A 10-meter resolution land surface digital elevation model (DEM) for the island of Oahu in Hawaii from U.S. Geological Survey (USGS) 1/3 arc-second DEM quadrangles. For a grayscale hillshade image layer of this dataset, see "hi_usgs_oahu_dem10m_hillshade" and "hi_usgs_all_dem10m_hillshade" in the distribution links listed in the metadata. acknowledgement=The Pacific Islands Ocean Observing System (PacIOOS) is funded through the National Oceanic and Atmospheric Administration (NOAA) as a Regional Association within the U.S. Integrated Ocean Observing System (IOOS). PacIOOS is coordinated by the University of Hawaii School of Ocean and Earth Science and Technology (SOEST). cdm_data_type=Grid comment=These data are provided by USGS and subsequently distributed via THREDDS Data Server (TDS) and ERDDAP by PacIOOS. Conventions=CF-1.6, ACDD-1.3 date_metadata_modified=2023-01-20 drawLandMask=off Easternmost_Easting=-157.6486640799658 geospatial_bounds=POLYGON ((21.254748 -158.280969, 21.712459 -158.280969, 21.712459 -157.648618, 21.254748 -157.648618, 21.254748 -158.280969)) geospatial_bounds_crs=EPSG:4326 geospatial_lat_max=21.712412752206696 geospatial_lat_min=21.254794138987258 geospatial_lat_resolution=9.259785779430149E-5 geospatial_lat_units=degrees_north geospatial_lon_max=-157.6486640799658 geospatial_lon_min=-158.28092225298528 geospatial_lon_resolution=9.259785779429784E-5 geospatial_lon_units=degrees_east history=2015-05-11T00:00:00Z PacIOOS obtained ArcInfo Binary Grids from The National Map Viewer of USGS then mosaicked and converted to NetCDF format and EPSG:4326 spatial reference system. id=usgs_dem_10m_oahu infoUrl=https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map institution=U.S. Geological Survey (USGS) instrument=Not Applicable > Not Applicable instrument_vocabulary=GCMD Instrument Keywords ISO_Topic_Categories=elevation keywords_vocabulary=GCMD Science Keywords locations=Continent > North America > United States Of America > Hawaii, Ocean > Pacific Ocean > Central Pacific Ocean > Hawaiian Islands > Oahu locations_vocabulary=GCMD Location Keywords metadata_link=https://www.pacioos.hawaii.edu/metadata/usgs_dem_10m_oahu.html naming_authority=org.pacioos Northernmost_Northing=21.712412752206696 platform=Models/Analyses > > DEM > Digital Elevation Model platform_vocabulary=GCMD Platform Keywords program=Pacific Islands Ocean Observing System (PacIOOS) project=Pacific Islands Ocean Observing System (PacIOOS) references=https://www.pacioos.hawaii.edu/metadata/hi_usgs_oahu_dem10m_hillshade.html; https://www.pacioos.hawaii.edu/metadata/hi_usgs_all_dem10m_hillshade.html source=USGS 1/3 arc-second DEM quadrangles sourceUrl=https://pae-paha.pacioos.hawaii.edu/thredds/dodsC/usgs_dem_10m_oahu Southernmost_Northing=21.254794138987258 standard_name_vocabulary=CF Standard Name Table v39 time_coverage_duration=P0D time_coverage_resolution=P0D Westernmost_Easting=-158.28092225298528
Urban contours at 5 Ft intervals which were scanned contours from a 1969 photogrammetric survey done by a local consulting company, R.M. Towill Corporation.
[Metadata] 100 ft contours for Oahu Island.
The Oahu, Hawaii Elevation Data Task Order involves collecting and delivering topographic elevation point data derived from multiple return light detection and ranging (LiDAR) measurements on the island of Oahu in Hawaii. The Statement of Work (SOW) for the area covering the northern 2/3 of Oahu was developed by the National Oceanic and Atmospheric Administration's (NOAA) Office for Coastal Ma...
These vector contour lines are derived from the 3D Elevation Program using automated and semi-automated processes. They were created to support 1:24,000-scale topographic map products, but are also published in this GIS vector format. Contour intervals are assigned by 7.5-minute quadrangle, so this vector dataset is not visually seamless across quadrangle boundaries. The vector lines have elevation attributes (in feet above mean sea level on NAVD88), but this dataset does not carry line symbols or annotation.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).
These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the Sea Level Rise and Coastal Flooding Impacts Viewer. It depicts potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientist...
Polygons used to label the Zoning Map Height Limit.
This map shows coastal flooding around Honolulu, Hawaii due to 0.5 meter of sea level rise. This scenario was derived using a National Geospatial Agency (NGA)-provided digital elevation model (DEM) based on LiDAR data of the Honolulu area collected in 2009. This "bare earth" DEM (vegetation and structures removed) was used to represent the current topography of the study area above zero elevation for the urban corridor stretching from Honolulu International Airport to Waikiki and Diamond Head along the south shore of Oahu. The accuracy of the DEM was validated using a selection of 16 Tidal Benchmarks located within the study area. The single value tidal water surface of mean higher high water (MHHW) modeled at the Honolulu tide gauge was used to represent sea level for the purposes of this study. Water levels are shown as they would appear during the highest high tides (excluding wind-driven tides). Data produced in 2014 by Dr. Charles "Chip" Fletcher of the department of Geology & Geophysics (G&G) in the School of Ocean and Earth Science and Technology (SOEST) of the University of Hawaii at Manoa. Supported in part by the NOAA Coastal Storms Program (CSP) and the University of Hawaii Sea Grant College Program. These data do not consider future changes in coastal geomorphology and natural processes such as erosion, subsidence, or future construction. These data do not specify timing of inundation depths and are not appropriate for conducting detailed spatial analysis. The entire risk associated with the results and performance of these data is assumed by the user. These data should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This database consists of a series of maps and plots showing transects of nearshore topographic and bathymetric elevations of Hawaii shorelines. Individual maps show transects of shorelines adjacent to 302 mileposts along Hawaii state routes on the islands of Hawaii, Maui, Molokai, Oahu and Kauai previously identified for their vulnerability to the effects of climate change as part of the Statewide Coastal Highways Project Report.
Mileposts are identified by Brandes et al. (2019). HDOT state routes and county street centerline datasets are acquired from HDOT (2017) and HOLIS, C&CH (2017). Elevations along the transect are referenced to local mean sea level (LMSL) and are sampled from a merged digital elevation model (DEM) of Oahu prepared by Francis et al. (2019).
Details on map datasets and their usage can be found in the 2019 State of Hawaii Statewide Coastal Highways Project Report.
The single value tidal water surface of mean higher high water (MHHW) modeled at the Honolulu tide gauge is used to represent present-day sea level for the urban corridor stretching from Honolulu International Airport to Waikiki and Diamond Head along the south shore of Oahu in the state of Hawaii. Water levels are shown as they would appear during the highest high tides (excluding wind-driven tides). Land elevation was derived using a National Geospatial Agency (NGA)-provided digital elevation model (DEM) based on LiDAR data of the Honolulu area collected in 2009. This "bare earth" DEM (vegetation and structures removed) was used to represent the current topography of the study area above zero elevation. The accuracy of the DEM was validated using a selection of 16 Tidal Benchmarks located within the study area. Data produced in 2014 by Dr. Charles "Chip" Fletcher of the department of Geology & Geophysics (G&G) in the School of Ocean and Earth Science and Technology (SOEST) of the University of Hawaii at Manoa. Supported in part by the NOAA Coastal Storms Program (CSP) and the University of Hawaii Sea Grant College Program. These data should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes.
This map shows coastal flooding around Honolulu, Hawaii due to 2 feet (0.610 m) of sea level rise. This scenario was derived using a National Geospatial Agency (NGA)-provided digital elevation model (DEM) based on LiDAR data of the Honolulu area collected in 2009. This "bare earth" DEM (vegetation and structures removed) was used to represent the current topography of the study area above zero elevation for the urban corridor stretching from Honolulu International Airport to Waikiki and Diamond Head along the south shore of Oahu. The accuracy of the DEM was validated using a selection of 16 Tidal Benchmarks located within the study area. The single value tidal water surface of mean higher high water (MHHW) modeled at the Honolulu tide gauge was used to represent sea level for the purposes of this study. Water levels are shown as they would appear during the highest high tides (excluding wind-driven tides).
Data produced in 2014 by Dr. Charles "Chip" Fletcher of the department of Geology & Geophysics (G&G) in the School of Ocean and Earth Science and Technology (SOEST) of the University of Hawaii at Manoa. Supported in part by the NOAA Coastal Storms Program (CSP) and the University of Hawaii Sea Grant College Program. These data do not consider future changes in coastal geomorphology and natural processes such as erosion, subsidence, or future construction. These data do not specify timing of inundation depths and are not appropriate for conducting detailed spatial analysis. The entire risk associated with the results and performance of these data is assumed by the user. These data should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes.
Elevation surface for portions of the Hawaiian islands based upon lidar data collected by State of Hawaii and its data partners from 1999-2017. Elevation values are in meters.
[Metadata] Tropical storms, hurricanes, and tsunamis create waves that flood low-lying coastal areas. The National Flood Insurance Program (NFIP) produces flood insurance rate maps (FIRMs) that depict flood risk zones referred to as Special Flood Hazard Areas (SFHA) based modeling 1%-annual-chance flood event also referred to as a 100-year flood. The purpose of the FIRM is twofold: (1) to provide the basis for application of regulatory standards and (2) to provide the basis for insurance rating.SFHAs identify areas at risk from infrequent but severe storm-induced wave events and riverine flood events that are based upon historical record. By law (44 Code of Federal Regulations [CFR] 60.3), FEMA can only map flood risk that will be utilized for land use regulation or insurance rating based on historical data, therefore, future conditions with sea level rise and other impacts of climate change are not considered in FIRMs. It is important to note that FEMA can produce Flood Insurance Rate Maps that include future condition floodplains, but these would be considered “awareness” zones and not to be used for regulatory of insurance rating purposes.The State of Hawai‘i 2018 Hazard Mitigation Plan incorporated the results of modeling and an assessment of vulnerability to coastal flooding from storm-induced wave events with sea level rise (Tetra Tech Inc., 2018). The 1% annual-chance-coastal flood zone with sea level rise (1%CFZ) was modeled to estimate coastal flood extents and wave heights for wave-generating events with sea level rise. Modeling was conducted by Sobis Inc. under State of Hawaiʻi Department of Land and Natural Resources Contract No: 64064. The 1%CFZ with 3.2 feet of sea level rise was utilized to assess vulnerability to coastal event-based flooding in mid to - late century.The 1%CFZ with sea level rise would greatly expand the impacts from a 100-year flood event meaning that more coastal land area will be exposed to damaging waves. For example, over 120 critical infrastructure facilities in the City and County of Honolulu, including water, waste, and wastewater systems and communication and energy facilities would be impacted in the 1%CFZ with 3.2 feet of sea level rise (Tetra Tech Inc., 2018). This is double the number of facilities in the SFHA which includes the impacts of riverine flooding.A simplified version of the Wave Height Analysis for Flood Insurance Studies (WHAFIS) extension (FEMA, 2019b) included in Hazus-MH, was used to create the 1% annual chance coastal floodplain. Hazus is a nationally applicable standardized methodology that contains models for estimating potential losses from earthquakes, floods, tsunamis, and hurricanes (FEMA, 2019a). The current 1%-annual-chance stillwater elevations were collected using the most current flood insurance studies (FIS) for each island conducted by FEMA (FEMA, 2004, 2010, 2014, 2015). The FIS calculates the 1%-annual-chance stillwater elevation, wave setup, and wave run-up (called maximum wave crest) at regularly-spaced transects around the islands based on historical data. Modeling for the 1%CFZ used the NOAA 3-meter digital elevation model (DEM) which incorporates LiDAR data sets collected between 2003 and 2007 from NOAA, FEMA, the State of Hawaiʻi Emergency Management Agency, and the USACE (NOAA National Centers for Environmental Information, 2017).Before Hazus was run for future conditions, it was run for the current conditions and compared to the FEMA regulatory floodplain to determine model accuracy. This also helped determine the stillwater elevation for the large gaps between some transects in the FIS. Hazus was run at 0.5-foot stillwater level intervals and the results were compared to the existing Flood Insurance Rate Map (FIRM). The interval of 0.5-feet was chosen as a small enough step to result in a near approximation of the FIRM while not being too impractically narrow to require the testing of dozens of input elevations. The elevation which matched up best was used as the current base flood elevation.Key steps in modeling the projected 1%CFZ with sea level rise include: (1) generating a contiguous (no gaps along the shoreline) and present-day 1%-annual-chance stillwater elevation based on the most recent FIS, (2) elevating the present-day 1%-annual-chance stillwater elevation by adding projected sea level rise heights, and (3) modeling the projected 1%-annual-chance coastal flood with sea level rise in HAZUS using the 1%-annual-chance wave setup and run-up from the FIS. The 1%CFZ extent and depth was generated using the HAZUS 3.2 coastal flood risk assessment model, 3-meter DEM, the FIS for each island, and the IPCC AR5 upper sea level projection for RCP 8.5 scenario for 0.6 feet, 1.0 feet, 2.0 feet, and 3.2 feet of sea level rise above MHHW (IPCC, 2014). The HAZUS output includes the estimated spatial extent of coastal flooding as well as an estimated flood depth map grid for the four sea level rise projections.Using the current floodplain generated with Hazus, the projected 1%-annual-chance stillwater elevation was generated using the four sea level rise projections. This stillwater elevation with sea level rise was used as a basis for modeling. The projected 1%-annual coastal flood with sea level rise was modeled in Hazus using the current 1%-annual-chance wave setup and run-up from the FIS and the projected 1%-annual-chance stillwater elevation with sea level rise. Statewide GIS Program staff extracted individual island layers for ease of downloading. A statewide layer is also available as a REST service, and is available for download from the Statewide GIS geoportal at https://geoportal.hawaii.gov/, or at the Program's legacy download site at https://planning.hawaii.gov/gis/download-gis-data-expanded/#009. For additional information, please refer to summary metadata at https://files.hawaii.gov/dbedt/op/gis/data/coastal_flood_zones_summary.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov.
This map shows the extent of flooding of low-lying inland coastal areas around the island of Oahu in the State of Hawaii due to 6 feet (1.829 m) of sea level rise above mean higher high water (MHHW), created by subtracting the NOAA VDATUM MHHW surface from a digital elevation model (DEM). These low-lying areas are not hydrologically connected to the ocean but have the potential for flooding based on their elevation and require more detailed analysis. The resolution of the DEM is 3 meters and was derived from the best available LiDAR data sets known to exist at the time of creation. Water levels are shown as they would appear during the highest high tides (excluding wind-driven tides).Data produced in 2014 by NOAA Office for Coastal Management (OCM). These data do not consider future changes in coastal geomorphology and natural processes such as erosion, subsidence, or future construction. These data do not specify timing of inundation and are not appropriate for conducting detailed spatial analysis. The entire risk associated with the results and performance of these data is assumed by the user. These data should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes.This map shows the extent of flooding of low-lying inland coastal areas around the island of Oahu in the State of Hawaii due to 6 feet (1.829 m) of sea level rise above mean higher high water (MHHW), created by subtracting the NOAA VDATUM MHHW surface from a digital elevation model (DEM). These low-lying areas are not hydrologically connected to the ocean but have the potential for flooding based on their elevation and require more detailed analysis. The resolution of the DEM is 3 meters and was derived from the best available LiDAR data sets known to exist at the time of creation. Water levels are shown as they would appear during the highest high tides (excluding wind-driven tides).Data produced in 2014 by NOAA Office for Coastal Management (OCM). These data do not consider future changes in coastal geomorphology and natural processes such as erosion, subsidence, or future construction. These data do not specify timing of inundation and are not appropriate for conducting detailed spatial analysis. The entire risk associated with the results and performance of these data is assumed by the user. These data should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes.This map shows the extent of flooding of low-lying inland coastal areas around the island of Oahu in the State of Hawaii due to 6 feet (1.829 m) of sea level rise above mean higher high water (MHHW), created by subtracting the NOAA VDATUM MHHW surface from a digital elevation model (DEM). These low-lying areas are not hydrologically connected to the ocean but have the potential for flooding based on their elevation and require more detailed analysis. The resolution of the DEM is 3 meters and was derived from the best available LiDAR data sets known to exist at the time of creation. Water levels are shown as they would appear during the highest high tides (excluding wind-driven tides).Data produced in 2014 by NOAA Office for Coastal Management (OCM). These data do not consider future changes in coastal geomorphology and natural processes such as erosion, subsidence, or future construction. These data do not specify timing of inundation and are not appropriate for conducting detailed spatial analysis. The entire risk associated with the results and performance of these data is assumed by the user. These data should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
A 10-meter resolution land surface digital elevation model (DEM) for the island of Oahu in Hawaii from U.S. Geological Survey (USGS) 1/3 arc-second DEM quadrangles. For a grayscale hillshade image layer of this dataset, see "hi_usgs_oahu_dem10m_hillshade" and "hi_usgs_all_dem10m_hillshade" in the distribution links listed in the metadata. acknowledgement=The Pacific Islands Ocean Observing System (PacIOOS) is funded through the National Oceanic and Atmospheric Administration (NOAA) as a Regional Association within the U.S. Integrated Ocean Observing System (IOOS). PacIOOS is coordinated by the University of Hawaii School of Ocean and Earth Science and Technology (SOEST). cdm_data_type=Grid comment=These data are provided by USGS and subsequently distributed via THREDDS Data Server (TDS) and ERDDAP by PacIOOS. Conventions=CF-1.6, ACDD-1.3 date_metadata_modified=2023-01-20 drawLandMask=off Easternmost_Easting=-157.6486640799658 geospatial_bounds=POLYGON ((21.254748 -158.280969, 21.712459 -158.280969, 21.712459 -157.648618, 21.254748 -157.648618, 21.254748 -158.280969)) geospatial_bounds_crs=EPSG:4326 geospatial_lat_max=21.712412752206696 geospatial_lat_min=21.254794138987258 geospatial_lat_resolution=9.259785779430149E-5 geospatial_lat_units=degrees_north geospatial_lon_max=-157.6486640799658 geospatial_lon_min=-158.28092225298528 geospatial_lon_resolution=9.259785779429784E-5 geospatial_lon_units=degrees_east history=2015-05-11T00:00:00Z PacIOOS obtained ArcInfo Binary Grids from The National Map Viewer of USGS then mosaicked and converted to NetCDF format and EPSG:4326 spatial reference system. id=usgs_dem_10m_oahu infoUrl=https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map institution=U.S. Geological Survey (USGS) instrument=Not Applicable > Not Applicable instrument_vocabulary=GCMD Instrument Keywords ISO_Topic_Categories=elevation keywords_vocabulary=GCMD Science Keywords locations=Continent > North America > United States Of America > Hawaii, Ocean > Pacific Ocean > Central Pacific Ocean > Hawaiian Islands > Oahu locations_vocabulary=GCMD Location Keywords metadata_link=https://www.pacioos.hawaii.edu/metadata/usgs_dem_10m_oahu.html naming_authority=org.pacioos Northernmost_Northing=21.712412752206696 platform=Models/Analyses > > DEM > Digital Elevation Model platform_vocabulary=GCMD Platform Keywords program=Pacific Islands Ocean Observing System (PacIOOS) project=Pacific Islands Ocean Observing System (PacIOOS) references=https://www.pacioos.hawaii.edu/metadata/hi_usgs_oahu_dem10m_hillshade.html; https://www.pacioos.hawaii.edu/metadata/hi_usgs_all_dem10m_hillshade.html source=USGS 1/3 arc-second DEM quadrangles sourceUrl=https://pae-paha.pacioos.hawaii.edu/thredds/dodsC/usgs_dem_10m_oahu Southernmost_Northing=21.254794138987258 standard_name_vocabulary=CF Standard Name Table v39 time_coverage_duration=P0D time_coverage_resolution=P0D Westernmost_Easting=-158.28092225298528