Layered geospatial PDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, boundaries, and other selected map features. This map depicts geographic features on the surface of the earth. One intended purpose is to support emergency response at all levels of government. The geospatial data in this map are from selected National Map data holdings and other government sources.
Important Note: This item is in mature support as of June 2021 and is no longer updated.
This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.
The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.
To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service.
Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:
The Statue of Liberty, New York
This dataset was created to represent the land surface elevation at 1:24,000 scale for Florida. The elevation contour lines representing the land surface elevation were digitized from United States Geological survey 1:24,000 (7.5 minute) quadrangles and were compiled by South Florida, South West Florida, St. Johns River and Suwannee River Water Management Districts and FDEP. QA and corrections to the data were supplied by the Florida Department of Environmental Protection's Florida Geological Survey and the Division of Water Resource Management. This data, representing over 1,000 USGS topographic maps, spans a variety of contour intervals including 1 and 2 meter and 5 and 10 foot. The elevation values have been normalized to feet in the final data layer. Attributes for closed topographic depressions were also captured where closed (hautchered) features were identified and the lowest elevation determined using the closest contour line minus one-half the contour interval. This data was derived from the USGS 1:24,000 topographic map series. The data is more than 20 years old and is likely out-of-date in areas of high human activity.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Elevation maps (also known as Digital Elevation Models or DEMs) of Cape Cod National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Massachusetts, over Cape Cod National Seashore using the NASA Experimental Advanced Airborne Research LiDAR (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the beach at approximately 60 meters per second while surveying from the low-wa ...
The United States has an average elevation of roughly 2,500 feet (763m) above sea level, however there is a stark contrast in elevations across the country. Highest states Colorado is the highest state in the United States, with an average elevation of 6,800 feet (2,074m) above sea level. The 10 states with the highest average elevation are all in the western region of the country, as this is, by far, the most mountainous region in the country. The largest mountain ranges in the contiguous western states are the Rocky Mountains, Sierra Nevada, and Cascade Range, while the Appalachian Mountains is the longest range in the east - however, the highest point in the U.S. is Denali (Mount McKinley), found in Alaska. Lowest states At just 60 feet above sea level, Delaware is the state with the lowest elevation. Delaware is the second smallest state, behind Rhode Island, and is located on the east coast. Larger states with relatively low elevations are found in the southern region of the country - both Florida and Louisiana have an average elevation of just 100 feet (31m) above sea level, and large sections of these states are extremely vulnerable to flooding and rising sea levels, as well as intermittent tropical storms.
Important Note: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.World Topographic Map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes cities, water features, physiographic features, contours, parks, landmarks, highways, roads, railways, airports, and administrative boundaries, overlaid on shaded relief imagery for added context.This basemap is compiled from a variety of authoritative sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), HERE, and Esri. Data for select areas is sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view. Additionally, data for the World Topographic Map is provided by the GIS community through the Community Maps Program. View the list of Contributors for the World Topographic Map.CoverageThe map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Africa, Australia and New Zealand; Europe and Russia; India; most of the Middle East; Pacific Island nations; Alaska; Canada; Mexico; South America and Central America. Coverage is available down to ~1:2k and ~1:1k in select urban areas.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop you can see topographic citations. Citations returned apply only to the available map at that location and scale.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer in a web map, see this Topographic basemap.
This map shows the extent of the various datasets comprising the World Elevation dynamic (Terrain, TopoBathy) and tiled (Terrain 3D, TopoBathy 3D, World Hillshade, World Hillshade (Dark)) services.The tiled services (Terrain 3D, TopoBathy 3D, World Hillshade, World Hillshade (Dark)) also include an additional data source from Maxar's Precision3D covering parts of the globe.Topography sources listed in the table below are part of Terrain, TopoBathy, Terrain 3D, TopoBathy 3D, World Hillshade and World Hillshade (Dark), while bathymetry sources are part of TopoBathy and TopoBathy 3D only. Data Source Native Pixel Size Approximate Pixel Size (meters) Coverage Primary Source Country/Region
Topography
Australia 1m 1 meter 1 Partial areas of Australia Geoscience Australia Australia
Moreton Bay, Australia 1m 1 meter 1 Moreton Bay region, Australia Moreton Bay Regional Council Australia
New South Wales, Australia 5m 5 meters 5 New South Wales State, Australia DFSI Australia
SRTM 1 arc second DEM-S 0.0002777777777779 degrees 31 Australia Geoscience Australia Australia
Burgenland 50cm 0.5 meters 0.5 Burgenland State, Austria Land Burgenland Austria
Upper Austria 50cm 0.5 meters 0.5 Upper Austria State, Austria Land Oberosterreich Austria
Austria 1m 1 meter 1 Austria BEV Austria
Austria 10m 10 meters 10 Austria BEV Austria
Wallonie 50cm 0.5 meters 0.5 Wallonie state, Belgium Service public de Wallonie (SPW) Belgium
Vlaanderen 1m 1 meter 1 Vlaanderen state, Belgium agentschap Digitaal Vlaanderen Belgium
Canada HRDEM 1m 1 meter 1 Partial areas of Canada Natural Resources Canada Canada
Canada HRDEM 2m 2 meter 2 Partial areas of the southern part of Canada Natural Resources Canada Canada
Denmark 40cm 0.4 meters 0.4 Denmark KDS Denmark
Denmark 10m 10 meters 10 Denmark KDS Denmark
England 1m 1 meter 1 England Environment Agency England
Estonia 1m 1 meter 1 Estonia Estonian Land Board Estonia
Estonia 5m 5 meters 5 Estonia Estonian Land Board Estonia
Estonia 10m 10 meters 10 Estonia Estonian Land Board Estonia
Finland 2m 2 meters 2 Finland NLS Finland
Finland 10m 10 meters 10 Finland NLS Finland
France 1m 1 meter 1 France IGN-F France
Bavaria 1m 1 meter 1 Bavaria State, Germany Bayerische Vermessungsverwaltung Germany
Berlin 1m 1 meter 1 Berlin State, Germany Geoportal Berlin Germany
Brandenburg 1m 1 meter 1 Brandenburg State, Germany GeoBasis-DE/LGB Germany
Hamburg 1m 1 meter 1 Hamburg State, Germany LGV Hamburg Germany
Hesse 1m 1 meter 1 Hesse State, Germany HVBG Germany
Nordrhein-Westfalen 1m 1 meter 1 Nordrhein-Westfalen State, Germany Land NRW Germany
Saxony 1m 1 meter 1 Saxony State, Germany Landesamt für Geobasisinformation Sachsen (GeoSN) Germany
Sachsen-Anhalt 2m 2 meters 2 Sachsen-Anhalt State, Germany LVermGeo LSA Germany
Hong Kong 50cm 0.5 meters 0.5 Hong Kong CEDD Hong Kong SAR
Italy TINITALY 10m 10 meters 10 Italy INGV Italy
Japan DEM5A *, DEM5B * 0.000055555555 degrees 5 Partial areas of Japan GSI Japan
Japan DEM10B * 0.00011111111 degrees 10 Japan GSI Japan
Latvia 1m 1 meters 1 Latvia Latvian Geospatial Information Agency Latvia
Latvia 10m 10 meters 10 Latvia Latvian Geospatial Information Agency Latvia
Latvia 20m 20 meters 20 Latvia Latvian Geospatial Information Agency Latvia
Lithuania 1m 1 meters 1 Lithuania NZT Lithuania
Lithuania 10m 10 meters 10 Lithuania NZT Lithuania
Netherlands (AHN3/AHN4) 50cm 0.5 meters 0.5 Netherlands AHN Netherlands
Netherlands (AHN3/AHN4) 10m 10 meters 10 Netherlands AHN Netherlands
New Zealand 1m 1 meters 1 Partial areas of New Zealand Land Information New Zealand (Sourced from LINZ. CC BY 4.0) New Zealand
Northern Ireland 10m 10 meters 10 Northern Ireland OSNI Northern Ireland
Norway 10m 10 meters 10 Norway NMA Norway
Poland 1m 1 meter 1 Partial areas of Poland GUGIK Poland
Poland 5m 5 meters 5 Partial areas of Poland GUGIK Poland
Scotland 1m 1 meter 1 Partial areas of Scotland Scottish Government et.al Scotland
Slovakia 1m 1 meter 1 Slovakia ÚGKK SR Slovakia
Slovakia 10m 10 meters 10 Slovakia GKÚ Slovakia
Slovenia 1m 1 meter 1 Slovenia ARSO Slovenia
Madrid City 1m 1 meter 1 Madrid city, Spain Ayuntamiento de Madrid Spain
Spain 2m (MDT02 2019 CC-BY 4.0 scne.es) 2 meters 2 Partial areas of Spain IGN Spain
Spain 5m 5 meters 5 Spain IGN Spain
Spain 10m 10 meters 10 Spain IGN Spain
Varnamo 50cm 0.5 meters 0.5 Varnamo municipality, Sweden Värnamo Kommun Sweden
Canton of Basel-Landschaft 25cm 0.25 meters 0.25 Canton of Basel-Landschaft, Switzerland Geoinformation Kanton Basel-Landschaft Switzerland
Grand Geneva 50cm 0.5 meters 0.5 Grand Geneva metropolitan, France/Switzerland SITG Switzerland and France
Switzerland swissALTI3D 50cm 0.5 meters 0.5 Switzerland and Liechtenstein swisstopo Switzerland and Liechtenstein
Switzerland swissALTI3D 10m 10 meters 10 Switzerland and Liechtenstein swisstopo Switzerland and Liechtenstein
OS Terrain 50 50 meters 50 United Kingdom Ordnance Survey United Kingdom
Douglas County 1ft 1 foot 0.3048 Douglas County, Nebraska, USA Douglas County NE United States
Lancaster County 1ft 1 foot 0.3048 Lancaster County, Nebraska, USA Lancaster County NE United States
Sarpy County 1ft 1 foot 0.3048 Sarpy County, Nebraska, USA Sarpy County NE United States
Cook County 1.5 ft 1.5 foot 0.46 Cook County, Illinois, USA ISGS United States
3DEP 1m 1 meter 1 Partial areas of the conterminous United States, Puerto Rico USGS United States
NRCS 1m 1 meter 1 Partial areas of the conterminous United States NRCS USDA United States
San Mateo County 1m 1 meter 1 San Mateo County, California, USA San Mateo County CA United States
FEMA LiDAR DTM 3 meters 3 Partial areas of the conterminous United States FEMA United States
NED 1/9 arc second 0.000030864197530866 degrees 3 Partial areas of the conterminous United States USGS United States
3DEP 5m 5 meter 5 Alaska, United States USGS United States
NED 1/3 arc second 0.000092592592593 degrees 10 conterminous United States, Hawaii, Alaska, Puerto Rico, and Territorial Islands of the United States USGS United States
NED 1 arc second 0.0002777777777779 degrees 31 conterminous United States, Hawaii, Alaska, Puerto Rico, Territorial Islands of the United States; Canada and Mexico USGS United States
NED 2 arc second 0.000555555555556 degrees 62 Alaska, United States USGS United States
Wales 1m 1 meter 1 Wales Welsh Government Wales
WorldDEM4Ortho 0.00022222222 degrees 24 Global (excluding the countries of Azerbaijan, DR Congo and Ukraine) Airbus Defense and Space GmbH World
SRTM 1 arc second 0.0002777777777779 degrees 31 all land areas between 60 degrees north and 56 degrees south except Australia NASA World
EarthEnv-DEM90 0.00083333333333333 degrees 93 Global N Robinson,NCEAS World
SRTM v4.1 0.00083333333333333 degrees 93 all land areas between 60 degrees north and 56 degrees south except Australia CGIAR-CSI World
GMTED2010 7.5 arc second 0.00208333333333333 degrees 232 Global USGS World
GMTED2010 15 arc second 0.00416666666666666 degrees 464 Global USGS World
GMTED2010 30 arc second 0.0083333333333333 degrees 928 Global USGS World
Bathymetry
Canada west coast 10 meters 10 Canada west coast Natural Resources Canada Canada
Gulf of Mexico 40 feet 12 Northern Gulf of Mexico BOEM Gulf of Mexico
MH370 150 meters 150 MH370 flight search area (Phase 1) of Indian Ocean Geoscience Australia Indian Ocean
Switzerland swissBATHY3D 1 - 3 meters 1, 2, 3 Lakes of Switzerland swisstopo Switzerland
NCEI 1/9 arc second 0.000030864197530866 degrees 3 Puerto Rico, U.S Virgin Islands and partial areas of eastern and western United States coast NOAA NCEI United States
NCEI 1/3 arc second 0.000092592592593 degrees 10 Partial areas of eastern and western United States coast NOAA NCEI United States
CRM 1 arc second (Version 2) 0.0002777777777779 degrees 31 Southern California coast of United States NOAA United States
NCEI 1 arc second 0.0002777777777779 degrees 31 Partial areas of northeastern United States coast NOAA NCEI United States
CRM 3 arc second 0.00083333333333333 degrees 93 United States Coast NOAA United States
NCEI 3 arc second 0.00083333333333333 degrees 93 Partial areas of northeastern United States coast NOAA NCEI United States
The U.S. Interagency Elevation Inventory (USIEI) displays high-accuracy topographic and bathymetric data for the United States and its territories. The project is a collaborative effort between the National Oceanic and Atmospheric Administration, the U.S. Geological Survey, the Federal Emergency Management Agency, the U.S. Department of Agriculture - Natural Resources Conservation Service and U...
The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.
Culminating more than four years of processing data, NASA and the National Geospatial-Intelligence Agency (NGA) have completed Earth's most extensive global topographic map. The mission is a collaboration among NASA, NGA, and the German and Italian space agencies. For 11 days in February 2000, the space shuttle Endeavour conducted the Shuttle Radar Topography Mission (SRTM) using C-Band and X-Band interferometric synthetic aperture radars to acquire topographic data over 80% of the Earth's land mass, creating the first-ever near-global data set of land elevations. This data was used to produce topographic maps (digital elevation maps) 30 times as precise as the best global maps used today. The SRTM system gathered data at the rate of 40,000 per minute over land. They reveal for the first time large, detailed swaths of Earth's topography previously obscured by persistent cloudiness. The data will benefit scientists, engineers, government agencies and the public with an ever-growing array of uses. The SRTM radar system mapped Earth from 56 degrees south to 60 degrees north of the equator. The resolution of the publicly available data is three arc-seconds (1/1,200th of a degree of latitude and longitude, about 295 feet, at Earth's equator). The final data release covers Australia and New Zealand in unprecedented uniform detail. It also covers more than 1,000 islands comprising much of Polynesia and Melanesia in the South Pacific, as well as islands in the South Indian and Atlantic oceans. SRTM data are being used for applications ranging from land use planning to "virtual" Earth exploration. Currently, the mission's homepage "http://www.jpl.nasa.gov/srtm" provides direct access to recently obtained earth images. The Shuttle Radar Topography Mission C-band data for North America and South America are available to the public. A list of complete public data set is available at "http://www2.jpl.nasa.gov/srtm/dataprod.htm" The data specifications are within the following parameters: 30-meter X 30-meter spatial sampling with 16 meter absolute vertical height accuracy, 10-meter relative vertical height accuracy, and 20-meter absolute horizontal circular accuracy. From the JPL Mission Products Summary, "http://www.jpl.nasa.gov/srtm/dataprelimdescriptions.html". The primary products of the SRTM mission are the digital elevation maps of most of the Earth's surface. Visualized images of these maps are available for viewing online. Below you will find descriptions of the types of images that are being generated: Radar Image Radar Image with Color as Height Radar Image with Color Wrapped Fringes -Shaded Relief Perspective View with B/W Radar Image Overlaid Perspective View with Radar Image Overlaid, Color as Height Perspective View of Shaded Relief Perspective View with Landsat or other Image Overlaid Contour Map - B/W with Contour Lines Stereo Pair Anaglypgh The SRTM radar contained two types of antenna panels, C-band and X-band. The near-global topographic maps of Earth called Digital Elevation Models (DEMs) are made from the C-band radar data. These data were processed at the Jet Propulsion Laboratory and are being distributed through the United States Geological Survey's EROS Data Center. Data from the X-band radar are used to create slightly higher resolution DEMs but without the global coverage of the C-band radar. The SRTM X-band radar data are being processed and distributed by the German Aerospace Center, DLR.
This is a tiled collection of the 3D Elevation Program (3DEP) and is 1/3 arc-second (approximately 10 m) resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. The seamless 1/3 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The seamless 1/3 arc-second DEM layer provides coverage of the conterminous United States, Hawaii, Puerto Rico, other territorial islands, and in limited areas of Alaska. The seamless 1/3arc-second DEM is available as pre-staged current and historical products tiled in GeoTIFF format. The seamless 1/3 arc-second DEM layer is updated continually as new data become available in the current folder. Previously created 1 degree blocks are retained in the historical folder with an appended date suffix (YYYMMDD) when they were produced. Other 3DEP products are nationally seamless DEMs in resolutions of 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include one-meter DEMs produced exclusively from high resolution light detection and ranging (lidar) source data and five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USGS Elevation Contours service from The National Map (TNM) consists of contours generated for the conterminous United States from 1- and 1/3 arc-second elevation data. Small scale contours derived from 1 arc-second data are displayed at scales ranging from 1:577K to 1:72K in The National Map viewer. Contour intervals are 100 foot between 1:577K and 1:144K, and 50 foot at 1:72K. Large scale contours derived from 1/3 arc-second data are displayed at 1:50K (and larger). Large scale contour intervals are variable across the United States depending on complexity of topography. The National Map viewer allows free downloads of public domain contour data in either Esri File Geodatabase or Shapefile formats. The 3D Elevation Program (3DEP) provides elevation data for The National Map and basic elevation information for earth science studies and mapping applications. Scientists and resource managers use elevation data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. For additional information on 3DEP, go to https://nationalmap.gov/3DEP/.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
This map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes administrative boundaries, cities, water features, physiographic features, parks, landmarks, highways, roads, railways, and airports overlaid on land cover and shaded relief imagery for added context. The map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Australia and New Zealand; India; Europe; Canada; Mexico; the continental United States and Hawaii; South America and Central America; Africa; and most of the Middle East. Coverage down to ~1:1k and ~1:2k is available in select urban areas. This basemap was compiled from a variety of best available sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), GeoBase, Agriculture and Agri-Food Canada, Garmin, HERE, Esri, OpenStreetMap contributors, and the GIS User Community. For more information on this map, including the terms of use, visit us online.
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (MHW). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.
This is the seamless 3DEP DEM dataset for the U.S. with full coverage of the 48 conterminous states, Hawaii, and U.S. territories. Alaska coverage is partially available now and is being expanded to statewide coverage as part of the Alaska Mapping Initiative. Ground spacing is approximately 10 meters north/south, but variable east/west due to convergence of meridians with latitude. Spatial metadata dataset is ingested as a separate asset USGS_3DEP_10m_metadata. The 1m dataset is ingested as USGS_3DEP_1m. Dataset uploaded by Farmers Business Network.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This is a topographical map of western Tutuila.
Subset of World DEM to use as a background for North American Data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Elevation strongly influences soil moisture and patterns of tundra plant communities. Areas less than 100 m above sea level were separated to show low-elevation plains. Areas above 100 m elevation were divided into 333-m intervals to show decreases of about 2 °C, as predicted by the adiabatic lapse rate of 6 °C per 1000 m. This corresponds to the change in mean July temperature between Bioclimate Subzones. Vegetation in mountainous regions changes with elevation, forming distinct elevational belts which correspond approximately to bioclimatic subzones. Vegetation is also modified by local topographic effects such as slope, aspect, and cold-air drainage. This heterogeneity was too detailed to map at this scale, so vegetation in mountainous areas was mapped as a complex, using a diagonal hachure pattern. The background color and the orientation of the hatching represent the pH of the dominant bedrock (magenta for non-carbonate bedrock including sandstone and granite, purple for carbonate bedrock including limestone and dolomite). The color of the hatching represents the bioclimate subzone at the lowest elevation within the polygon (yellow hatching for Subzone D and red hatching for Subzone E). Back to Alaska Arctic Tundra Vegetation Map (Raynolds et al. 2006) Go to Website Link :: Toolik Arctic Geobotanical Atlas below for details on legend units, photos of map units and plant species, glossary, bibliography and links to ground data. Map Themes AVHRR NDVI , Bioclimate Subzone, Elevation, False Color-Infrared CIR, Floristic Province, Lake Cover, Landscape, Substrate Chemistry, Vegetation References Raynolds, M.K., Walker, D.A., Maier, H.A. 2005. Plant community-level mapping of arctic Alaska based on the Circumpolar Arctic Vegetation Map. Phytocoenologia. 35(4):821-848. http://doi.org/10.1127/0340-269X/2005/0035-0821 Raynolds, M.K., Walker, D.A., Maier, H.A. 2006. Alaska Arctic Tundra Vegetation Map. 1:4,000,000. U.S. Fish and Wildlife Service. Anchorage, AK.
Layered geospatial PDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, boundaries, and other selected map features. This map depicts geographic features on the surface of the earth. One intended purpose is to support emergency response at all levels of government. The geospatial data in this map are from selected National Map data holdings and other government sources.