CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
PROBLEM AND OPPORTUNITY In the United States, voting is largely a private matter. A registered voter is given a randomized ballot form or machine to prevent linkage between their voting choices and their identity. This disconnect supports confidence in the election process, but it provides obstacles to an election's analysis. A common solution is to field exit polls, interviewing voters immediately after leaving their polling location. This method is rife with bias, however, and functionally limited in direct demographics data collected. For the 2020 general election, though, most states published their election results for each voting location. These publications were additionally supported by the geographical areas assigned to each location, the voting precincts. As a result, geographic processing can now be applied to project precinct election results onto Census block groups. While precinct have few demographic traits directly, their geographies have characteristics that make them projectable onto U.S. Census geographies. Both state voting precincts and U.S. Census block groups: are exclusive, and do not overlap are adjacent, fully covering their corresponding state and potentially county have roughly the same size in area, population and voter presence Analytically, a projection of local demographics does not allow conclusions about voters themselves. However, the dataset does allow statements related to the geographies that yield voting behavior. One could say, for example, that an area dominated by a particular voting pattern would have mean traits of age, race, income or household structure. The dataset that results from this programming provides voting results allocated by Census block groups. The block group identifier can be joined to Census Decennial and American Community Survey demographic estimates. DATA SOURCES The state election results and geographies have been compiled by Voting and Election Science team on Harvard's dataverse. State voting precincts lie within state and county boundaries. The Census Bureau, on the other hand, publishes its estimates across a variety of geographic definitions including a hierarchy of states, counties, census tracts and block groups. Their definitions can be found here. The geometric shapefiles for each block group are available here. The lowest level of this geography changes often and can obsolesce before the next census survey (Decennial or American Community Survey programs). The second to lowest census level, block groups, have the benefit of both granularity and stability however. The 2020 Decennial survey details US demographics into 217,740 block groups with between a few hundred and a few thousand people. Dataset Structure The dataset's columns include: Column Definition BLOCKGROUP_GEOID 12 digit primary key. Census GEOID of the block group row. This code concatenates: 2 digit state 3 digit county within state 6 digit Census Tract identifier 1 digit Census Block Group identifier within tract STATE State abbreviation, redundent with 2 digit state FIPS code above REP Votes for Republican party candidate for president DEM Votes for Democratic party candidate for president LIB Votes for Libertarian party candidate for president OTH Votes for presidential candidates other than Republican, Democratic or Libertarian AREA square kilometers of area associated with this block group GAP total area of the block group, net of area attributed to voting precincts PRECINCTS Number of voting precincts that intersect this block group ASSUMPTIONS, NOTES AND CONCERNS: Votes are attributed based upon the proportion of the precinct's area that intersects the corresponding block group. Alternative methods are left to the analyst's initiative. 50 states and the District of Columbia are in scope as those U.S. possessions voting in the general election for the U.S. Presidency. Three states did not report their results at the precinct level: South Dakota, Kentucky and West Virginia. A dummy block group is added for each of these states to maintain national totals. These states represent 2.1% of all votes cast. Counties are commonly coded using FIPS codes. However, each election result file may have the county field named differently. Also, three states do not share county definitions - Delaware, Massachusetts, Alaska and the District of Columbia. Block groups may be used to capture geographies that do not have population like bodies of water. As a result, block groups without intersection voting precincts are not uncommon. In the U.S., elections are administered at a state level with the Federal Elections Commission compiling state totals against the Electoral College weights. The states have liberty, though, to define and change their own voting precincts https://en.wikipedia.org/wiki/Electoral_precinct. The Census Bureau practices "data suppression", filtering some block groups from demographic publication because they do not meet a population threshold. This practice...
According to results on November 6, 2024, former President Donald Trump had received *** Electoral College votes in the race to become the next President of the United States, securing him the presidency. With all states counted, Trump received a total of *** electoral votes. Candidates need *** votes to become the next President of the United States.
According to exit polling in ten key states of the 2024 presidential election in the United States, ** percent of surveyed white voters reported voting for Donald Trump. In contrast, ** percent of Black voters reported voting for Kamala Harris.
This web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.
According to exit polling in *** key states of the 2024 presidential election in the United States, almost ********** of voters who had never attended college reported voting for Donald Trump. In comparison, a similar share of voters with ******** degrees reported voting for Kamala Harris.
The Cumulative Report includes complete official election results for the 2020 Presidential General Election as of November 29, 2020. Results are released in three separate reports: The Vote By Mail 1 report contains complete results for ballots received by the Board of Elections on or before October 21, 2020, that could be accepted and opened before Election Day. The Vote By Mail 2 Canvass report contains complete results for all remaining Vote By Mail ballots that were received in a drop box or in person at the Board of Elections by 8:00pm on November 3, or were postmarked by November 3 and received timely by the Board of Elections by 10:00am on Friday, November 13. The Vote By Mail 2 Canvass begins on Thursday, November 5. The Provisional Canvass contains complete results for all provisional ballots issued to voters at Early Voting or on Election Day. For more information on this process, please visit the 2020 Presidential General Election Ballot Canvass webpage at https://www.montgomerycountymd.gov/Elections/2020GeneralElection/general-ballot-canvass.html. For turnout information, please visit the Maryland State Board of Elections Press Room webpage at https://elections.maryland.gov/press_room/index.html.
Data Source: CA Secretary of State
This data biography shares the how, who, what, where, when, and why about this dataset. We, the epidemiology team at Napa County Health and Human Services Agency, Public Health Division, created it to help you understand where the data we analyze and share comes from. If you have any further questions, we can be reached at epidemiology@countyofnapa.org.
Data dashboard featuring this data: Demographics https://data.countyofnapa.org/stories/s/bu3n-fytj
How was the data collected? The California Secretary of State's Elections Division is responsible for maintaining a database of all registered voters as well as coordinating the counting of votes after elections. Voter participation is defined here as the percentage of eligible voters who actually voted.
Who was included and excluded from the data? The term "eligible voters" refers to the population of US citizens aged 18 years or older who currently reside in the voting jurisdiction and who are not in prison or on parole for a felony and who have not been declared mentally incompetent.
Where was the data collected? Voter registration data and election results are collected throughout California. This subset of data includes Napa County and California.
How often is the data collected? Statewide General Elections are held the Tuesday after the first Monday in November on even years.
Where can I learn more about this data? https://www.sos.ca.gov/elections/prior-elections/statewide-election-results
According to exit polling in the 2020 Presidential Election in the United States, ** percent of surveyed voters with a union member in their household reported voting for former Vice President Joe Biden. In the race to become the next President of the United States, ** percent of voters without a union member in their household reported voting for incumbent President Donald Trump.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Electoral registrations for parliamentary and local government elections as recorded in electoral registers for England, Wales, Scotland and Northern Ireland.
https://www.icpsr.umich.edu/web/ICPSR/studies/8242/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8242/terms
This data collection contains electoral and demographic data for Massachusetts counties and cities during 1848-1876. The data for this collection were compiled to study electoral changes in Massachusetts politics during the Civil War period and to link the changes to socioeconomic determinants of support for the Republican and Democratic parties. Specific variables include number of voters for specific years and demographic information such as number of males and females and number of males employed in certain trades. Electoral data consists of election results.
https://www.icpsr.umich.edu/web/ICPSR/studies/7757/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7757/terms
These data are derived from CANDIDATE NAME AND CONSTITUENCY TOTALS, 1788-1990 (ICPSR 0002). They consist of returns for two-thirds of all elections from 1788 to 1823 to the offices of president, governor, and United States representative, and over 90 percent of all elections to those offices since 1824. They also include information on United States Senate elections since 1912. Returns for one additional statewide office are included beginning with the 1968 election. This file provides a set of derived measures describing the vote totals for candidates and the pattern of contest in each constituency. These measures include the total number of votes cast for all candidates in the election, each candidate's percentage of the vote received, and several measures of the relative performance of each candidate. They are appended to the individual candidate records and permit extensive analysis of electoral contests over time. This dataset contains returns for all parties and candidates (as well as scattering vote) for general elections and special elections, including information on elections for which returns were available only at the constituency level. Included in this edition are data from the District of Columbia election for United States senator and United States representative. The offices of two senators and one representative were created by the "District of Columbia Statehood Constitutional Convention Initiative," which was approved by District voters in 1980. Elections for these offices were postponed until the 1990 general election. The three offices are currently local District positions, which will turn into federal offices if the District becomes a state.
Immigration and demographic change have become highly salient in American politics, partly because of the 2016 campaign of Donald Trump. Previous research indicates that local influxes of immigrants or unfamiliar ethnic groups can generate threatened responses, but has either focused on non-electoral outcomes or has analyzed elections in large geographic units such as counties. Here, we examine whether demographic changes at low levels of aggregation were associated with vote shifts toward an anti-immigration presidential candidate between 2012 and 2016. To do so, we compile a novel, precinct-level data set of election results and demographic measures for almost 32,000 precincts in the states of Florida, Georgia, Michigan, Nevada, Ohio, Pennsylvania, and Washington. We employ regression analyses varying model specifications and measures of demographic change. Our estimates uncover little evidence that influxes of Hispanics or non-citizen immigrants benefited Trump relative to past Republicans, instead consistently showing that such changes were associated with shifts to Trump's opponent.
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
This Dataset contains year and state-wise total electoral votes, political party, candidate name and electoral votes won by candidates contested in President and Vice-President post in United States of America (USA)
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Voting precincts are the most granular spatial units for reporting election outcomes, whereas census geographies, such as block groups, census tracts, and ZIP Code Tabulation Areas (ZCTAs), are commonly used for publishing demographic, economic, health, and environmental data. This dataset bridges the two by reallocating precinct-level votes to standard census geographies through a systematic and replicable framework. The reallocation assumes that votes within each precinct are distributed proportionally to the household population. Household population counts from census block groups—the smallest census unit with regularly updated population estimates—are used to allocate votes to fractions created by the intersection of precinct and census boundaries. This process is implemented using three allocation strategies: areal weighting, impervious surface weighting, and Regionalized Land Cover Regression (RLCR). Results from all three methods are provided. Among these, the RLCR method demonstrates the highest accuracy based on validation against voter-level ground truth data and is recommended as the primary version for analysis. The alternative methods may serve as robustness checks or sensitivity tests. The dataset currently includes the 2016 and 2020 U.S. general elections and is designed for seamless integration with other datasets, such as the American Community Survey (ACS), CDC PLACES, or IRS Statistics of Income (SOI), via the GEOID field.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The typical statewide or county-wide red/blue map (shown at left) depicts presidential voting results on a winner-take-all basis, so they award an entire geographical area to the Republican or Democratic candidate no matter how close the actual vote tally The large map in the attachment factors in both the percentage of the popular vote won by each candidate as well as the population density of each county. So, the sparsely populated Great Plains and Rocky Mountain West are shown in a much lighter color than the Eastern Seaboard, and the map as a whole is more purple than either red or blue. Perhaps the United States is less divided than some maps would lead us to believe.
AP VoteCast is a survey of the American electorate conducted by NORC at the University of Chicago for Fox News, NPR, PBS NewsHour, Univision News, USA Today Network, The Wall Street Journal and The Associated Press.
AP VoteCast combines interviews with a random sample of registered voters drawn from state voter files with self-identified registered voters selected using nonprobability approaches. In general elections, it also includes interviews with self-identified registered voters conducted using NORC’s probability-based AmeriSpeak® panel, which is designed to be representative of the U.S. population.
Interviews are conducted in English and Spanish. Respondents may receive a small monetary incentive for completing the survey. Participants selected as part of the random sample can be contacted by phone and mail and can take the survey by phone or online. Participants selected as part of the nonprobability sample complete the survey online.
In the 2020 general election, the survey of 133,103 interviews with registered voters was conducted between Oct. 26 and Nov. 3, concluding as polls closed on Election Day. AP VoteCast delivered data about the presidential election in all 50 states as well as all Senate and governors’ races in 2020.
This is survey data and must be properly weighted during analysis: DO NOT REPORT THIS DATA AS RAW OR AGGREGATE NUMBERS!!
Instead, use statistical software such as R or SPSS to weight the data.
National Survey
The national AP VoteCast survey of voters and nonvoters in 2020 is based on the results of the 50 state-based surveys and a nationally representative survey of 4,141 registered voters conducted between Nov. 1 and Nov. 3 on the probability-based AmeriSpeak panel. It included 41,776 probability interviews completed online and via telephone, and 87,186 nonprobability interviews completed online. The margin of sampling error is plus or minus 0.4 percentage points for voters and 0.9 percentage points for nonvoters.
State Surveys
In 20 states in 2020, AP VoteCast is based on roughly 1,000 probability-based interviews conducted online and by phone, and roughly 3,000 nonprobability interviews conducted online. In these states, the margin of sampling error is about plus or minus 2.3 percentage points for voters and 5.5 percentage points for nonvoters.
In an additional 20 states, AP VoteCast is based on roughly 500 probability-based interviews conducted online and by phone, and roughly 2,000 nonprobability interviews conducted online. In these states, the margin of sampling error is about plus or minus 2.9 percentage points for voters and 6.9 percentage points for nonvoters.
In the remaining 10 states, AP VoteCast is based on about 1,000 nonprobability interviews conducted online. In these states, the margin of sampling error is about plus or minus 4.5 percentage points for voters and 11.0 percentage points for nonvoters.
Although there is no statistically agreed upon approach for calculating margins of error for nonprobability samples, these margins of error were estimated using a measure of uncertainty that incorporates the variability associated with the poll estimates, as well as the variability associated with the survey weights as a result of calibration. After calibration, the nonprobability sample yields approximately unbiased estimates.
As with all surveys, AP VoteCast is subject to multiple sources of error, including from sampling, question wording and order, and nonresponse.
Sampling Details
Probability-based Registered Voter Sample
In each of the 40 states in which AP VoteCast included a probability-based sample, NORC obtained a sample of registered voters from Catalist LLC’s registered voter database. This database includes demographic information, as well as addresses and phone numbers for registered voters, allowing potential respondents to be contacted via mail and telephone. The sample is stratified by state, partisanship, and a modeled likelihood to respond to the postcard based on factors such as age, race, gender, voting history, and census block group education. In addition, NORC attempted to match sampled records to a registered voter database maintained by L2, which provided additional phone numbers and demographic information.
Prior to dialing, all probability sample records were mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Postcards were addressed by name to the sampled registered voter if that individual was under age 35; postcards were addressed to “registered voter” in all other cases. Telephone interviews were conducted with the adult that answered the phone following confirmation of registered voter status in the state.
Nonprobability Sample
Nonprobability participants include panelists from Dynata or Lucid, including members of its third-party panels. In addition, some registered voters were selected from the voter file, matched to email addresses by V12, and recruited via an email invitation to the survey. Digital fingerprint software and panel-level ID validation is used to prevent respondents from completing the AP VoteCast survey multiple times.
AmeriSpeak Sample
During the initial recruitment phase of the AmeriSpeak panel, randomly selected U.S. households were sampled with a known, non-zero probability of selection from the NORC National Sample Frame and then contacted by mail, email, telephone and field interviewers (face-to-face). The panel provides sample coverage of approximately 97% of the U.S. household population. Those excluded from the sample include people with P.O. Box-only addresses, some addresses not listed in the U.S. Postal Service Delivery Sequence File and some newly constructed dwellings. Registered voter status was confirmed in field for all sampled panelists.
Weighting Details
AP VoteCast employs a four-step weighting approach that combines the probability sample with the nonprobability sample and refines estimates at a subregional level within each state. In a general election, the 50 state surveys and the AmeriSpeak survey are weighted separately and then combined into a survey representative of voters in all 50 states.
State Surveys
First, weights are constructed separately for the probability sample (when available) and the nonprobability sample for each state survey. These weights are adjusted to population totals to correct for demographic imbalances in age, gender, education and race/ethnicity of the responding sample compared to the population of registered voters in each state. In 2020, the adjustment targets are derived from a combination of data from the U.S. Census Bureau’s November 2018 Current Population Survey Voting and Registration Supplement, Catalist’s voter file and the Census Bureau’s 2018 American Community Survey. Prior to adjusting to population totals, the probability-based registered voter list sample weights are adjusted for differential non-response related to factors such as availability of phone numbers, age, race and partisanship.
Second, all respondents receive a calibration weight. The calibration weight is designed to ensure the nonprobability sample is similar to the probability sample in regard to variables that are predictive of vote choice, such as partisanship or direction of the country, which cannot be fully captured through the prior demographic adjustments. The calibration benchmarks are based on regional level estimates from regression models that incorporate all probability and nonprobability cases nationwide.
Third, all respondents in each state are weighted to improve estimates for substate geographic regions. This weight combines the weighted probability (if available) and nonprobability samples, and then uses a small area model to improve the estimate within subregions of a state.
Fourth, the survey results are weighted to the actual vote count following the completion of the election. This weighting is done in 10–30 subregions within each state.
National Survey
In a general election, the national survey is weighted to combine the 50 state surveys with the nationwide AmeriSpeak survey. Each of the state surveys is weighted as described. The AmeriSpeak survey receives a nonresponse-adjusted weight that is then adjusted to national totals for registered voters that in 2020 were derived from the U.S. Census Bureau’s November 2018 Current Population Survey Voting and Registration Supplement, the Catalist voter file and the Census Bureau’s 2018 American Community Survey. The state surveys are further adjusted to represent their appropriate proportion of the registered voter population for the country and combined with the AmeriSpeak survey. After all votes are counted, the national data file is adjusted to match the national popular vote for president.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset reports on a new effort to track candidate diversity in Canadian elections. The dataset covers 4,516 candidates who ran in the 2008, 2011, 2015, and 2019 federal elections, and includes novel data on their race, Indigenous background, and age, alongside information on gender, occupation, prior electoral experience, and electoral outcome. The data can be used to track diversity among electoral candidates over time or merged with other sources to answer district-level questions about representational diversity, electoral dynamics, vote choice, and political communications.
According to exit polling in ten key states of the 2024 presidential election in the United States, Donald Trump received the most support from men between the ages of ** and **. In comparison, ** percent of women between the ages of ** and ** reported voting for Kamala Harris.
https://www.icpsr.umich.edu/web/ICPSR/studies/38/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38/terms
This study contains selected electoral and demographic national data for nine nations in the 1950s and 1960s. The data were prepared for the Data Confrontation Seminar on the Use of Ecological Data in Comparative Cross-National Research held under the auspices of the Inter-university Consortium for Political and Social Research on April 1-18, 1969. One of the primary concerns of this international seminar was the need for cooperation in the development of data resources in order to facilitate exchange of data among individual scholars and research groups. Election returns for two or more national and/or local elections are provided for each of the nine nations, as well as ecological materials for at least two time points in the general period of the 1950s and 1960s. While each dataset was received at a single level of aggregation, the data have been further aggregated to at least a second level of aggregation. In most cases, the data can be supplied at the commune or municipality level and at the province or district level as well. Part 1 (Germany, Regierungsbezirke), Part 2 (Germany, Kreise), Part 3 (Germany, Lander), and Part 4 (Germany, Wahlkreise) contain data for all kreise, laender (states), administrative districts, and electoral districts for national elections in the period 1957-1969, and for state elections in the period 1946-1969, and ecological data from 1951 and 1961. Part 5 (France, Canton), and Part 6 (France, Departemente) contain data for the cantons and departements of two regions of France (West and Central) for the national elections of 1956, 1962, and 1967, and ecological data for the years 1954 and 1962. Data are provided for election returns for selected parties: Communist, Socialist, Radical, Federation de Gauche, and the Fifth Republic. Included are raw votes and percentage of total votes for each party. Ecological data provide information on total population, proportion of total population in rural areas, agriculture, industry, labor force, and middle class in 1954, as well as urbanization, crime rates, vital statistics, migration, housing, and the index of "comforts." Part 7 (Japan, Kanagawa Prefecture), Part 8 (Japan, House of Representatives Time Series), Part 9 (Japan, House of (Councilors (Time Series)), and Part 10 (Japan, Prefecture) contain data for the 46 prefectures for 15 national elections between 1949 and 1968, including data for all communities in the prefecture of Kanagawa for 13 national elections, returns for 8 House of Representatives' elections, 7 House of Councilors' elections, descriptive data from 4 national censuses, and ecological data for 1950, 1955, 1960, and 1965. Data are provided for total number of electorate, voters, valid votes, and votes cast by such groups as the Jiyu, Minshu, Kokkyo, Minji, Shakai, Kyosan, and Mushozoku for the Communist, Socialist, Conservative, Komei, and Independent parties for all the 46 prefectures. Population characteristics include age, sex, employment, marriage and divorce rates, total number of live births, deaths, households, suicides, Shintoists, Buddhists, and Christians, and labor union members, news media subscriptions, savings rate, and population density. Part 11 (India, Administrative Districts) and Part 12 (India, State) contain data for all administrative districts and all states and union territories for the national and state elections in 1952, 1957, 1962, 1965, and 1967, the 1958 legislative election, and ecological data from the national censuses of 1951 and 1961. Data are provided for total number of votes cast for the Congress, Communist, Jan Sangh, Kisan Mazdoor Praja, Socialist, Republican, Regional, and other parties, contesting candidates, electorate, valid votes, and the percentage of valid votes cast. Also included are votes cast for the Rightist, Christian Democratic, Center, Socialist, and Communist parties in the 1958 legislative election. Ecological data include total population, urban population, sex distribution, occupation, economically active population, education, literate population, and number of Buddhists, Christians, Hindus, Jainis, Moslems, Sikhs, and other religious groups. Part 13 (Norway, Province), and Part 14 (Norway, Commune) consist of the returns for four national elections in 1949, 1953, 1957, and 1961, and descriptive data from two national censuses. Data are provided for the total number
https://www.icpsr.umich.edu/web/ICPSR/studies/7814/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7814/terms
This data collection consists of two election surveys. Part 1, Pre-Congressional Poll, contains a nationwide telephone survey conducted in late September 1978, focusing on the respondents' voting intentions for the 1978 United States Congressional elections. A total of 1,451 randomly selected adults were surveyed. Respondents were asked whether they intended to vote and what issues would influence their vote, their reactions to President Carter's policies, and their preferences for presidential candidates in 1980. Demographic information including age, race, religion, income, political orientation, and education is available for each respondent. Part 2, Nationwide Election Day Poll, contains a nationwide "exit" survey conducted at the polls on election day, November 7, 1978. A total of 8,808 randomly selected voters were asked to fill out a questionnaire asking which party they voted for in the Congressional election and their opinion on a number of current political issues. Demographic information for respondents in Part 2 includes age, race, religion, income, and labor union affiliation. These datasets were made available to the ICPSR by the Election and Survey Unit of CBS News. The Pre-Congressional Poll was conducted solely by CBS News.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
PROBLEM AND OPPORTUNITY In the United States, voting is largely a private matter. A registered voter is given a randomized ballot form or machine to prevent linkage between their voting choices and their identity. This disconnect supports confidence in the election process, but it provides obstacles to an election's analysis. A common solution is to field exit polls, interviewing voters immediately after leaving their polling location. This method is rife with bias, however, and functionally limited in direct demographics data collected. For the 2020 general election, though, most states published their election results for each voting location. These publications were additionally supported by the geographical areas assigned to each location, the voting precincts. As a result, geographic processing can now be applied to project precinct election results onto Census block groups. While precinct have few demographic traits directly, their geographies have characteristics that make them projectable onto U.S. Census geographies. Both state voting precincts and U.S. Census block groups: are exclusive, and do not overlap are adjacent, fully covering their corresponding state and potentially county have roughly the same size in area, population and voter presence Analytically, a projection of local demographics does not allow conclusions about voters themselves. However, the dataset does allow statements related to the geographies that yield voting behavior. One could say, for example, that an area dominated by a particular voting pattern would have mean traits of age, race, income or household structure. The dataset that results from this programming provides voting results allocated by Census block groups. The block group identifier can be joined to Census Decennial and American Community Survey demographic estimates. DATA SOURCES The state election results and geographies have been compiled by Voting and Election Science team on Harvard's dataverse. State voting precincts lie within state and county boundaries. The Census Bureau, on the other hand, publishes its estimates across a variety of geographic definitions including a hierarchy of states, counties, census tracts and block groups. Their definitions can be found here. The geometric shapefiles for each block group are available here. The lowest level of this geography changes often and can obsolesce before the next census survey (Decennial or American Community Survey programs). The second to lowest census level, block groups, have the benefit of both granularity and stability however. The 2020 Decennial survey details US demographics into 217,740 block groups with between a few hundred and a few thousand people. Dataset Structure The dataset's columns include: Column Definition BLOCKGROUP_GEOID 12 digit primary key. Census GEOID of the block group row. This code concatenates: 2 digit state 3 digit county within state 6 digit Census Tract identifier 1 digit Census Block Group identifier within tract STATE State abbreviation, redundent with 2 digit state FIPS code above REP Votes for Republican party candidate for president DEM Votes for Democratic party candidate for president LIB Votes for Libertarian party candidate for president OTH Votes for presidential candidates other than Republican, Democratic or Libertarian AREA square kilometers of area associated with this block group GAP total area of the block group, net of area attributed to voting precincts PRECINCTS Number of voting precincts that intersect this block group ASSUMPTIONS, NOTES AND CONCERNS: Votes are attributed based upon the proportion of the precinct's area that intersects the corresponding block group. Alternative methods are left to the analyst's initiative. 50 states and the District of Columbia are in scope as those U.S. possessions voting in the general election for the U.S. Presidency. Three states did not report their results at the precinct level: South Dakota, Kentucky and West Virginia. A dummy block group is added for each of these states to maintain national totals. These states represent 2.1% of all votes cast. Counties are commonly coded using FIPS codes. However, each election result file may have the county field named differently. Also, three states do not share county definitions - Delaware, Massachusetts, Alaska and the District of Columbia. Block groups may be used to capture geographies that do not have population like bodies of water. As a result, block groups without intersection voting precincts are not uncommon. In the U.S., elections are administered at a state level with the Federal Elections Commission compiling state totals against the Electoral College weights. The states have liberty, though, to define and change their own voting precincts https://en.wikipedia.org/wiki/Electoral_precinct. The Census Bureau practices "data suppression", filtering some block groups from demographic publication because they do not meet a population threshold. This practice...