This site provides free access to Iowa geographic map data, including aerial photography, orthophotos, elevation maps, and historical maps. The data is available through an on-line map viewer and through Web Map Service (WMS) connections for GIS. The site was developed by the Iowa State University Geographic Information Systems Support and Research Facility in cooperation with the Iowa Department of Natural Resources, the USDA Natural Resources Conservation Service, and the Massachusetts Institute of Technology. This site was first launched in March 1999.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Digital raster graphic (1:100,000-scale DRG) is a scanned image of a US Geological Survey (USGS) standard series topographic map. The image is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator projection.
This data set represents a digital elevation model (DEM) of the land surface of Iowa, in the UTM projection, Zone 15, NAD83 horizontal datum, with elevation in centimeters NAVD 88 vertical datum. The DEM has a horizontal resolution of 3 meters and was aggregated from one meter resolution elevation data from the state of Iowa's LiDAR program. The aggregation process uses a 3x3 pixel moving average window, which helps to smooth out noise in the one meter data, but also softens sharp edges of landscape features such as ditches and ridges, which may be undesirable for some purposes. The DEM was then Integerizied to shrink the size of the file, so final units are in centimeters. Water features sometimes have a triangular appearance due to lack of lidar returns over water and should be ignored.
An interactive map of contour maps, fishing structure locations, topography and more.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Horizontal surface is a plane 150’ above the established airport elevation. The perimeter of which is constructed by swinging arcs of specified radii from the center of each end of the primary surface and connecting adjacent arcs by lines tangent to those arcs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Digital raster graphic (1:24,000-scale DRG) is a scanned image of a US Geological Survey (USGS) standard series topographic map. The image is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator projection.
Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create the elevation data representing the terrain environment of a watershed and/or floodplain. Terrain data requirements allow for flexibility in the types of information provided as sources used to produce final terrain deliverables. Once this type of data is provided, FEMA will be able to account for the origins of the flood study elevation data. (Source: FEMA Guidelines and Specifications, Appendix M, Section M.4).
These data are part of a larger USGS project to develop an updated geospatial database of mines, mineral deposits and mineral regions in the United States. Mine and prospect-related symbols, such as those used to represent prospect pits, mines, adits, dumps, tailings, etc., hereafter referred to as “mine” symbols or features, are currently being digitized on a state-by-state basis from the 7.5-minute (1:24,000-scale) and the 15-minute (1:48,000 and 1:62,500-scale) archive of the USGS Historical Topographic Maps Collection, or acquired from available databases (California and Nevada, 1:24,000-scale only). Compilation of these features is the first phase in capturing accurate locations and general information about features related to mineral resource exploration and extraction across the U.S. To date, the compilation of 500,000-plus point and polygon mine symbols from approximately 67,000 maps of 22 western states has been completed: Arizona (AZ), Arkansas (AR), California (CA), Colorado (CO), Idaho (ID), Iowa (IA), Kansas (KS), Louisiana (LA), Minnesota (MN), Missouri (MO), Montana (MT), North Dakota (ND), Nebraska (NE), New Mexico (NM), Nevada (NV), Oklahoma (OK), Oregon (OR), South Dakota (SD), Texas (TX), Utah (UT), Washington (WA), and Wyoming (WY). The process renders not only a more complete picture of exploration and mining in the western U.S., but an approximate time line of when these activities occurred. The data may be used for land use planning, assessing abandoned mine lands and mine-related environmental impacts, assessing the value of mineral resources from Federal, State and private lands, and mapping mineralized areas and systems for input into the land management process. The data are presented as three groups of layers based on the scale of the source maps. No reconciliation between the data groups was done.
These vector contour lines are derived from the 3D Elevation Program using automated and semi-automated processes. They were created to support 1:24,000-scale topographic map products, but are also published in this GIS vector format. Contour intervals are assigned by 7.5-minute quadrangle, so this vector dataset is not visually seamless across quadrangle boundaries. The vector lines have elevation attributes (in feet above mean sea level on NAVD88), but this dataset does not carry line symbols or annotation.
Clear Creek Data:
Clear Creek DEM Hillshade Near IR U West - Near Infra-red (NIR) Lidar. Hillshade including canopy of western block in the watershed. QA/QC: By NCALM.
Clear Creek DEM Hillshade Near IR U East - Near Infra-red (NIR) Lidar. Hillshade including canopy of eastern block in the watershed. QA/QC: By NCALM.
Clear Creek DEM Hillshade Near IR F West - Near Infra-red (NIR) Lidar. Hillshade of topograpy without canopy of western block in the watershed. QA/QC: By NCALM.
Clear Creek DEM Hillshade Near IR F East - Near Infra-red (NIR) Lidar. Hillshade of topograpy without canopy of eastern block in the watershed. QA/QC: By NCALM.
Clear Creek DEM Hillshade Green Lidar F West - Green Lidar. Hillshade of topograpy without canopy of western block in the watershed. QA/QC: By NCALM.
Clear Creek DEM Hillshade Green Lidar F East - Green Lidar. Hillshade of topograpy without canopy of eastern block in the watershed. QA/QC: By NCALM.
Clear Creek DEM Near IR Lidar U West - Near Infra-red (NIR) Lidar. DEM including canopy of western block in the watershed. QA/QC: By NCALM.
Clear Creek DEM Near IR Lidar U East - Near Infra-red (NIR) Lidar. DEM including canopy of eastern block in the watershed. QA/QC: By NCALM.
Clear Creek DEM Near IR Lidar F West - Near Infra-red (NIR) Lidar. DEM of topography without canopy of western block in the watershed. QA/QC: By NCALM.
Clear Creek DEM Near IR Lidar F East - Near Infra-red (NIR) Lidar. DEM of topography without canopy of eastern block in the watershed. QA/QC: By NCALM.
Clear Creek DEM Green Lidar F West - Green Lidar. DEM of topography without canopy of western block in the watershed. QA/QC: By NCALM.
Clear Creek DEM Green Lidar F East - Green Lidar. DEM of topography without canopy of eastern block in the watershed. QA/QC: By NCALM.
Clear Creek CSD AQ 2015 - CZO Clear Creek IA - Waveform CSD Digitizer Data - CSD AQ 2015 Data.
Clear Creek CSD AQ 2014 - Green Lidar. Raw Full Waveform Lidar. QA/QC: None.
Clear Creek CSD NIR 2015 - CZO Clear Creek IA - Waveform CSD Digitizer Data - NIR 2015 Data.
Clear Creek CSD NIR 2014 - Near Infra-red (NIR) Lidar. Raw Full Waveform Lidar. QA/QC: None.
Clear Creek NIR - Near Infra-red (NIR) Lidar. Point Cloud data. QA/QC: By NCALM.
Clear Creek AQ_532 - Green Lidar. Point Cloud data. QA/QC: By NCALM.
GIS data in CCW - This dataset contains: * wss_gsmsoil_IA_[2006-07-06].zip = Soil data from SURRGO of the IA state * wss_SSA_IA095_soildb_IA_2003_[2016-09-22].zip = Soil data from SURRGO of watershed IA095. covers another half of CCW *. wss_SSA_IA103_soildb_IA_2003_[2016-09-22].zip = Soil data from SURRGO of watershed IA095. covers half of CCW * CCW_crop_cover_tif.zip = CCW crop cover in 2007 * ClearCreek_Streams.zip = Stream file for Clear Creek watershed in Iowa *. State_of_Iowa.zip = Shape file of the boundary of * ClearCreek_Border.zip = Shape file of the boundary of Iowa State QA/QC: Yes. * CCW 10 DEM - This dataset contains: * n42w093.zip = 10 meter resolution DEM at 42N 93W * n42w092.zip = 10 meter resolution DEM at 42N 92W * n42w091.zip = 10 meter resolution DEM at 42N 91W QA/QC: Yes. * CCW 1m lidar DEM - 1 meter resolution DEM for Clear Creek watershed QA/QC: Yes. * 2m Lidar DEM - 2 meter resolution DEM for Clear Creek watershed QA/QC: Yes.
Surface elevation of Silurian-age strata. Iowa Hydrogeologic Map Server - Silurian Surface Elevation
The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock surface is buried by unconsolidated surficial sediments (mostly Quaternary) over most of its extent, but this surface coincides with the modern land surface in areas of bedrock exposure. The map is consistent with all available data including drill records and well samples, as well as surface bedrock exposures (both natural and man-made) and shallow-to-bedrock soils units (NRCS county soils maps). Mapped stratigraphic intervals are portrayed primarily at the group level (i.e., a grouping of bedrock formations), each characterized by distinctive lithologies (rock types) summarized in the map key and associated metadata. The distribution of bedrock units was mapped to conform to the current map of bedrock topography (elevation of the bedrock surface). The structural configurations of relevant stratigraphic datums were intercepted with the bedrock topographic surface to produce the map contacts. The line style shown on the bedrock geologic map qualitatively reflects both data density and degree of certainty of individual stratigraphic contacts. Detailed line work is possible in areas of modern bedrock exposure, but more generalized line work (smooth and more sweeping forms) is portrayed in areas of sparser data control. The new bedrock map is, in part, a revised and updated compilation of seven multi-county bedrock maps prepared between 1998 and 2004 as part of Iowa's STATEMAP program (funded through U.S. Geological Survey). These maps were further supplemented with other STATEMAP bedrock compilations for portions of northeast and eastern Iowa, although much of the bedrock geology shown for northeast Iowa represents new and previously unpublished information. Bedrock faults are displayed in the map as sharp linear features offsetting mapped stratigraphic units.
Surface elevation of Cambrian-Ordovician aquifer. Iowa Hydrogeologic Map Server - Cambrian-Ordovician Surface Elevation.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Digital raster graphic (1:250,000-scale DRG) is a scanned image of a US Geological Survey (USGS) standard series topographic map. The image is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator projection.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental assessments such as vegetation distribution patterns. The bathymetry "footprint" is a database that can be used as a tool to provide a quick search of collection dates corresponding to bathymetric coverages within each LTRM pool.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
This site provides free access to Iowa geographic map data, including aerial photography, orthophotos, elevation maps, and historical maps. The data is available through an on-line map viewer and through Web Map Service (WMS) connections for GIS. The site was developed by the Iowa State University Geographic Information Systems Support and Research Facility in cooperation with the Iowa Department of Natural Resources, the USDA Natural Resources Conservation Service, and the Massachusetts Institute of Technology. This site was first launched in March 1999.