https://www.icpsr.umich.edu/web/ICPSR/studies/36219/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36219/terms
The Occupational Employment Statistics (OES) program conducts a semiannual survey designed to produce estimates of employment and wages for specific occupations. The OES program collects data on wage and salary workers in nonfarm establishments in order to produce employment and wage estimates for about 800 occupations. Data from self-employed persons are not collected and are not included in the estimates. The OES program produces these occupational estimates for the nation as a whole, by state, by metropolitan or nonmetropolitan area, and by industry or ownership. The Bureau of Labor Statistics produces occupational employment and wage estimates for approximately 415 industry classifications at the national level. The industry classifications correspond to the sector, 3-, 4-, and selected 5- and 6-digit North American Industry Classification System (NAICS) industrial groups. The OES program surveys approximately 200,000 establishments per panel (every six months), taking three years to fully collect the sample of 1.2 million establishments. To reduce respondent burden, the collection is on a three-year survey cycle that ensures that establishments are surveyed at most once every three years. The estimates for occupations in nonfarm establishments are based on OES data collected for the reference months of May and November. The OES survey is a federal-state cooperative program between the Bureau of Labor Statistics (BLS) and State Workforce Agencies (SWAs). BLS provides the procedures and technical support, draws the sample, and produces the survey materials, while the SWAs collect the data. SWAs from all fifty states, plus the District of Columbia, Puerto Rico, Guam, and the Virgin Islands participate in the survey. Occupational employment and wage rate estimates at the national level are produced by BLS using data from the fifty states and the District of Columbia. Employers who respond to states' requests to participate in the OES survey make these estimates possible. The OES features several arts-related occupations, particularly in the Arts, Design, Entertainment, Sports, and Media Occupations group (Standard Occupational Classification (SOC) code 27-0000). Several featured occupation groups include the following: Art and Design Workers (SOC 27-1000) Art Directors Fine Artists, including Painters, Sculptors, and Illustrators Multimedia Artists and Animators Fashion Designers Graphic Designers Set and Exhibit Designers Entertainers and Performers, Sports and Related Workers (SOC 27-2000) Actors Producers and Directors Athletes Coaches and Scouts Dancers Choreographers Music Directors and Composers Musicians and Singers Media and Communication Workers (SOC 27-3000) Radio and Television Announcers Reports and Correspondents Public Relations Specialists Writers and Authors Data for years 1997 through the latest release and can be found on the OES Data page. Also, see OES News Releases sections for current estimates and news releases. Users can analyze the data for the nation as a whole, by state, by metropolitan or nonmetropolitan area, and by industry or ownership. As well, OES Charts are available. Users may also explore data using OES Maps. If preferred, data can also be accessed via the Multi-Screen Data Search or Text Files using the OES Databases page.
http://www.opendefinition.org/licenses/cc-by-sahttp://www.opendefinition.org/licenses/cc-by-sa
The U.S. Department of Labor/Employment and Training Administration (USDOL/ETA) maintain three lists of Green occupations, namely Green Increased Demand (GID), Green Enhanced Skills (GES) and Green New and Emerging (GNE) occupations as part of their Occupational Information Network (O*NET), along with a large database of occupational characteristics. Of these three lists the first two contain occupations that match well with unit groups within the UK Standard Occupational Classification, which is mainatined by the Office for National Statistics (ONS) and which we publish in these datasets. These matches have been identified by a combination of methods including official crosswalks to the International Labour Organization's occupational classification, Natural Language Processing models and Autonomy's own research. The mapping in this dataset is not one-to-one, as occupations in one classification can map to multiple occupations in the other.
Number of employees by National Occupational Classification (NOC), last 5 months. Data are also available for the standard error of the estimate, the standard error of the month-to-month change and the standard error of the year-over-year change.
This dataset combines automation probability data with a breakdown of the number of jobs and salary in each occupation by state within the USA. Automation probability was acquired from the work of Carl Benedikt Freyand Michael A. Osborne; State employment data is from the Bureau of Labor Statistics. Note that for simplicity of analysis, all jobs where data was not available or there were less than 10 employees were marked as zero.
If you use this dataset in your research, please credit the authors.
@misc{u.s. bureau of labor statistics, title={Occupational Employment Statistics}, url={https://www.bls.gov/oes/current/oes_nat.htm}, journal={U.S. BUREAU OF LABOR STATISTICS}}
@article{frey_osborne_2017, title={The future of employment: How susceptible are jobs to computerisation?}, volume={114}, DOI={10.1016/j.techfore.2016.08.019}, journal={Technological Forecasting and Social Change}, author={Frey, Carl Benedikt and Osborne, Michael A.}, year={2017}, pages={254–280}}
License was not specified at the source.
Photo by Alex Knight on Unsplash
VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1)
FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations
LAST UPDATED January 2019
DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage.
DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html
American Community Survey (2001-2017) http://api.census.gov
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour.
Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average.
Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017.
Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases.
In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling concern of underestimating a median wage for a teaching occupation that requires less than 2080 hours of work a year (equivalent to 12 months fulltime). Finally, the OES has missing employment data for occupations across the time series. To make the employment data comparable between years, gaps in employment data for occupations are ‘filled-in’ using linear interpolation if there are at least two years of employment data found in OES. Occupations with less than two years of employment data were dropped from the analysis. Over 80% of interpolated cells represent missing employment data for just one year in the time series. While this interpolating technique may impact year-over-year comparisons, the long-term trends represented in the analysis generally are accurate.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual estimates of paid hours worked, weekly, hourly and annual earnings for UK employees by sex, and full-time and part-time, by region and four-digit Standard Occupational Classification.
VITAL SIGNS INDICATOR
Jobs by Industry (EC1)
FULL MEASURE NAME
Employment by place of work by industry sector
LAST UPDATED
December 2022
DESCRIPTION
Jobs by industry refers to both the change in employment levels by industry and the proportional mix of jobs by economic sector. This measure reflects the changing industry trends that affect our region’s workers.
DATA SOURCE
Bureau of Labor Statistics, Quarterly Census of Employment and Wages (QCEW) - https://www.bls.gov/cew/downloadable-data-files.htm
1990-2021
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
Quarterly Census of Employment and Wages (QCEW) employment data is reported by the place of work and represent the number of covered workers who worked during, or received pay for, the pay period that included the 12th day of the month. Covered employees in the private-sector and in the state and local government include most corporate officials, all executives, all supervisory personnel, all professionals, all clerical workers, many farmworkers, all wage earners, all piece workers and all part-time workers. Workers on paid sick leave, paid holiday, paid vacation and the like are also covered.
Besides excluding the aforementioned national security agencies, QCEW excludes proprietors, the unincorporated self-employed, unpaid family members, certain farm and domestic workers exempted from having to report employment data and railroad workers covered by the railroad unemployment insurance system. Excluded as well are workers who earned no wages during the entire applicable pay period because of work stoppages, temporary layoffs, illness or unpaid vacations.
The location quotient (LQ) is used to evaluate level of concentration or clustering of an industry within the Bay Area and within each county of the region. A location quotient greater than 1 means there is a strong concentration for of jobs in an industry sector. For the Bay Area, the LQ is calculated as the share of the region’s employment in a particular sector divided by the share of California's employment in that same sector. For each county, the LQ is calculated as the share of the county’s employment in a particular sector divided by the share of the region’s employment in that same sector.
Data is mainly pulled from aggregation level 73, which is county-level summarized at the North American Industry Classification System (NAICS) supersector level (12 sectors). This aggregation level exhibits the least loss due to data suppression, in the magnitude of 1-2 percent for regional employment, and is therefore preferred. However, the supersectors group together NAICS 11 Agriculture, Forestry, Fishing and Hunting; NAICS 21 Mining and NAICS 23 Construction. To provide a separate tally of Agriculture, Forestry, Fishing and Hunting, the aggregation level 74 data was used for NAICS codes 11, 21 and 23.
QCEW reports on employment in Public Administration as NAICS 92. However, many government activities are reported with an industry specific code - such as transportation or utilities even if those may be public governmental entities. In 2021 for the Bay Area, the largest industry groupings under public ownership are Education and health services (58%); Public administration (29%) and Trade, transportation, and utilities (29%). With the exception of Education and health services, all other public activities were coded as government/public administration, regardless of industry group.
For the county data there were some industries that reported 0 jobs or did not report jobs at the desired aggregation/NAICS level for the following counties/years:
Farm:
(aggregation level: 74, NAICS code: 11)
- Contra Costa: 2008-2010
- Marin: 1990-2006, 2008-2010, 2014-2020
- Napa: 1990-2004, 2013-2021
- San Francisco: 2019-2020
- San Mateo: 2013
Information:
(aggregation level: 73, NAICS code: 51)
- Solano: 2001
Financial Activities:
(aggregation level: 73, NAICS codes: 52, 53)
- Solano: 2001
Unclassified:
(aggregation level: 73, NAICS code: 99)
- All nine Bay Area counties: 1990-2000
- Marin, Napa, San Mateo, and Solano: 2020
- Napa: 2019
- Solano: 2001
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2015-2019 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Industry titles and their 4-digit codes are based on the North American Industry Classification System (NAICS). The Census industry codes for 2018 and later years are based on the 2017 revision of the NAICS. To allow for the creation of multiyear tables, industry data in the multiyear files (prior to data year 2018) were recoded to the 2017 Census industry codes. We recommend using caution when comparing data coded using 2017 Census industry codes with data coded using Census industry codes prior to data year 2018. For more information on the Census industry code changes, please visit our website at https://www.census.gov/topics/employment/industry-occupation/guidance/code-lists.html..When information is missing or inconsistent, the Census Bureau logically assigns an acceptable value using the response to a related question or questions. If a logical assignment is not possible, data are filled using a statistical process called allocation, which uses a similar individual or household to provide a donor value. The "Allocated" section is the number of respondents who received an allocated value for a particular subject..Occupation titles and their 4-digit codes are based on the Standard Occupational Classification (SOC). The Census occupation codes for 2018 and later years are based on the 2018 revision of the SOC. To allow for the creation of the multiyear tables, occupation data in the multiyear files (prior to data year 2018) were recoded to the 2018 Census occupation codes. We recommend using caution when comparing data coded using 2018 Census occupation codes with data coded using Census occupation codes prior to data year 2018. For more information on the Census occupation code changes, please visit our website at https://www.census.gov/topics/employment /industry-occupation/guidance/code-lists.html..The 2015-2019 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution, or the margin of error associated with a median was larger than the median itself.An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.An "***" entry in the margin of error column indicates that the median...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Industry titles and their 4-digit codes are based on the North American Industry Classification System (NAICS). The Census industry codes for 2018 and later years are based on the 2017 revision of the NAICS. To allow for the creation of multiyear tables, industry data in the multiyear files (prior to data year 2018) were recoded to the 2017 Census industry codes. We recommend using caution when comparing data coded using 2017 Census industry codes with data coded using Census industry codes prior to data year 2018. For more information on the Census industry code changes, please visit our website at https://www.census.gov/topics/employment/industry-occupation/guidance/code-lists.html..When information is missing or inconsistent, the Census Bureau logically assigns an acceptable value using the response to a related question or questions. If a logical assignment is not possible, data are filled using a statistical process called allocation, which uses a similar individual or household to provide a donor value. The "Allocated" section is the number of respondents who received an allocated value for a particular subject..In 2019, methodological changes were made to the class of worker question. These changes involved modifications to the question wording, the category wording, and the visual format of the categories on the questionnaire. The format for the class of worker categories are now listed under the headings "Private Sector Employee," "Government Employee," and "Self-Employed or Other." Additionally, the category of Active Duty was added as one of the response categories under the "Government Employee" section for the mail questionnaire. For more detailed information about the 2019 changes, see the 2016 American Community Survey Content Test Report for Class of Worker located at http://www.census.gov/library/working-papers/2017/acs/2017_Martinez_01.html..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number...
Washington State, metropolitan statistical areas (MSA) and nonmetropolitan areas (NMA), 2020 OEWS is a program of the U.S. Department of Labor, Bureau of Labor Statistics (BLS). This federal-state cooperative program produces employment and wage estimates for nearly 867 occupations. The occupational employment and wage estimates are based on data collected from the OEWS survey. The survey includes employment counts, occupations and wages from more than 4,200 Washington state employers. Data from six survey panels are combined to create a sample size of more than 26,400 employers. Blanks in the data columns indicate suppressed data.
Number of persons in the labour force (employment and unemployment), unemployment rate and employment rate, by National Occupational Classification (NOC) and gender.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper measures aggregate changes in job characteristics in the U.S. from 2005 to 2015, and decomposes those changes into components representing shifts within occupations and changes in occupational employment shares. Per our title, within-occupation changes dominate, raising doubts about the ability of projections based on expected changes in the occupational composition of employment to capture the likely future of work. Indeed, our data show only weak relationships between automatability, repetitiveness, and other job attributes and changes in occupational employment. The results suggest that analysts give greater attention to within-occupation impacts of technology in assessing the future of work.
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
Dataset population: Persons aged 16 and over in employment the week before the census
Age
Age is derived from the date of birth question and is a person's age at their last birthday, at 27 March 2011. Dates of birth that imply an age over 115 are treated as invalid and the person's age is imputed. Infants less than one year old are classified as 0 years of age.
Economic activity
Economic activity relates to whether or not a person who was aged 16 and over was working or looking for work in the week before census. Rather than a simple indicator of whether or not someone was currently in employment, it provides a measure of whether or not a person was an active participant in the labour market.
A person's economic activity is derived from their 'activity last week'. This is an indicator of their status or availability for employment - whether employed, unemployed, or their status if not employed and not seeking employment. Additional information included in the economic activity classification is also derived from information about the number of hours a person works and their type of employment - whether employed or self-employed.
The census concept of economic activity is compatible with the standard for economic status defined by the International Labour Organisation (ILO). It is one of a number of definitions used internationally to produce accurate and comparable statistics on employment, unemployment and economic status.
Occupation
A person's occupation relates to their main job and is derived from either their job title or details of the activities involved in their job. This is used to assign responses to an occupation code based on the Standard Occupational Classification 2010 (SOC2010).
Sex
The classification of a person as either male or female.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset has now been discontinued following a user consultation. However figures for employment by occupation, sourced from our Annual Population Survey are available on our NOMIS website.
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
Occupations are classified using the three digit National Occupational Classification (NOC) codes. Wages include: average hourly wage rate, average weekly wage rate, median hourly wage rate and median weekly wage rate.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..When information is missing or inconsistent, the Census Bureau logically assigns an acceptable value using the response to a related question or questions. If a logical assignment is not possible, data are filled using a statistical process called allocation, which uses a similar individual or household to provide a donor value. The "Allocated" section is the number of respondents who received an allocated value for a particular subject..Occupation titles and their 4-digit codes are based on the Standard Occupational Classification (SOC). The Census occupation codes for 2018 and later years are based on the 2018 revision of the SOC. To allow for the creation of the multiyear tables, occupation data in the multiyear files (prior to data year 2018) were recoded to the 2018 Census occupation codes. We recommend using caution when comparing data coded using 2018 Census occupation codes with data coded using Census occupation codes prior to data year 2018. For more information on the Census occupation code changes, please visit our website at https://www.census.gov/topics/employment /industry-occupation/guidance/code-lists.html..In 2019, methodological changes were made to the class of worker question. These changes involved modifications to the question wording, the category wording, and the visual format of the categories on the questionnaire. The format for the class of worker categories are now listed under the headings "Private Sector Employee," "Government Employee," and "Self-Employed or Other." Additionally, the category of Active Duty was added as one of the response categories under the "Government Employee" section for the mail questionnaire. For more detailed information about the 2019 changes, see the 2016 American Community Survey Content Test Report for Class of Worker located at http://www.census.gov/library/working-papers/2017/acs/2017_Martinez_01.html..The 2016-2020 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there w...
Data on employment income statistics, by occupation unit group (5-digit code) from the National Occupational Classification (NOC) 2021, visible minority, highest level of education, work activity during the reference year, age and gender for the population aged 15 years and over who reported weeks worked and employment income in 2020 in private households in Canada, provinces and territories.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Data on class of worker by occupation unit groups (5-digit code) from the National Occupational Classification (NOC) 2021, labour force status, age and gender, for the labour force aged 15 years and over, in private households in Canada, provinces and territories, census metropolitan areas and census agglomerations with parts.
Data on employment income statistics by occupation minor group (4-digit code) from the National Occupational Classification (NOC) 2021, Indigenous identity, highest level of education, work activity during the reference year, age and gender, for the population aged 15 years and over who reported weeks worked and employment income in 2020, in private households in Canada, provinces and territories and census metropolitan areas with parts.
The Quarterly Census of Employment and Wages (QCEW) Program is a Federal-State cooperative program between the U.S. Department of Labor’s Bureau of Labor Statistics (BLS) and the California EDD’s Labor Market Information Division (LMID). The QCEW program produces a comprehensive tabulation of employment and wage information for workers covered by California Unemployment Insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. The QCEW program serves as a near census of monthly employment and quarterly wage information by 6-digit industry codes from the North American Industry Classification System (NAICS) at the national, state, and county levels. At the national level, the QCEW program publishes employment and wage data for nearly every NAICS industry. At the state and local area level, the QCEW program publishes employment and wage data down to the 6-digit NAICS industry level, if disclosure restrictions are met. In accordance with the BLS policy, data provided to the Bureau in confidence are used only for specified statistical purposes and are not published. The BLS withholds publication of Unemployment Insurance law-covered employment and wage data for any industry level when necessary to protect the identity of cooperating employers. Data from the QCEW program serve as an important input to many BLS programs. The Current Employment Statistics and the Occupational Employment Statistics programs use the QCEW data as the benchmark source for employment. The UI administrative records collected under the QCEW program serve as a sampling frame for the BLS establishment surveys. In addition, the data serve as an input to other federal and state programs. The Bureau of Economic Analysis (BEA) of the Department of Commerce uses the QCEW data as the base for developing the wage and salary component of personal income. The U.S. Department of Labor’s Employment and Training Administration (ETA) and California's EDD use the QCEW data to administer the Unemployment Insurance program. The QCEW data accurately reflect the extent of coverage of California’s UI laws and are used to measure UI revenues; national, state and local area employment; and total and UI taxable wage trends. The U.S. Department of Labor’s Bureau of Labor Statistics publishes new QCEW data in its County Employment and Wages news release on a quarterly basis. The BLS also publishes a subset of its quarterly data through the Create Customized Tables system, and full quarterly industry detail data at all geographic levels.
https://www.icpsr.umich.edu/web/ICPSR/studies/36219/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36219/terms
The Occupational Employment Statistics (OES) program conducts a semiannual survey designed to produce estimates of employment and wages for specific occupations. The OES program collects data on wage and salary workers in nonfarm establishments in order to produce employment and wage estimates for about 800 occupations. Data from self-employed persons are not collected and are not included in the estimates. The OES program produces these occupational estimates for the nation as a whole, by state, by metropolitan or nonmetropolitan area, and by industry or ownership. The Bureau of Labor Statistics produces occupational employment and wage estimates for approximately 415 industry classifications at the national level. The industry classifications correspond to the sector, 3-, 4-, and selected 5- and 6-digit North American Industry Classification System (NAICS) industrial groups. The OES program surveys approximately 200,000 establishments per panel (every six months), taking three years to fully collect the sample of 1.2 million establishments. To reduce respondent burden, the collection is on a three-year survey cycle that ensures that establishments are surveyed at most once every three years. The estimates for occupations in nonfarm establishments are based on OES data collected for the reference months of May and November. The OES survey is a federal-state cooperative program between the Bureau of Labor Statistics (BLS) and State Workforce Agencies (SWAs). BLS provides the procedures and technical support, draws the sample, and produces the survey materials, while the SWAs collect the data. SWAs from all fifty states, plus the District of Columbia, Puerto Rico, Guam, and the Virgin Islands participate in the survey. Occupational employment and wage rate estimates at the national level are produced by BLS using data from the fifty states and the District of Columbia. Employers who respond to states' requests to participate in the OES survey make these estimates possible. The OES features several arts-related occupations, particularly in the Arts, Design, Entertainment, Sports, and Media Occupations group (Standard Occupational Classification (SOC) code 27-0000). Several featured occupation groups include the following: Art and Design Workers (SOC 27-1000) Art Directors Fine Artists, including Painters, Sculptors, and Illustrators Multimedia Artists and Animators Fashion Designers Graphic Designers Set and Exhibit Designers Entertainers and Performers, Sports and Related Workers (SOC 27-2000) Actors Producers and Directors Athletes Coaches and Scouts Dancers Choreographers Music Directors and Composers Musicians and Singers Media and Communication Workers (SOC 27-3000) Radio and Television Announcers Reports and Correspondents Public Relations Specialists Writers and Authors Data for years 1997 through the latest release and can be found on the OES Data page. Also, see OES News Releases sections for current estimates and news releases. Users can analyze the data for the nation as a whole, by state, by metropolitan or nonmetropolitan area, and by industry or ownership. As well, OES Charts are available. Users may also explore data using OES Maps. If preferred, data can also be accessed via the Multi-Screen Data Search or Text Files using the OES Databases page.