Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
Facebook
TwitterThese topographic/bathymetric digital elevation models (DEMs) were collected and compiled to characterize erosion and deposition in the Colorado River and in an adjacent zone of laterally recirculating flow (eddy) during both average flow conditions and during a controlled flood that occurred in March 2008. The objectives of the study were to measure changes sandbar morphology that occurred during changes in discharge associated with the controlled flood. These data were collected between February 6 and March 31, 2008 in a 1-mile study reach on the Colorado River within Grand Canyon National Park beginning 44.5 miles downstream from Lees Ferry, Arizona. These data were collected by the USGS Grand Canyon Monitoring and Research Center with cooperators from Northern Arizona University and funding provided by the Glen Canyon Dam Adaptive Management Program. All bathymetric data were collected with a multibeam sonar system (Reson Seabat 8124 sonar with TSS MAHRSS reference system for heave, pitch, roll, and heading). Topographic data were collected by conventional total station. These data can be used to study changes in channel morphology associated with changes in streamflow conditions.
Facebook
TwitterThis dataset contains the Digital Elevation Model (DEM) for North America from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database. The DEM data were developed and distributed by processing units. There are 13 processing units for North America. The distribution files have the number of the processing unit appended to the end of the zip file name (e.g. na_dem_3_2.zip contains the DEM data for unit 3-2). The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment boundaries. The coverage of the data is global (-180º, 180º, -90º, 90º) with the underlying DEM being a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) and the Shuttle Radar Topography Mission (SRTM). For most of the globe south of 60º North, the raster resolution of the data is 3-arc-seconds, corresponding to the resolution of the SRTM. For the areas North of 60º, the resolution is 7.5-arc-seconds (the smallest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30-arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is 1 arc-second (approximately 30 m) resolution. The elevations in this Digital Elevation Model (DEM) represent the topographic bare-earth surface. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The seamless 1 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 ( ...
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) provides a new level of detail in global topographic data. Previously, the best available global DEM was GTOPO30 with a horizontal grid spacing of 30 arc-seconds. The GMTED2010 product suite contains seven new raster elevation products for each of the 30-, 15-, and 7.5-arc-second spatial resolutions and incorporates the current best available global elevation data. The new elevation products have been produced using the following aggregation methods: minimum elevation, maximum elevation, mean elevation, median elevation, standard deviation of elevation, systematic subsample, and breakline emphasis. Metadata have also been produced to identify the source and attributes of all the input elevation data used to derive the output products. Many of these products will be suitable for various regional continental-scale land cover mapping, extraction of drainage features for hydrologic modeling, and geometric and radiomet ...
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains the Digital Elevation Model (DEM) for Greenland from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database. The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment boundaries. The coverage of the data is global (-180º, 180º, -90º, 90º) with the underlying DEM being a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) and the Shuttle Radar Topography Mission (SRTM). For most of the globe south of 60º North, the raster resolution of the data is 3-arc-seconds, corresponding to the resolution of the SRTM. For the areas North of 60º, the resolution is 7.5-arc-seco ...
Facebook
TwitterGTOPO30 is a global raster digital elevation model (DEM) providing terrain elevation data with a horizontal grid spacing of 30 arc seconds (approximately 1 kilometer). GTOPO30 was derived from several raster and vector sources of topographic information. For easier distribution, GTOPO30 has been divided into tiles [https://rda.ucar.edu/datasets/ds758.0/docs/tiles.gif]. Detailed information on the characteristics of GTOPO30 including the data distribution format, the data sources, production methods, accuracy, and hints for users, is found in the GTOPO30 README [https://rda.ucar.edu/datasets/ds758.0/docs/readme.txt] file.
GTOPO30, completed in late 1996, was developed over a three year period through a collaborative effort led by staff at the U.S. Geological Survey's Center for Earth Resources Observation and Science (EROS). The following organizations participated by contributing funding or source data: the National Aeronautics and Space Administration (NASA), the United Nations Environment Program and Global Resource Information Database (UNEP and GRID), the U.S. Agency for International Development (USAID), the Instituto Nacional de Estadistica Geografica e Informatica (INEGI) of Mexico, the Geographical Survey Institute (GSI) of Japan, Manaaki Whenua Landcare Research of New Zealand, and the Scientific Committee on Antarctic Research (SCAR).
Facebook
TwitterGTOPO30 is a global digital elevation model (DEM) with a horizontal grid spacing of 30-arc seconds (0.008333333333333 degrees or approximately 1 kilometer), resulting in a DEM having dimensions of 21,600 rows and 43,200 columns. The horizontal coordinate system is decimal degrees of latitude and longitude referenced to World Geodetic System 84 (WGS84). The vertical units represent elevation in meters above mean sea level. The elevation values range from -407 to 8,752 meters. In the DEM, ocean areas have been masked as no data and have been assigned a value of -9999. Lowland coastal areas have an elevation of at least 1 meter (so in the event that a user reassigns the ocean value from -9999 to 0 the land boundary portrayal will be maintained). Small islands in the ocean less than approximately 1 square kilometer are not represented.
GTOPO30 was derived from several raster and vector sources of topographic information. These sources include: Digital Terrain Elevation Data, Digital Chart of the World, USGS 1-degree Digital Elevation Models, Army Map Service 1:1,000,000-scale Maps, International 1:1,000,000-scale Map of the World, Peru 1:1,000,000-scale Map, New Zealand DEM, and Antarctic digital Database.
GTOPO30 was developed to meet the needs of the geospatial data user community for regional and continental scale topographic data. The data are suitable for many regional and continental applications, such as climate modeling, continental-scale land cover mapping, extraction ofdrainage features for hydrologic modeling and geometric and atmospheric correction of medium and coarse resolution satellite image data.
An example of a recent application derived from GTOPO30 is HYDRO1k, a geographic database (at a resolution of 1 km) developed to provide comprehensive and consistent global coverage of topographically derived data sets, including streams, drainage basins, and ancillary layers . HYDRO1k provides a suite of geo-referenced data sets, both raster and vector, which will be of value for all users who need to organize, evaluate, or process hydrologic information on a continental scale. The raster data sets are the hydrologically correct DEM, derived flow directions, flow accumulations, slope, aspect, and a compound topographic (wetness) index. The derived streamlines and basins are distributed as vector data sets.
GTOPO30 was developed through a collaborative effort led by staff at the U.S. Geological Survey's EROS EDC. The following organizations participated by contributing funding or source data: the National Aeronautics and Space Administration (NASA), the United Nations Environment Programme/Global Resource Information Database (UNEP/GRID), the U.S. Agency for International Development (USAID), the Instituto Nacional de Estadistica Geografica e Informatica (INEGI) of Mexico, the Geographical Survey Institute (GSI) of Japan, Manaaki Whenua Landcare Research of New Zealand, and the Scientific Committee on Antarctic Research (SCAR).
Facebook
TwitterThis is a 1 arc-second (approximately 30 m) resolution tiled collection of the 3D Elevation Program (3DEP) seamless data products . 3DEP data serve as the elevation layer of The National Map, and provide basic elevation information for Earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. 3DEP data compose an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers consists of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. 3DEP data are updated continually as new data become available. Seamless 3DEP data are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the conterminous United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. The elevations in these DEMs represent the topographic bare-earth surface. All 3DEP products are public domain.
This dataset includes data over Canada and Mexico as part of an international, interagency collaboration with the Mexico's National Institute of Statistics and Geography (INEGI) and the Natural Resources Canada (NRCAN) Centre for Topographic Information-Sherbrook, Ottawa. For more details on the data provenance of this dataset, visit here and here.
Click here for a broad overview of this dataset
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset provides a modified version of the previously published Lake Powell topobathymetric digital elevation model (TBDEM; Poppenga and others, 2020). The original TBDEM is comprised of four source datasets: (1) a 2017 1-meter multibeam bathymetric survey; (2) a 2018 topographic light detection and ranging (lidar) derived digital elevation model (DEM); (3) a historical topographic DEM that was interpolated from contours maps created in 1947 and 1959; and (4) interpolated topography where gaps existed in the bathymetric and lidar data or where historical data were not suitable (Poppenga and others, 2020). For this data release, two corrections were made to the TBDEM to address errors associated with the historic DEM and interpolated topography across data gaps: (1) filled in selected gaps of the TBDEM dataset that were corrected with the historic DEM but have since been filled with sediment; and (2) spliced alternate topographic data sources instead of the hydro-flattened ele ...
Facebook
TwitterThis topobathymetric digital elevation model (TBDEM) represents topography and bathymetry for the Eastern Shore peninsula of Virginia, including Accomack and Northampton counties, and extending into Worcester and Somerset counties in Maryland. The TBDEM has a horizontal grid spacing of 1 meter and vertical units of 1 (integer) centimeter. This dataset combines U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center Coastal National Elevation Database topobathymetric DEM (CoNED TBDEM) data with data from the USGS Northern Atlantic Coastal Plain DEM, the latter of which were used to extend the bathymetric surface further offshore. In some areas, National Map 3D Elevation Program (3DEP) data were used to correct irregularities in the CoNED topographic surface. Horizontal coordinates are referenced to the Geographic Coordinate System World Geodetic System Datum of 1984 (GCS WGS 1984) and vertical measurements are referenced to the Vertical Datum of NAVD88 (North American Vertical Datum of 1988). The projected coordinate system is Albers Conic Equal Area with linear units of 1 meter, a central meridian of -96.0, standard parallels of 29.5 and 45.5, and a latitude of origin of 23.0.
Facebook
TwitterThe U.S. Interagency Elevation Inventory (USIEI) displays high-accuracy topographic and bathymetric data for the United States and its territories. The project is a collaborative effort between the National Oceanic and Atmospheric Administration, the U.S. Geological Survey, the Federal Emergency Management Agency, the U.S. Department of Agriculture - Natural Resources Conservation Service and U...
Facebook
TwitterSpatial coverage index compiled by East View Geospatial of set "USGS National Elevation Dataset (NED) 30M DEM, Mexico". Source data from USGS (publisher). Type: Elevation Database. Scale: 1-arcsec. Region: North America.
Facebook
TwitterThe Shuttle Radar Topography Mission (SRTM) digital elevation dataset was originally produced to provide consistent, high-quality elevation data at near global scope. This version of the SRTM digital elevation data has been processed to fill data voids, and to facilitate its ease of use.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model Mosaic provides a unique and continuous representation of the high resolution elevation data available across the country. The High Resolution Digital Elevation Model (HRDEM) product used is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The mosaic is available for both the Digital Terrain Model (DTM) and the Digital Surface Model (DSM) from web mapping services. It is part of the CanElevation Series created to support the National Elevation Data Strategy implemented by NRCan. This strategy aims to increase Canada's coverage of high-resolution elevation data and increase the accessibility of the products. Unlike the HRDEM product in the same series, which is distributed by acquisition project without integration between projects, the mosaic is created to provide a single, continuous representation of strategy data. The most recent datasets for a given territory are used to generate the mosaic. This mosaic is disseminated through the Data Cube Platform, implemented by NRCan using geospatial big data management technologies. These technologies enable the rapid and efficient visualization of high-resolution geospatial data and allow for the rapid generation of dynamically derived products. The mosaic is available from Web Map Services (WMS), Web Coverage Services (WCS) and SpatioTemporal Asset Catalog (STAC) collections. Accessible data includes the Digital Terrain Model (DTM), the Digital Surface Model (DSM) and derived products such as shaded relief and slope. The mosaic is referenced to the Canadian Height Reference System 2013 (CGVD2013) which is the reference standard for orthometric heights across Canada. Source data for HRDEM datasets used to create the mosaic is acquired through multiple projects with different partners. Collaboration is a key factor to the success of the National Elevation Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This collection is a legacy product that is no longer supported. It may not meet current government standards. The Canadian Digital Elevation Model (CDEM) is part of Natural Resources Canada's altimetry system designed to better meet the users' needs for elevation data and products. The CDEM stems from the existing Canadian Digital Elevation Data (CDED). In these data, elevations can be either ground or reflective surface elevations. A CDEM mosaic can be obtained for a pre-defined or user-defined extent. The coverage and resolution of a mosaic varies according to latitude and to the extent of the requested area. Derived products such as slope, shaded relief and colour shaded relief maps can also be generated on demand by using the Geospatial-Data Extraction tool. Data can then be saved in many formats. The pre-packaged GeoTiff datasets are based on the National Topographic System of Canada (NTS) at the 1:250 000 scale; the NTS index file is available in the Resources section in many formats.
Facebook
TwitterNote: Geoscience Australia no longer supports users' external hard drives. The data can either be downloaded from the ELVIS Portal or from the Related links. The 1 second Shuttle Radar Topography Mission (SRTM) Digital Elevation Models Version 1.0 package comprises three surface models: the Digital Elevation Model (DEM), the Smoothed Digital Elevation Model (DEM-S) and the Hydrologically Enforced Digital Elevation Model (DEM-H). The DEMs were derived from the SRTM data acquired by NASA in February 2000 and were publicly released under Creative Commons licensing from November 2011 in ESRI Grid format.
DEM represents ground surface topography, with vegetation features removed using an automatic process supported by several vegetation maps. This provides substantial improvements in the quality and consistency of the data relative to the original SRTM data, but is not free from artefacts. Man-made structures such as urban areas and power line towers have not been treated. The removal of vegetation effects has produced satisfactory results over most of the continent and areas with defects identified in supplementary layers distributed with the data, and described in the User Guide.
DEM-S represents ground surface topography, excluding vegetation features, and has been smoothed to reduce noise and improve the representation of surface shape. An adaptive smoothing process applied more smoothing in flatter areas than hilly areas, and more smoothing in noisier areas than in less noisy areas. This DEM-S supports calculation of local terrain shape attributes such as slope, aspect and curvature that could not be reliably derived from the unsmoothed 1 second DEM because of noise.
DEM-H is a hydrologically enforced version of the smoothed DEM-S. The DEM-H captures flow paths based on SRTM elevations and mapped stream lines, and supports delineation of catchments and related hydrological attributes. The dataset was derived from the 1 second smoothed Digital Elevation Model (DEM-S) by enforcing hydrological connectivity with the ANUDEM software, using selected AusHydro V1.6 (February 2010) 1:250,000 scale watercourse lines and lines derived from DEM-S to define the watercourses. The drainage enforcement has produced a consistent representation of hydrological connectivity with some elevation artefacts resulting from the drainage enforcement.
Further information can be found in the supplementary layers supplied with the data and in the User Guide.
Facebook
TwitterThe Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) Version 3 (ASTGTM) provides a global digital elevation model (DEM) of land areas on Earth at a spatial resolution of 1 arc second (approximately 30 meter horizontal posting at the equator).The development of the ASTER GDEM data products is a collaborative effort between National Aeronautics and Space Administration (NASA) and Japan's Ministry of Economy, Trade, and Industry (METI). The ASTER GDEM data products are created by the Sensor Information Laboratory Corporation (SILC) in Tokyo. The ASTER GDEM Version 3 data product was created from the automated processing of the entire ASTER Level 1A archive of scenes acquired between March 1, 2000, and November 30, 2013. Stereo correlation was used to produce over one million individual scene based ASTER DEMs, to which cloud masking was applied. All cloud screened DEMs and non-cloud screened DEMs were stacked. Residual bad values and outliers were removed. In areas with limited data stacking, several existing reference DEMs were used to supplement ASTER data to correct for residual anomalies. Selected data were averaged to create final pixel values before partitioning the data into 1 degree latitude by 1 degree longitude tiles with a one pixel overlap. To correct elevation values of water body surfaces, the ASTER Global Water Bodies Database (ASTWBD) Version 1 data product was also generated. The geographic coverage of the ASTER GDEM extends from 83° North to 83° South. Each tile is distributed in both a Cloud Optimized GeoTIFF (COG) and NetCDF4 format through NASA Earthdata Search and in standard GeoTIFF format through the LP DAAC Data Pool. Data are projected on the 1984 World Geodetic System (WGS84)/1996 Earth Gravitational Model (EGM96) geoid. Each of the 22,912 tiles in the collection contain at least 0.01% land area. Provided in the ASTER GDEM product are layers for DEM and number of scenes (NUM). The NUM layer indicates the number of scenes that were processed for each pixel and the source of the data.While the ASTER GDEM Version 3 data products offer substantial improvements over Version 2, users are advised that the products still may contain anomalies and artifacts that will reduce its usability for certain applications. Known Issues ASTER GDEM Version 3 tiles overlap by one pixel to the north, south, east, and west of the tile perimeter. In most cases the overlapping edge pixels have identical pixel values, but it is possible that in some instances values will differ. * ASTER GDEM Version 3 is considered to be void free except for Greenland and Antarctica. Users are reminded that because there are known inaccuracies and artifacts in the dataset, to use the product with awareness of these limitations. The data are provided "as is" and neither NASA nor METI/Earth Resources Satellite Data Analysis Center (ERSDAC) will be responsible for any damages resulting from use of the data.Improvements/Changes from Previous Version Expansion of acquisition coverage to increase the amount of cloud free input scenes from about 1.5 million in Version 2 to about 1.88 million scenes in Version 3. Separation of rivers from lakes in the water body processing.* Minimum water body detection size decreased from 1 square kilometer (km²) to 0.2 km².
Facebook
TwitterThis dataset contains average elevation data at 1-degree resolution for the globe, and at 5-minute resolution for Europe, parts of North Africa, and most of North America.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.