Facebook
TwitterDownload Employee Travel Excel SheetThis dataset contains information about the employee travel expenses for the year 2020. Details are provided on the employee (name, title, department), the travel (dates, location, purpose) and the cost (expenses, recoveries). Expenses are broken down in separate tabs by Quarter (Q1, Q2, Q3 and Q4). Updated quarterly when expenses are prepared. Expenses for other years are available in separate datasets.
Facebook
TwitterThis dataset lists the employee name and taxable benefit for personal use of City of Greater Sudbury Vehicle as travel expenses for the year 2023. Expenses are broken down in separate tabs by Quarter (Q1, Q2, Q3 and Q4). Data for other years is available in separate datasets. Updated quarterly when expenses are prepared.
Facebook
TwitterThe documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.
The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Sample survey data [ssd]
The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.
Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.
For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.
For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).
Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).
For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.
For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.
Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).
Computer Assisted Personal Interview [capi]
Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.
For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.
For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.
For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.
Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.
Facebook
TwitterIt is important to identify any barriers in recruitment, hiring, and employee retention practices that might discourage any segment of our population from applying for positions or continuing employment at the City of Tempe. This information will provide better awareness for outreach efforts and other strategies to attract, hire, and retain a diverse workforce.This page provides data for the Employee Vertical Diversity performance measure. The performance measure dashboard is available at 2.20 Employee Vertical Diversity. Additional InformationSource:PeopleSoft HCM, Maricopa County Labor Market Census DataContact: Lawrence LaVictoireContact E-Mail: lawrence_lavicotoire@tempe.govData Source Type: Excel, PDFPreparation Method: PeopleSoft query and PDF are moved to a pre-formatted Excel spreadsheet.Publish Frequency: Every six monthsPublish Method: ManualData Dictionary
Facebook
TwitterCreating a robust employee dataset for data analysis and visualization involves several key fields that capture different aspects of an employee's information. Here's a list of fields you might consider including: Employee ID: A unique identifier for each employee. Name: First name and last name of the employee. Gender: Male, female, non-binary, etc. Date of Birth: Birthdate of the employee. Email Address: Contact email of the employee. Phone Number: Contact number of the employee. Address: Home or work address of the employee. Department: The department the employee belongs to (e.g., HR, Marketing, Engineering, etc.). Job Title: The specific job title of the employee. Manager ID: ID of the employee's manager. Hire Date: Date when the employee was hired. Salary: Employee's salary or compensation. Employment Status: Full-time, part-time, contractor, etc. Employee Type: Regular, temporary, contract, etc. Education Level: Highest level of education attained by the employee. Certifications: Any relevant certifications the employee holds. Skills: Specific skills or expertise possessed by the employee. Performance Ratings: Ratings or evaluations of employee performance. Work Experience: Previous work experience of the employee. Benefits Enrollment: Information on benefits chosen by the employee (e.g., healthcare plan, retirement plan, etc.). Work Location: Physical location where the employee works. Work Hours: Regular working hours or shifts of the employee. Employee Status: Active, on leave, terminated, etc. Emergency Contact: Contact information of the employee's emergency contact person. Employee Satisfaction Survey Responses: Data from employee satisfaction surveys, if applicable.
Code Url: https://github.com/intellisenseCodez/faker-data-generator
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Excel. The dataset can be utilized to gain insights into gender-based income distribution within the Excel population, aiding in data analysis and decision-making..
Key observations
https://i.neilsberg.com/ch/excel-al-income-distribution-by-gender-and-employment-type.jpeg" alt="Excel, AL gender and employment-based income distribution analysis (Ages 15+)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel median household income by gender. You can refer the same here
Facebook
TwitterThis dataset comes from the Biennial City of Tempe Employee Survey questions related to employee engagement. Survey respondents are asked to rate their level of agreement on a scale of 5 to 1, where 5 means "Strongly Agree" and 1 means "Strongly Disagree".This dataset includes responses to the following statements: Overall, I am satisfied with the level of employee engagement in my Department. I have been mentored at work. Overall, how satisfied are you with your current job? Participation in the survey is voluntary and confidential.This page provides data for the Employee Engagement performance measure. The performance measure dashboard is available at 2.13 Employee Engagement.Additional Information Source: Community Attitude Survey Contact: Wydale Holmes Contact E-Mail: wydale_holmes@tempe.govData Source Type: ExcelPreparation Method: Data received from vendor (Community Survey)Publish Frequency: AnnualPublish Method: ManualData Dictionary
Facebook
TwitterThis dataset is a listing of all active City of Chicago employees, complete with full names, departments, positions, employment status (part-time or full-time), frequency of hourly employee –where applicable—and annual salaries or hourly rate. Please note that "active" has a specific meaning for Human Resources purposes and will sometimes exclude employees on certain types of temporary leave. For hourly employees, the City is providing the hourly rate and frequency of hourly employees (40, 35, 20 and 10) to allow dataset users to estimate annual wages for hourly employees. Please note that annual wages will vary by employee, depending on number of hours worked and seasonal status. For information on the positions and related salaries detailed in the annual budgets, see https://www.cityofchicago.org/city/en/depts/obm.html
Data Disclosure Exemptions: Information disclosed in this dataset is subject to FOIA Exemption Act, 5 ILCS 140/7 (Link:https://www.ilga.gov/legislation/ilcs/documents/000501400K7.htm)
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The HR analytics tools market is experiencing robust growth, driven by the increasing need for data-driven decision-making in human resource management. The market, estimated at $15 billion in 2025, is projected to achieve a compound annual growth rate (CAGR) of 12% from 2025 to 2033, reaching approximately $45 billion by 2033. This expansion is fueled by several key factors. Firstly, organizations are increasingly leveraging data to optimize recruitment processes, improve employee engagement, and enhance workforce planning. Secondly, advancements in artificial intelligence (AI) and machine learning (ML) are enabling more sophisticated analytics capabilities, providing actionable insights into employee behavior, performance, and attrition. Thirdly, the rising adoption of cloud-based HR solutions is facilitating easier access to data and enhanced collaboration across HR teams. The market is segmented by various tools, including Python, RStudio, Tableau, KNIME, Power BI, Microsoft Excel, Orange, and Apache Hadoop, each catering to different analytical needs and organizational scale. Despite the significant growth potential, the market faces certain challenges. Data privacy and security concerns remain a major hurdle, especially given the sensitive nature of employee data. The lack of skilled professionals proficient in data analytics and HR practices also presents a limitation. Furthermore, the integration of disparate HR data sources can be complex and time-consuming. However, these challenges are being addressed through the development of robust data security protocols, specialized training programs, and integrated HR software solutions. The North American region currently holds the largest market share, but Asia-Pacific is anticipated to show the fastest growth in the coming years due to the increasing adoption of HR analytics tools in rapidly growing economies.
Facebook
Twitterhttps://borealisdata.ca/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.5683/SP3/RQTHKBhttps://borealisdata.ca/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.5683/SP3/RQTHKB
The national Survey of Information Technology Occupations, conducted in 2002 on behalf of the Software Human Resource Council (SHRC), is the first to shed light on the IT labour market in both the public and private sectors. IT employers and employees were surveyed separately, but simultaneously. The employer survey consisted of questions on occupation profile, hiring and recruitment, employee retention, and training and development. The employee survey had questions on the occupational history of IT employees, salary, education, training, and skills. The target population consisted of private sector locations with at least six employees, and with at least one employee working in IT, as well as public-sector divisions with at least one IT employee. The NSITO is a three-stage survey. First, a sample of employers in both private and public sectors is selected; this is stage 1. The questions asked in stage 1 are essentially about the IT workforce. Stage 2 involves selecting a maximum of two occupations (out of 25) per employer. The questions asked in this stage deal with hiring, training and retaining employees in the selected occupations. In stage 3, a maximum of 10 employees are sampled for each occupation selected in stage 2. Among the subjects that employees are asked about are training, previous employment and demographic characteristics. For National Survey of Information Technology Occupations data, refer to Statistics Canada.
Facebook
TwitterThe Internal Employee Payroll Match (IEPM) verifies the continuing eligibility and benefit amounts of Disability Income Beneficiaries and Supplemental Security Income recipients for SSA employees. The IEPM process compares the current Social Security employee records of the Personnel Payroll file with the Master Beneficiary Record (MBR) and the Supplemental Security Record (SSR). IEPM data is provided in Excel spreadsheets to DCO-Office of Public Service and Operations Support for dissemination to the necessary Field Offices for review and development.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Annual salary information including gross pay and overtime pay for all active, permanent employees of Montgomery County, MD paid in calendar year 2023. This dataset is a prime candidate for conducting analyses on salary disparities, the relationship between department/division and salary, and the distribution of salaries across gender and grade levels.
Statistical models can be applied to predict base salaries based on factors such as department, grade, and length of service. Machine learning techniques could also be employed to identify patterns and anomalies in the salary data, such as outliers or instances of significant inequity.
Some analysis to be performed with this dataset can include:
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
These data come from the Canadian Employer-Employee Dynamics Database. The generated excel spreadsheet provides a long list of characteristics of the NL mobile workforce.
Facebook
TwitterDownload Employee Mileage Excel SheetThis dataset lists the employee name and mileage paid as travel expenses for the year 2020. Expenses are broken down in separate tabs by Quarter (Q1, Q2, Q3 and Q4). Data for other years is available in separate datasets. Updated quarterly when expenses are prepared.
Facebook
TwitterSuccess.ai’s Ecommerce Store Data for the APAC E-commerce Sector provides a reliable and accurate dataset tailored for businesses aiming to connect with e-commerce professionals and organizations across the Asia-Pacific region. Covering roles and businesses involved in online retail, marketplace management, logistics, and digital commerce, this dataset includes verified business profiles, decision-maker contact details, and actionable insights.
With access to continuously updated, AI-validated data and over 700 million global profiles, Success.ai ensures your outreach, market analysis, and partnership strategies are effective and data-driven. Backed by our Best Price Guarantee, this solution helps you excel in one of the world’s fastest-growing e-commerce markets.
Why Choose Success.ai’s Ecommerce Store Data?
Verified Profiles for Precision Engagement
Comprehensive Coverage of the APAC E-commerce Sector
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Comprehensive E-commerce Business Profiles
Advanced Filters for Precision Campaigns
Regional and Sector-specific Insights
AI-Driven Enrichment
Strategic Use Cases:
Marketing Campaigns and Outreach
Partnership Development and Vendor Collaboration
Market Research and Competitive Analysis
Recruitment and Talent Acquisition
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
Facebook
TwitterThis project presents an interactive Human Resources Dashboard in Excel to answer 3 main questions:
It includes 3 sheets: - Dashboard: interactive dashboard. - Database: the dataset used (Data source: https://aihr.ac/3TQ8tXD). - Pivot Tables: created and used for the dashboard creation.
You can download the Excel file with all formatting.
Facebook
TwitterThe following table supports an analytical release that subdivides the businesses behind the published 2019 Trade in Goods by Business Characteristics into their component local sites within the NUTS3 areas of the UK.
MS Excel Spreadsheet, 182 KB
Facebook
TwitterThe preferred source of public sector employment data is the National Statistics Public Sector Employment (PSE) series. This is published quarterly by ONS and the Scottish Government and provides employment estimates at national and regional (government office) level based on public sector returns.
Where data is required for GB below regional level, Annual Business Inquiry (ABI) employee jobs estimates provide one possible source of information. This data provides estimates of the level of public and private sector employee jobs by Local Authority and Travel to Work Area from 2003 to 2008.
There are some limitations and caveats that should be understood before this data is used. In particular, unlike the Public Sector Employment figures these estimates are measures of jobs not people/employment. They cover employee jobs rather than the wider measure of workforce jobs ie they exclude self-employed jobs, HM Forces and Government Supported Trainees.
The estimates also exclude employee jobs in farm agriculture. Full details on the limitations and caveats of these estimates can be found in the first worksheet of the excel file.
Data and supporting information can be found below:
Since these ABI estimates were published ONS has released data on the number of employee jobs in the public and private sector by local authority for 2008,2009 and 2010 from the Business Register Employment Survey (BRES). The http://www.ons.gov.uk/ons/publications/re-reference-tables.html?edition=tcm%3A77-230519">2010 results can be found here.
BRES has replaced the ABI and this change has caused a break in the data in 2008. As a result BRES and ABI estimates should not compared directly. There is more information about this break on the ONS website.
Facebook
TwitterDownload Employee Travel Excel SheetThis dataset contains information about the employee travel expenses for the year 2020. Details are provided on the employee (name, title, department), the travel (dates, location, purpose) and the cost (expenses, recoveries). Expenses are broken down in separate tabs by Quarter (Q1, Q2, Q3 and Q4). Updated quarterly when expenses are prepared. Expenses for other years are available in separate datasets.