore at:
    mapinfo mif, shapefile, pdf, mapinfo tab, csv, geopackage / sqlite, geodatabase, kml, dwgAvailable download formats
    Dataset updated
    Aug 10, 2022
    Dataset authored and provided by
    El Dorado, California
    Area covered
    Description

    Geospatial data about El Dorado County, California Buildings. Export to CAD, GIS, PDF, CSV and access via API.

  5. c

    BOE TRA 2025 co09

    • gis.data.ca.gov
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Tax and Fee Administration (2025). BOE TRA 2025 co09 [Dataset]. https://gis.data.ca.gov/datasets/CDTFA::boe-tra-2025-co09
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    California Department of Tax and Fee Administration
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This shapefile contains tax rate area (TRA) boundaries in El Dorado County for the specified assessment roll year. Boundary alignment is based on the 2017 county parcel map. A tax rate area (TRA) is a geographic area within the jurisdiction of a unique combination of cities, schools, and revenue districts that utilize the regular city or county assessment roll, per Government Code 54900. Each TRA is assigned a six-digit numeric identifier, referred to as a TRA number. TRA = tax rate area number

  6. l

    California Statewide Parcel Boundaries

    • geohub.lacity.org
    • egis-lacounty.hub.arcgis.com
    Updated Jul 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2020). California Statewide Parcel Boundaries [Dataset]. https://geohub.lacity.org/documents/baaf8251bfb94d3984fb58cb5fd93258
    Explore at:
    Dataset updated
    Jul 8, 2020
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    California
    Description

    This dataset includes one file for each of the 51 counties that were collected, as well as a CA_Merged file with the parcels merged into a single file.Note – this data does not include attributes beyond the parcel ID number (PARNO) – that will be provided when available, most likely by the state of California.DownloadA 1.6 GB zipped file geodatabase is available for download - click here.DescriptionA geodatabase with parcel boundaries for 51 (out of 58) counties in the State of California. The original target was to collect data for the close of the 2013 fiscal year. As the collection progressed, it became clear that holding to that time standard was not practical. Out of expediency, the date requirement was relaxed, and the currently available dataset was collected for a majority of the counties. Most of these were distributed with minimal metadata.The table “ParcelInfo” includes the data that the data came into our possession, and our best estimate of the last time the parcel dataset was updated by the original source. Data sets listed as “Downloaded from” were downloaded from a publicly accessible web or FTP site from the county. Other data sets were provided directly to us by the county, though many of them may also be available for direct download. Â These data have been reprojected to California Albers NAD84, but have not been checked for topology, or aligned to county boundaries in any way. Tulare County’s dataset arrived with an undefined projection and was identified as being California State Plane NAD83 (US Feet) and was assigned by ICE as that projection prior to reprojection. Kings County’s dataset was delivered as individual shapefiles for each of the 50 assessor’s books maintained at the county. These were merged to a single feature class prior to importing to the database.The attribute tables were standardized and truncated to include only a PARNO (APN). The format of these fields has been left identical to the original dataset. The Data Interoperablity Extension ETL tool used in this process is included in the zip file. Where provided by the original data sources, metadata for the original data has been maintained. Please note that the attribute table structure changes were made at ICE, UC Davis, not at the original data sources.Parcel Source InformationCountyDateCollecDateCurrenNotesAlameda4/8/20142/13/2014Download from Alamenda CountyAlpine4/22/20141/26/2012Alpine County PlanningAmador5/21/20145/14/2014Amador County Transportation CommissionButte2/24/20141/6/2014Butte County Association of GovernmentsCalaveras5/13/2014Download from Calaveras County, exact date unknown, labelled 2013Contra Costa4/4/20144/4/2014Contra Costa Assessor’s OfficeDel Norte5/13/20145/8/2014Download from Del Norte CountyEl Dorado4/4/20144/3/2014El Dorado County AssessorFresno4/4/20144/4/2014Fresno County AssessorGlenn4/4/201410/13/2013Glenn County Public WorksHumboldt6/3/20144/25/2014Humbodt County AssessorImperial8/4/20147/18/2014Imperial County AssessorKern3/26/20143/16/2014Kern County AssessorKings4/21/20144/14/2014Kings CountyLake7/15/20147/19/2013Lake CountyLassen7/24/20147/24/2014Lassen CountyLos Angeles10/22/201410/9/2014Los Angeles CountyMadera7/28/2014Madera County, Date Current unclear likely 7/2014Marin5/13/20145/1/2014Marin County AssessorMendocino4/21/20143/27/2014Mendocino CountyMerced7/15/20141/16/2014Merced CountyMono4/7/20144/7/2014Mono CountyMonterey5/13/201410/31/2013Download from Monterey CountyNapa4/22/20144/22/2014Napa CountyNevada10/29/201410/26/2014Download from Nevada CountyOrange3/18/20143/18/2014Download from Orange CountyPlacer7/2/20147/2/2014Placer CountyRiverside3/17/20141/6/2014Download from Riverside CountySacramento4/2/20143/12/2014Sacramento CountySan Benito5/12/20144/30/2014San Benito CountySan Bernardino2/12/20142/12/2014Download from San Bernardino CountySan Diego4/18/20144/18/2014San Diego CountySan Francisco5/23/20145/23/2014Download from San Francisco CountySan Joaquin10/13/20147/1/2013San Joaquin County Fiscal year close dataSan Mateo2/12/20142/12/2014San Mateo CountySanta Barbara4/22/20149/17/2013Santa Barbara CountySanta Clara9/5/20143/24/2014Santa Clara County, Required a PRA requestSanta Cruz2/13/201411/13/2014Download from Santa Cruz CountyShasta4/23/20141/6/2014Download from Shasta CountySierra7/15/20141/20/2014Sierra CountySolano4/24/2014Download from Solano Couty, Boundaries appear to be from 2013Sonoma5/19/20144/3/2014Download from Sonoma CountyStanislaus4/23/20141/22/2014Download from Stanislaus CountySutter11/5/201410/14/2014Download from Sutter CountyTehama1/16/201512/9/2014Tehama CountyTrinity12/8/20141/20/2010Download from Trinity County, Note age of data 2010Tulare7/1/20146/24/2014Tulare CountyTuolumne5/13/201410/9/2013Download from Tuolumne CountyVentura11/4/20146/18/2014Download from Ventura CountyYolo11/4/20149/10/2014Download from Yolo CountyYuba11/12/201412/17/2013Download from Yuba County

  7. TIGER/Line Shapefile, Current, County, El Dorado County, CA, All Roads

    • catalog.data.gov
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geospatial Products Branch (Point of Contact) (2023). TIGER/Line Shapefile, Current, County, El Dorado County, CA, All Roads [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-current-county-el-dorado-county-ca-all-roads
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    United States Department of Commercehttp://www.commerce.gov/
    Area covered
    El Dorado County, California
    Description

    This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The All Roads Shapefile includes all features within the MTDB Super Class "Road/Path Features" distinguished where the MAF/TIGER Feature Classification Code (MTFCC) for the feature in MTDB that begins with "S". This includes all primary, secondary, local neighborhood, and rural roads, city streets, vehicular trails (4wd), ramps, service drives, alleys, parking lot roads, private roads for service vehicles (logging, oil fields, ranches, etc.), bike paths or trails, bridle/horse paths, walkways/pedestrian trails, and stairways.

  8. Mosquito Fire Structure Status - El Dorado County

    • s.cnmilf.com
    • data.cnra.ca.gov
    • +4more
    Updated Nov 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CAL FIRE (2024). Mosquito Fire Structure Status - El Dorado County [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/mosquito-fire-structure-status-el-dorado-county-6b3b4
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Forestry and Fire Protectionhttp://calfire.ca.gov/
    Area covered
    El Dorado County
    Description

    Use this app to examine the known status of structures damaged by the wildfire. If a structure point does not appear on the map it may still have been impacted by the fire. Specific addresses can be searched for in the search bar. Use the imagery and topographic basemaps and photos to positively identify a structure. Photos may only be available for damaged and destroyed structures.For more information about the wildfire response efforts, visit the CAL FIRE incident page.

  9. TIGER/Line Shapefile, 2021, County, El Dorado County, CA, All Roads

    • catalog.data.gov
    Updated Nov 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Publisher) (2022). TIGER/Line Shapefile, 2021, County, El Dorado County, CA, All Roads [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2021-county-el-dorado-county-ca-all-roads
    Explore at:
    Dataset updated
    Nov 1, 2022
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    El Dorado County, California
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The All Roads Shapefile includes all features within the MTDB Super Class "Road/Path Features" distinguished where the MAF/TIGER Feature Classification Code (MTFCC) for the feature in MTDB that begins with "S". This includes all primary, secondary, local neighborhood, and rural roads, city streets, vehicular trails (4wd), ramps, service drives, alleys, parking lot roads, private roads for service vehicles (logging, oil fields, ranches, etc.), bike paths or trails, bridle/horse paths, walkways/pedestrian trails, stairways, and winter trails.

  10. d

    TIGER/Line Shapefile, 2018, county, El Dorado County, CA, All Roads...

    • catalog.data.gov
    Updated Dec 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). TIGER/Line Shapefile, 2018, county, El Dorado County, CA, All Roads County-based Shapefile [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2018-county-el-dorado-county-ca-all-roads-county-based-shapefile
    Explore at:
    Dataset updated
    Dec 2, 2020
    Area covered
    El Dorado County, California
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The All Roads Shapefile includes all features within the MTDB Super Class "Road/Path Features" distinguished where the MAF/TIGER Feature Classification Code (MTFCC) for the feature in MTDB that begins with "S". This includes all primary, secondary, local neighborhood, and rural roads, city streets, vehicular trails (4wd), ramps, service drives, alleys, parking lot roads, private roads for service vehicles (logging, oil fields, ranches, etc.), bike paths or trails, bridle/horse paths, walkways/pedestrian trails, and stairways.

  11. BOE TRA 2023 co09

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • gis.data.ca.gov
    • +1more
    Updated May 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Tax and Fee Administration (2023). BOE TRA 2023 co09 [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/CDTFA::el-dorado-2023-roll-year/explore?layer=1
    Explore at:
    Dataset updated
    May 17, 2023
    Dataset authored and provided by
    California Department of Tax and Fee Administrationhttp://cdtfa.ca.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This shapefile contains tax rate area (TRA) boundaries in El Dorado County for the specified assessment roll year. Boundary alignment is based on the 2017 county parcel map. A tax rate area (TRA) is a geographic area within the jurisdiction of a unique combination of cities, schools, and revenue districts that utilize the regular city or county assessment roll, per Government Code 54900. Each TRA is assigned a six-digit numeric identifier, referred to as a TRA number. TRA = tax rate area number

  12. g

    i15 LandUse ElDorado2009

    • gimi9.com
    Updated Jun 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). i15 LandUse ElDorado2009 [Dataset]. https://gimi9.com/dataset/california_i15-landuse-eldorado2009/
    Explore at:
    Dataset updated
    Jun 8, 2020
    Description

    Every published digital survey is designated as either ‘Final’, or ‘Provisional’, depending upon its status in a peer review process.Final surveys are peer reviewed with extensive quality control methods to confirm that field attributes reflect the most detailed and specific land-use classification available, following the standard DWR Land Use Legendspecific to the survey year. Data sets are considered ‘final’ following the reconciliation of peer review comments and confirmation by the originating Regional Office. During final review, individual polygons are evaluated using a combination of aerial photointerpretation, satellite image multi-spectral data and time series analysis, comparison with other sources of land use data, and general knowledge of land use patterns at the local level.Provisional datasets have been reviewed for conformance with DWR’s published data record format, and for general agreement with other sources of land use trends. Comments based on peer review findings may not be reconciled, and no significant edits or changes are made to the original survey data.The 2009 El Dorado County land use survey data was developed by the State of California, Department of Water Resources (DWR) through its Division of Integrated Regional Water Management (DIRWM) and Division of Statewide Integrated Water Management (DSIWM). Land use boundaries were digitized and land use data was gathered by staff of DWR’s North Central Region using extensive field visits and aerial photography. Land use polygons in agricultural areas were mapped in greater detail than areas of urban or native vegetation. Quality control procedures were performed jointly by staff at DWR’s DSIWM headquarters, under the leadership of Jean Woods, and North Central Region, under the supervision of: Kim Rosmaier. This data was developed to monitor land use for the primary purpose of quantifying water use within this study area and determining changes in water use associated with land use changes over time. The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standards version 2.1, dated March 9, 2016. DWR makes no warranties or guarantees - either expressed or implied - as to the completeness, accuracy, or correctness of the data. DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Comments, problems, improvements, updates, or suggestions should be forwarded to gis@water.ca.gov. This data represents a land use survey of El Dorado County conducted by the California Department of Water Resources, North Central Regional Office staff. For digitizing, the county was subdivided into three areas using the centerline of U.S. Route 50 and a north/south line for boundaries. Land use field boundaries were digitized with ArcGIS 9.3 using 2005 U.S.D.A National Agriculture Imagery Program (NAIP) one-meter imagery as the base. Agricultural fields were delineated by following actual field boundaries instead of using the centerlines of roads to represent the field borders. The three digitized shapefiles were merged into a single file and the shared boundaries were removed. Field boundaries were reviewed and updated using 2009 NAIP imagery when it became available. Field boundaries were not drawn to represent legal parcel (ownership) boundaries, or meant to be used as parcel boundaries. The field work for this survey was conducted between the end of July and the first week of November 2009. Images, land use boundaries and ESRI ArcMap software, version 9.3 were loaded onto laptop computers that were used as the field data collection tools. Staff took these laptops into the field and virtually all agricultural fields were visited to positively identify the land use. Global positioning System (GPS) units connected to the laptops were used to confirm the surveyor's location with respect to the fields. Land use codes were digitized in the field using customized menus to enter land use attributes. The primary focus of this land use survey is mapping agricultural fields. Urban residences and other urban areas were delineated using aerial photo interpretation, so some urban areas may have been missed. Especially in rural residential areas, urban land use was delineated by drawing polygons to surround houses or other buildings along with a minimal area of land surrounding these structures. These footprint areas represent the locations of structures but do not represent the entire footprint of urban land. Information on sources of irrigation water was identified for general areas and occasionally supplemented by information obtained from landowners or by the observation of wells. Water source information was not collected for each field in the survey, so the water source listed for a specific agricultural field may not be accurate. Before final processing, standard quality control procedures were performed jointly by staff at DWR’s North Central Region, and at DSIWM headquarters under the leadership of Jean Woods. Senior Land and Water Use Supervisor. After quality control procedures were completed, the data was finalized. The positional accuracy of the digital line work, which is based upon the orthorectified NAIP imagery, is approximately 6 meters. The land use attribute accuracy for agricultural fields is high, because almost every delineated field was visited by a surveyor. The accuracy is 95 percent because some errors may have occurred. Possible sources of attribute errors are: a) Human error in the identification of crop types, b) Data entry errors.

  13. g

    California Fire Perimeters (1950+)

    • gimi9.com
    Updated Aug 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). California Fire Perimeters (1950+) [Dataset]. https://gimi9.com/dataset/california_california-fire-perimeters-1950/
    Explore at:
    Dataset updated
    Aug 29, 2024
    Area covered
    California
    Description

    Please help improve this dataset by filling out this survey with feedback:Historic Fire Perimeter Dataset Feedback (arcgis.com)Current criteria for data collection are as follows:CAL FIRE (including contract counties) submit perimeters ≥10 acres in timber, ≥50 acres in brush, or ≥300 acres in grass, and/or ≥3 impacted residential or commercial structures, and/or caused ≥1 fatality.All cooperating agencies submit perimeters ≥10 acres.Version update:Firep23_1 was released in May 2024. Two hundred eighty four fires from the 2023 fire season were added to the database (21 from BLM, 102 from CAL FIRE, 72 from Contract Counties, 19 from LRA, 9 from NPS, 57 from USFS and 4 from USFW). The 2020 Cottonwood fire, 2021 Lone Rock and Union fires, as well as the 2022 Lost Lake fire were added. USFW submitted a higher accuracy perimeter to replace the 2022 River perimeter. Additionally, 48 perimeters were digitized from an historical map included in a publication from Weeks, d. et al. The Utilization of El Dorado County Land. May 1934, Bulletin 572. University of California, Berkeley. Two thousand eighteen perimeters had attributes updated, the bulk of which had IRWIN IDs added. A duplicate 2020 Erbes perimeter was removed. The following fires were identified as meeting our collection criteria, but are not included in this version and will hopefully be added in the next update: Big Hill #2 (2023-CAHIA-001020). YEAR_ field changed to a short integer type. San Diego CAL FIRE UNIT_ID changed to SDU (the former code MVU is maintained in the UNIT_ID domains). COMPLEX_INCNUM renamed to COMPLEX_ID and is in process of transitioning from local incident number to the complex IRWIN ID. Perimeters managed in a complex in 2023 are added with the complex IRWIN ID. Those previously added will transition to complex IRWIN IDs in a future update.Includes separate layers filtered by criteria as follows:California Fire Perimeters (All): Unfiltered. The entire collection of wildfire perimeters in the database. It is scale dependent and starts displaying at the country level scale. Recent Large Fire Perimeters (≥5000 acres): Filtered for wildfires greater or equal to 5,000 acres for the last 5 years of fires (2019-2023), symbolized with color by year and is scale dependent and starts displaying at the country level scale. Year-only labels for recent large fires.California Fire Perimeters (1950+): Filtered for wildfires that started in 1950-present. Symbolized by decade, and display starting at country level scale.Detailed metadata is included in the following documents:Wildland Fire Perimeters (Firep23_1) Metadata For any questions, please contact the data steward:Kim Wallin, GIS Specialist

  14. Fire Perimeters from CALFIRE

    • hub.arcgis.com
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Napa County GIS | ArcGIS Online (2024). Fire Perimeters from CALFIRE [Dataset]. https://hub.arcgis.com/datasets/fcc0765304594563b7d0db79c13103d7
    Explore at:
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    https://arcgis.com/
    Authors
    Napa County GIS | ArcGIS Online
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Description

    Layer and Metadata Provided by CALFIREThis data should be used carefully for statistical analysis and reporting due to missing perimeters (see Use Limitation in metadata). Some fires are missing because historical records were lost or damaged, were too small for the minimum cutoffs, had inadequate documentation or have not yet been incorporated into the database. Other known errors with the fire perimeter database include duplicate fires and over-generalization. Over-generalization, particularly with large old fires, may show unburned "islands" within the final perimeter as burned. Users of the fire perimeter database must exercise caution in application of the data. Careful use of the fire perimeter database will prevent users from drawing inaccurate or erroneous conclusions from the data. This dataset may differ in California compared to that available from the National Interagency Fire Center (NIFC) due to different requirements between the two datasets. The data covers fires back to 1878. Please help improve this dataset by filling out this survey with feedback:Historic Fire Perimeter Dataset Feedback (arcgis.com) Current criteria for data collection are as follows:CAL FIRE (including contract counties) submit perimeters ≥10 acres in timber, ≥50 acres in brush, or ≥300 acres in grass, and/or ≥3 impacted residential or commercial structures, and/or caused ≥1 fatality.All cooperating agencies submit perimeters ≥10 acres.Version update:Firep23_1 was released in May 2024. Two hundred eighty four fires from the 2023 fire season were added to the database (21 from BLM, 102 from CAL FIRE, 72 from Contract Counties, 19 from LRA, 9 from NPS, 57 from USFS and 4 from USFW). The 2020 Cottonwood fire, 2021 Lone Rock and Union fires, as well as the 2022 Lost Lake fire were added. USFW submitted a higher accuracy perimeter to replace the 2022 River perimeter. Additionally, 48 perimeters were digitized from an historical map included in a publication from Weeks, d. et al. The Utilization of El Dorado County Land. May 1934, Bulletin 572. University of California, Berkeley. Two thousand eighteen perimeters had attributes updated, the bulk of which had IRWIN IDs added. A duplicate 2020 Erbes perimeter was removed. The following fires were identified as meeting our collection criteria, but are not included in this version and will hopefully be added in the next update: Big Hill #2 (2023-CAHIA-001020). YEAR_ field changed to a short integer type. San Diego CAL FIRE UNIT_ID changed to SDU (the former code MVU is maintained in the UNIT_ID domains). COMPLEX_INCNUM renamed to COMPLEX_ID and is in process of transitioning from local incident number to the complex IRWIN ID. Perimeters managed in a complex in 2023 are added with the complex IRWIN ID. Those previously added will transition to complex IRWIN IDs in a future update. Detailed metadata is included in the following documents:Wildland Fire Perimeters (Firep23_1) Metadata For any questions, please contact the data steward:Kim Wallin, GIS SpecialistCAL FIRE, Fire & Resource Assessment Program (FRAP)kimberly.wallin@fire.ca.gov

  15. a

    Mule Deer Migration Corridors - Carson River - 2012-2019 [ds2888]

    • hub.arcgis.com
    • data.ca.gov
    • +6more
    Updated Dec 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2022). Mule Deer Migration Corridors - Carson River - 2012-2019 [ds2888] [Dataset]. https://hub.arcgis.com/datasets/bbfef2f96f7c41dd8fe14ddbe0bebe91
    Explore at:
    Dataset updated
    Dec 8, 2022
    Dataset authored and provided by
    California Department of Fish and Wildlife
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The project lead for the collection of this data in California was Terri Weist. She, along with Danielle Walsh, Shelly Blair, and other personnel, captured 30 adult female mule deer from July 2012 to November 2014, equipping the deer with Iridium satellite collars manufactured by Lotek. The data was collected from the interstate Carson River herd, where a portion of the population spends the summer months in the Sierra range of California and the winter months in western Nevada. An additional 57 deer were collared in Nevada and provided by Cody Schroeder of the Nevada Department of Wildlife. Summer range is mostly within Alpine County, California, but also extends into El Dorado County and Mono County. Winter range is confined to the California-Nevada border area in Alpine County, CA. and Douglas County, NV. GPS location data was collected between February 2012 to July 2019. Between 2 and 12 location fixes were recorded per day, with a maximum of a fix taken every 2 hours during migration sequences. To improve the quality of the data set as per Bjørneraas et al. (2010), the GPS data were filtered prior to analysis to remove locations which were: i) further from either the previous point or subsequent point than an individual deer is able to travel in the elapsed time, ii) forming spikes in the movement trajectory based on outgoing and incoming speeds and turning angles sharper than a predefined threshold , or iii) fixed in 2D space and visually assessed as a bad fix by the analyst. The methodology used for this migration analysis allowed for the mapping of winter ranges and the identification and prioritization of migration corridors in a single deer population. Brownian Bridge Movement Models (BBMMs; Sawyer et al. 2009) were constructed with GPS collar data from 45 deer, including location, date, time, and average location error as inputs in Migration Mapper. Due to the large study area and a concentration of deer movement east of Lake Tahoe in the Carson Range, the population was split into two distinct sub-herds. Twenty deer contributing 52 migration sequences were used in the modeling analysis for the Carson Range. Twenty-five deer contributing 58 migration sequences were used from the rest of the population surrounding the Carson Valley. Corridors and stopovers were prioritized based on the number of animals moving through a particular area. BBMMs were produced at a spatial resolution of 50 m using a sequential fix interval of less than 27 hours. Winter range analyses were based on data from 48 individual deer and 92 wintering sequences using a fixed motion variance of 1000. Winter range designations for this herd would likely expand with a larger sample, filling in some of the gaps between winter range polygons in the map. Large water bodies were clipped from the final outputs.Corridors are visualized based on deer use per cell, with greater than or equal to 1 deer, greater than or equal to 2 deer (10% of the sample), and greater than or equal to 4 deer (20% of the sample) from the Carson Range dataset and greater than or equal to 1 deer, greater than or equal to 3 deer (10% of the sample), and greater than or equal to 5 deer (20% of the sample) from the Carson Valley dataset representing migration corridors, moderate use, and high use corridors, respectively. Stopovers were calculated as the top 10 percent of the population level utilization distribution during migrations and can be interpreted as high use areas. Winter range is visualized as the 50thpercentile contour of the winter range utilization distribution.

  16. California Historical Fire Perimeters

    • catalog.data.gov
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CAL FIRE (2024). California Historical Fire Perimeters [Dataset]. https://catalog.data.gov/dataset/california-historical-fire-perimeters-2bcc3
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Forestry and Fire Protectionhttp://calfire.ca.gov/
    Area covered
    California
    Description

    The California Department of Forestry and Fire Protection's Fire and Resource Assessment Program (FRAP) annually maintains and distributes an historical wildland fire perimeter dataset from across public and private lands in California. The GIS data is developed with the cooperation of the United States Forest Service Region 5, the Bureau of Land Management, California State Parks, National Park Service and the United States Fish and Wildlife Service and is released in the spring with added data from the previous calendar year. Although the dataset represents the most complete digital record of fire perimeters in California, it is still incomplete, and users should be cautious when drawing conclusions based on the data. This data should be used carefully for statistical analysis and reporting due to missing perimeters (see Use Limitation in metadata). Some fires are missing because historical records were lost or damaged, were too small for the minimum cutoffs, had inadequate documentation or have not yet been incorporated into the database. Other errors with the fire perimeter database include duplicate fires and over-generalization. Additionally, over-generalization, particularly with large old fires, may show unburned "islands" within the final perimeter as burned. Users of the fire perimeter database must exercise caution in application of the data. Careful use of the fire perimeter database will prevent users from drawing inaccurate or erroneous conclusions from the data. This data is updated annually in the spring with fire perimeters from the previous fire season. This dataset may differ in California compared to that available from the National Interagency Fire Center (NIFC) due to different requirements between the two datasets. The data covers fires back to 1878. As of May 2024, it represents fire23_1. Please help improve this dataset by filling out this survey with feedback:Historic Fire Perimeter Dataset Feedback (arcgis.com)Current criteria for data collection are as follows:CAL FIRE (including contract counties) submit perimeters ≥10 acres in timber, ≥50 acres in brush, or ≥300 acres in grass, and/or ≥3 impacted residential or commercial structures, and/or caused ≥1 fatality.All cooperating agencies submit perimeters ≥10 acres.Version update:Firep23_1 was released in May 2024. Two hundred eighty four fires from the 2023 fire season were added to the database (21 from BLM, 102 from CAL FIRE, 72 from Contract Counties, 19 from LRA, 9 from NPS, 57 from USFS and 4 from USFW). The 2020 Cottonwood fire, 2021 Lone Rock and Union fires, as well as the 2022 Lost Lake fire were added. USFW submitted a higher accuracy perimeter to replace the 2022 River perimeter. Additionally, 48 perimeters were digitized from an historical map included in a publication from Weeks, d. et al. The Utilization of El Dorado County Land. May 1934, Bulletin 572. University of California, Berkeley. Two thousand eighteen perimeters had attributes updated, the bulk of which had IRWIN IDs added. A duplicate 2020 Erbes perimeter was removed. The following fires were identified as meeting our collection criteria, but are not included in this version and will hopefully be added in the next update: Big Hill #2 (2023-CAHIA-001020). YEAR_ field changed to a short integer type. San Diego CAL FIRE UNIT_ID changed to SDU (the former code MVU is maintained in the UNIT_ID domains). COMPLEX_INCNUM renamed to COMPLEX_ID and is in process of transitioning from local incident number to the complex IRWIN ID. Perimeters managed in a complex in 2023 are added with the complex IRWIN ID. Those previously added will transition to complex IRWIN IDs in a future update.Includes separate layers filtered by criteria as follows:California Fire Perimeters (All): Unfiltered. The entire collection of wildfire perimeters in the database. It is scale dependent and starts displaying at the country level scale. Recent Large Fire Perimeters (≥5000 acres): Filtered for wildfires greater or equal to 5,000 acres for the last 5 years of fires (2019-2023), symbolized with color by year and is scale dependent and starts displaying at the country level scale. Year-only labels for recent large fires.California Fire Perimeters (1950+): Filtered for wildfires that started in 1950-present. Symbolized by decade, and display starting at country level scale.Detailed metadata is included in the following documents:Wildland Fire Perimeters (Firep23_1) Metadata For any questions, please contact the data steward:Kim Wallin, GIS SpecialistCAL FIRE, Fire & Resource Assessment Program (FRAP)kimberly.wallin@fire.ca.gov

  17. California Fire Perimeters (all)

    • gis.data.ca.gov
    • gis.data.cnra.ca.gov
    • +1more
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Forestry and Fire Protection (2024). California Fire Perimeters (all) [Dataset]. https://gis.data.ca.gov/datasets/CALFIRE-Forestry::california-fire-perimeters-all
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    California Department of Forestry and Fire Protectionhttp://calfire.ca.gov/
    Area covered
    Description

    Version InformationThe data is updated annually with fire perimeters from the previous calendar year.Firep23_1 was released in May 2024. Two hundred eighty four fires from the 2023 fire season were added to the database (21 from BLM, 102 from CAL FIRE, 72 from Contract Counties, 19 from LRA, 9 from NPS, 57 from USFS and 4 from USFW). The 2020 Cottonwood fire, 2021 Lone Rock and Union fires, as well as the 2022 Lost Lake fire were added. USFW submitted a higher accuracy perimeter to replace the 2022 River perimeter. A duplicate 2020 Erbes fire was removed. Additionally, 48 perimeters were digitized from an historical map included in a publication from Weeks, d. et al. The Utilization of El Dorado County Land. May 1934, Bulletin 572. University of California, Berkeley. There were 2,132 perimeters that received updated attribution, the bulk of which had IRWIN IDs added. The following fires were identified as meeting our collection criteria, but are not included in this version and will hopefully be added in the next update: Big Hill #2 (2023-CAHIA-001020). YEAR_ field changed to a short integer type. San Diego CAL FIRE UNIT_ID changed to SDU (the former code MVU is maintained in the UNIT_ID domains). COMPLEX_INCNUM renamed to COMPLEX_ID and is in process of transitioning from local incident number to the complex IRWIN ID. Perimeters managed in a complex in 2023 are added with the complex IRWIN ID. Those previously added will transition to complex IRWIN IDs in a future update.If you would like a full briefing on these adjustments, please contact the data steward, Kim Wallin (kimberly.wallin@fire.ca.gov), CAL FIRE FRAP._CAL FIRE (including contract counties), USDA Forest Service Region 5, USDI Bureau of Land Management & National Park Service, and other agencies jointly maintain a fire perimeter GIS layer for public and private lands throughout the state. The data covers fires back to 1878. Current criteria for data collection are as follows:CAL FIRE (including contract counties) submit perimeters ≥10 acres in timber, ≥50 acres in brush, or ≥300 acres in grass, and/or ≥3 damaged/ destroyed residential or commercial structures, and/or caused ≥1 fatality.All cooperating agencies submit perimeters ≥10 acres._Discrepancies between wildfire perimeter data and CAL FIRE Redbook Large Damaging FiresLarge Damaging fires in California were first defined by the CAL FIRE Redbook, and has changed over time, and differs from the definition initially used to define wildfires required to be submitted for the initial compilation of this digital fire perimeter data. In contrast, the definition of fires whose perimeter should be collected has changed once in the approximately 30 years the data has been in existence. Below are descriptions of changes in data collection criteria used when compiling these two datasets. To facilitate comparison, this metadata includes a summary, by year, of fires in the Redbook, that do not appear in this fire perimeter dataset. It is followed by an enumeration of each “Redbook” fire missing from the spatial data. Wildfire Perimeter criteria:~1991: 10 acres timber, 30 acres brush, 300 acres grass, damages or destroys three residence or one commercial structure or does $300,000 worth of damage 2002: 10 acres timber, 50 acres brush, 300 acres grass, damages or destroys three or more structures, or does $300,000 worth of damage~2010: 10 acres timber, 30 acres brush, 300 acres grass, damages or destroys three or more structures (doesn’t include out building, sheds, chicken coops, etc.)Large and Damaging Redbook Fire data criteria:1979: Fires of a minimum of 300 acres that burn at least: 30 acres timber or 300 acres brush, or 1500 acres woodland or grass1981: 1979 criteria plus fires that took ,3000 hours of California Department of Forestry and Fire Protection personnel time to suppress1992: 1981 criteria plus 1500 acres agricultural products, or destroys three residence or one commercial structure or does $300,000 damage1993: 1992 criteria but “three or more structures destroyed” replaces “destroys three residence or one commercial structure” and the 3,000 hours of California Department of Forestry personnel time to suppress is removed2006: 300 acres or larger and burned at least: 30 acres of timber, or 300 acres of brush, or 1,500 acres of woodland, or 1,500 acres of grass, or 1,500 acres of agricultural products, or 3 or more structures destroyed, or $300,000 or more dollar damage loss.2008: 300 acres and largerYear# of Missing Large and Damaging Redbook Fires197922198013198115198261983319842019855219861219875619882319898199091991219921619931719942219959199615199791998101999720004200152002162003520042200512006112007320084320093201022011020124201322014720151020162201711201862019220203202102022020230Total488Enumeration of fires in the Redbook that are missing from Fire Perimeter data. Three letter unit code follows fire name.1979-Sylvandale (HUU), Kiefer (AEU), Taylor(TUU), Parker#2(TCU), PGE#10, Crocker(SLU), Silver Spur (SLU), Parkhill (SLU), Tar Springs #2 (SLU), Langdon (SCU), Truelson (RRU), Bautista (RRU), Crocker (SLU), Spanish Ranch (SLU), Parkhill (SLU), Oak Springs(BDU), Ruddell (BDF), Santa Ana (BDU), Asst. #61 (MVU), Bernardo (MVU), Otay #20 1980– Lightning series (SKU), Lavida (RRU), Mission Creek (RRU), Horse (RRU), Providence (RRU), Almond (BDU), Dam (BDU), Jones (BDU), Sycamore (BDU), Lightning (MVU), Assist 73, 85, 138 (MVU)1981– Basalt (LNU), Lightning #25(LMU), Likely (MNF), USFS#5 (SNF), Round Valley (TUU), St. Elmo (KRN), Buchanan (TCU), Murietta (RRU), Goetz (RRU), Morongo #29 (RRU), Rancho (RRU), Euclid (BDU), Oat Mt. (LAC & VNC), Outside Origin #1 (MVU), Moreno (MVU)1982- Duzen (SRF), Rave (LMU), Sheep’s trail (KRN), Jury (KRN), Village (RRU), Yuma (BDF)1983- Lightning #4 (FKU), Kern Co. #13, #18 (KRN)1984-Bidwell (BTU), BLM D 284,337, PNF #115, Mill Creek (TGU), China hat (MMU), fey ranch, Kern Co #10, 25,26,27, Woodrow (KRN), Salt springs, Quartz (TCU), Bonanza (BEU), Pasquel (SBC), Orco asst. (ORC), Canel (local), Rattlesnake (BDF)1985- Hidden Valley, Magic (LNU), Bald Mt. (LNU), Iron Peak (MEU), Murrer (LMU), Rock Creek (BTU), USFS #29, 33, Bluenose, Amador, 8 mile (AEU), Backbone, Panoche, Los Gatos series, Panoche (FKU), Stan #7, Falls #2 (MMU), USFS #5 (TUU), Grizzley, Gann (TCU), Bumb, Piney Creek, HUNTER LIGGETT ASST#2, Pine, Lowes, Seco, Gorda-rat, Cherry (BEU), Las pilitas, Hwy 58 #2 (SLO), Lexington, Finley (SCU), Onions, Owens (BDU), Cabazon, Gavalin, Orco, Skinner, Shell, Pala (RRU), South Mt., Wheeler, Black Mt., Ferndale, (VNC), Archibald, Parsons, Pioneer (BDU), Decker, Gleason(LAC), Gopher, Roblar, Assist #38 (MVU)1986– Knopki (SRF), USFS #10 (NEU), Galvin (RRU), Powerline (RRU), Scout, Inscription (BDU), Intake (BDF), Assist #42 (MVU), Lightning series (FKU), Yosemite #1 (YNP), USFS Asst. (BEU), Dutch Kern #30 (KRN)1987- Peach (RRU), Ave 32 (TUU), Conover (RRU), Eagle #1 (LNU), State 767 aka Bull (RRU), Denny (TUU), Dog Bar (NEU), Crank (LMU), White Deer (FKU), Briceburg (LMU), Post (RRU), Antelope (RRU), Cougar-I (SKU), Pilitas (SLU) Freaner (SHU), Fouts Complex (LNU), Slides (TGU), French (BTU), Clark (PNF), Fay/Top (SQF), Under, Flume, Bear Wallow, Gulch, Bear-1, Trinity, Jessie, friendly, Cold, Tule, Strause, China/Chance, Bear, Backbone, Doe, (SHF) Travis Complex, Blake, Longwood (SRF), River-II, Jarrell, Stanislaus Complex 14k (STF), Big, Palmer, Indian (TNF) Branham (BLM), Paul, Snag (NPS), Sycamore, Trail, Stallion Spring, Middle (KRN), SLU-864 1988- Hwy 175 (LNU), Rumsey (LNU), Shell Creek (MEU), PG&E #19 (LNU), Fields (BTU), BLM 4516, 417 (LMU), Campbell (LNF), Burney (SHF), USFS #41 (SHF), Trinity (USFS #32), State #837 (RRU), State (RRU), State (350 acres), RRU), State #1807, Orange Co. Asst (RRU), State #1825 (RRU), State #2025, Spoor (BDU), State (MVU), Tonzi (AEU), Kern co #7,9 (KRN), Stent (TCU), 1989– Rock (Plumas), Feather (LMU), Olivas (BDU), State 1116 (RRU), Concorida (RRU), Prado (RRU), Black Mt. (MVU), Vail (CNF)1990– Shipman (HUU), Lightning 379 (LMU), Mud, Dye (TGU), State 914 (RRU), Shultz (Yorba) (BDU), Bingo Rincon #3 (MVU), Dehesa #2 (MVU), SLU 1626 (SLU)1991- Church (HUU), Kutras (SHF)1992– Lincoln, Fawn (NEU), Clover, fountain (SHU), state, state 891, state, state (RRU), Aberdeen (BDU), Wildcat, Rincon (MVU), Cleveland (AEU), Dry Creek (MMU), Arroyo Seco, Slick Rock (BEU), STF #135 (TCU)1993– Hoisington (HUU), PG&E #27 (with an undetermined cause, lol), Hall (TGU), state, assist, local (RRU), Stoddard, Opal Mt., Mill Creek (BDU), Otay #18, Assist/ Old coach (MVU), Eagle (CNF), Chevron USA, Sycamore (FKU), Guerrero, Duck1994– Schindel Escape (SHU), blank (PNF), lightning #58 (LMU), Bridge (NEU), Barkley (BTU), Lightning #66 (LMU), Local (RRU), Assist #22 & #79 (SLU), Branch (SLO), Piute (BDU), Assist/ Opal#2 (BDU), Local, State, State (RRU), Gilman fire 7/24 (RRU), Highway #74 (RRU), San Felipe, Assist #42, Scissors #2 (MVU), Assist/ Opal#2 (BDU), Complex (BDF), Spanish (SBC)1995-State 1983 acres, Lost Lake, State # 1030, State (1335 acres), State (5000 acres), Jenny, City (BDU), Marron #4, Asist #51 (SLO/VNC)1996- Modoc NF 707 (Ambrose), Borrego (MVU), Assist #16 (SLU), Deep Creek (BDU), Weber (BDU), State (Wesley) 500 acres (RRU), Weaver (MMU), Wasioja (SBC/LPF), Gale (FKU), FKU 15832 (FKU), State (Wesley) 500 acres, Cabazon (RRU), State Assist (aka Bee) (RRU), Borrego, Otay #269 (MVU), Slaughter house (MVU), Oak Flat (TUU)1997- Lightning #70 (LMU), Jackrabbit (RRU), Fernandez (TUU), Assist 84 (Military AFV) (SLU), Metz #4 (BEU), Copperhead (BEU), Millstream, Correia (MMU), Fernandez (TUU)1998- Worden, Swift, PG&E 39 (MMU), Chariot, Featherstone, Wildcat, Emery, Deluz (MVU), Cajalco Santiago (RRU)1999- Musty #2,3 (BTU), Border # 95 (MVU), Andrews,

  18. El Dorado County Land Use Survey 2009

    • gis.data.cnra.ca.gov
    Updated Sep 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    gis_admin@water.ca.gov_DWR (2021). El Dorado County Land Use Survey 2009 [Dataset]. https://gis.data.cnra.ca.gov/datasets/23f80aecff334d64b75062da7ec0ce58
    Explore at:
    Dataset updated
    Sep 2, 2021
    Dataset provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Authors
    gis_admin@water.ca.gov_DWR
    Area covered
    Description

    This map is designated as Final.Land-Use Data Quality ControlEvery published digital survey is designated as either ‘Final’, or ‘Provisional’, depending upon its status in a peer review process.Final surveys are peer reviewed with extensive quality control methods to confirm that field attributes reflect the most detailed and specific land-use classification available, following the standard DWR Land Use Legendspecific to the survey year. Data sets are considered ‘final’ following the reconciliation of peer review comments and confirmation by the originating Regional Office. During final review, individual polygons are evaluated using a combination of aerial photointerpretation, satellite image multi-spectral data and time series analysis, comparison with other sources of land use data, and general knowledge of land use patterns at the local level.Provisional datasets have been reviewed for conformance with DWR’s published data record format, and for general agreement with other sources of land use trends. Comments based on peer review findings may not be reconciled, and no significant edits or changes are made to the original survey data.The 2009 El Dorado County land use survey data was developed by the State of California, Department of Water Resources (DWR) through its Division of Integrated Regional Water Management (DIRWM) and Division of Statewide Integrated Water Management (DSIWM). Land use boundaries were digitized and land use data was gathered by staff of DWR’s North Central Region using extensive field visits and aerial photography. Land use polygons in agricultural areas were mapped in greater detail than areas of urban or native vegetation. Quality control procedures were performed jointly by staff at DWR’s DSIWM headquarters, under the leadership of Jean Woods, and North Central Region, under the supervision of: Kim Rosmaier. This data was developed to monitor land use for the primary purpose of quantifying water use within this study area and determining changes in water use associated with land use changes over time. The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standards version 2.1, dated March 9, 2016. DWR makes no warranties or guarantees - either expressed or implied - as to the completeness, accuracy, or correctness of the data. DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Comments, problems, improvements, updates, or suggestions should be forwarded to gis@water.ca.gov. This data represents a land use survey of El Dorado County conducted by the California Department of Water Resources, North Central Regional Office staff. For digitizing, the county was subdivided into three areas using the centerline of U.S. Route 50 and a north/south line for boundaries. Land use field boundaries were digitized with ArcGIS 9.3 using 2005 U.S.D.A National Agriculture Imagery Program (NAIP) one-meter imagery as the base. Agricultural fields were delineated by following actual field boundaries instead of using the centerlines of roads to represent the field borders. The three digitized shapefiles were merged into a single file and the shared boundaries were removed. Field boundaries were reviewed and updated using 2009 NAIP imagery when it became available. Field boundaries were not drawn to represent legal parcel (ownership) boundaries, or meant to be used as parcel boundaries. The field work for this survey was conducted between the end of July and the first week of November 2009. Images, land use boundaries and ESRI ArcMap software, version 9.3 were loaded onto laptop computers that were used as the field data collection tools. Staff took these laptops into the field and virtually all agricultural fields were visited to positively identify the land use. Global positioning System (GPS) units connected to the laptops were used to confirm the surveyor's location with respect to the fields. Land use codes were digitized in the field using customized menus to enter land use attributes. The primary focus of this land use survey is mapping agricultural fields. Urban residences and other urban areas were delineated using aerial photo interpretation, so some urban areas may have been missed. Especially in rural residential areas, urban land use was delineated by drawing polygons to surround houses or other buildings along with a minimal area of land surrounding these structures. These footprint areas represent the locations of structures but do not represent the entire footprint of urban land. Information on sources of irrigation water was identified for general areas and occasionally supplemented by information obtained from landowners or by the observation of wells. Water source information was not collected for each field in the survey, so the water source listed for a specific agricultural field may not be accurate. Before final processing, standard quality control procedures were performed jointly by staff at DWR’s North Central Region, and at DSIWM headquarters under the leadership of Jean Woods. Senior Land and Water Use Supervisor. After quality control procedures were completed, the data was finalized. The positional accuracy of the digital line work, which is based upon the orthorectified NAIP imagery, is approximately 6 meters. The land use attribute accuracy for agricultural fields is high, because almost every delineated field was visited by a surveyor. The accuracy is 95 percent because some errors may have occurred. Possible sources of attribute errors are: a) Human error in the identification of crop types, b) Data entry errors.

  19. Regional Transportation Planning Agencies

    • gis.data.ca.gov
    • data.ca.gov
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California_Department_of_Transportation (2025). Regional Transportation Planning Agencies [Dataset]. https://gis.data.ca.gov/datasets/4258a35337e04caa9ab185b24bed8d38
    Explore at:
    Dataset updated
    Jan 7, 2025
    Dataset provided by
    California Department of Transportationhttp://dot.ca.gov/
    Authors
    California_Department_of_Transportation
    Area covered
    Description

    The RTPA_2013 polygon feature class provides California Regional Transportation Planning Agencies (RTPA) legislative boundaries, primarily for regional planning applications.The list of California Transportation Planning Agencies is current as of February, 2014, provided by Division of Transportation Planning, Office of Regional and Interagency Planning.With the exception of Tahoe Regional Planning Agency (TRPA*), all of the RTPA boundaries follow county boundaries, some RTPA are multi-county. This feature class was created primarily based on 2010 Census county lines exclude the islands.*TRPA is actually a bi-state agency created by the U.S. Congress and a compact between California and Nevada. Federal laws and California and Nevada statutes govern it. TRPA is composed of parts of two counties in California, El Dorado and Placer, and two counties in Nevada. The portions of two California counties outside the Tahoe basin are part of the Sacramento Area Council of Governments (SACOG).Reference: CALCOG GUIDE TO REGIONAL PLANNING, AS REVISED BY SB 375 JANUARY 2009.

  20. Sierra Nevada Conservancy Subregions

    • gis.data.cnra.ca.gov
    • gis.data.ca.gov
    Updated Oct 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sierra Nevada Conservancy (2023). Sierra Nevada Conservancy Subregions [Dataset]. https://gis.data.cnra.ca.gov/datasets/SNC::sierra-nevada-conservancy-subregions
    Explore at:
    Dataset updated
    Oct 30, 2023
    Dataset authored and provided by
    Sierra Nevada Conservancyhttp://www.sierranevadaconservancy.ca.gov/
    Area covered
    Description

    Boundary Sierra Nevada Conservancy (SNC) boundary. The boundary was mapped to correspond with statute AB 2600 (2004) and as re-defined in SB 208 (2022). Work on the boundary was completed by CalFire, GreenInfo Network, and the California Department of Fish and Game. Meets and bounds description of the area as defined in statute: PRC Section 33302 (f) defines the Sierra Nevada Region as the area lying within the Counties of Alpine, Amador, Butte, Calaveras, El Dorado, Fresno, Inyo, Kern, Lassen, Madera, Mariposa, Modoc, Mono, Nevada, Placer, Plumas, Shasta, Sierra, Siskiyou, Tehama, Trinity, Tulare, Tuolumne, and Yuba, described as the area bounded as follows: On the east by the eastern boundary of the State of California; the crest of the White/Inyo ranges; and State Routes 395 and 14 south of Olancha; on the south by State Route 58, Tehachapi Creek, and Caliente Creek; on the west by the line of 1,250 feet above sea level from Caliente Creek to the Kern/Tulare County line; the lower level of the western slope’s blue oak woodland, from the Kern/Tulare County line to the Sacramento River near the mouth of Seven-Mile Creek north of Red Bluff; the Sacramento River from Seven-Mile Creek north to Cow Creek below Redding; Cow Creek, Little Cow Creek, Dry Creek, and up to the southern boundary of the Pit River watershed where Bear Creek Mountain Road and Dry Creek Road intersect; the southern boundary of the Pit River watershed; the western boundary of the upper Trinity watershed in the County of Trinity; on the north by the boundary of the upper Trinity watershed in the County of Trinity and the upper Sacramento, McCloud, and Pit River watersheds in the County of Siskiyou; and within the County of Modoc, the easterly boundary of the Klamath River watershed; and on the north in the County of Modoc by the northern boundary of the State of California; excluding both of the following: (1) The Lake Tahoe Region, as described in Section 6605.5 of the Government Code, where it is defined as "region" (2) The San Joaquin River Parkway, as described in Section 32510.According to GreenInfo Network and the California Department of Fish and Game, the blue oak woodland used to define a portion of the Sierra Nevada Conservancy's western boundary was delineated using referenced vegetation and imagery data.Subregions“Subregions” means the six subregions in which the Sierra Nevada Region is located, described as follows:(1) The northwest Sierra subregion, comprising the Counties of Shasta, Siskiyou, Tehama, and Trinity.(2) The northeast Sierra subregion, comprising the Counties of Lassen, Modoc, Plumas, and Sierra.(3) The north central Sierra subregion, comprising the Counties of Butte, Nevada, Placer, and Yuba.(4) The south central Sierra subregion, comprising the Counties of Amador, Calaveras, El Dorado, and Tuolumne.(5) The southeast Sierra subregion, comprising the Counties of Alpine, Inyo, Kern, and Mono.(6) The southwest Sierra subregion, comprising the Counties of Fresno, Madera, Mariposa, and Tulare.

  21. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
El Dorado, California (2022). El Dorado County, California Parcels [Dataset]. https://koordinates.com/layer/110056-el-dorado-county-california-parcels/

El Dorado County, California Parcels

Explore at:
geodatabase, shapefile, kml, geopackage / sqlite, csv, mapinfo mif, pdf, mapinfo tab, dwgAvailable download formats
Dataset updated
Aug 10, 2022
Dataset authored and provided by
El Dorado, California
Area covered
Description

Geospatial data about El Dorado County, California Parcels. Export to CAD, GIS, PDF, CSV and access via API.

Search
Clear search
Close search
Google apps
Main menu