Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset contains data generated in the AI DHC project.
This dataset contains synthetic fault data for decrease of the COP of a heat pump
The IEA DHC Annex XIII project “Artificial Intelligence for Failure Detection and Forecasting of Heat Production and Heat demand in District Heating Networks” is developing Artificial Intelligence (AI) methods for forecasting heat demand and heat production and is evaluating algorithms for detecting faults which can be used by interested stakeholders (operators, suppliers of DHC components and manufacturers of control devices).
See https://github.com/mathieu-vallee/ai-dhc for the models and pythons scripts used to generate the dataset
Please cite this dataset as: Vallee, M., Wissocq T., Gaoua Y., Lamaison N., Generation and Evaluation of a Synthetic Dataset to improve Fault Detection in District Heating and Cooling Systems, 2023 (under review at the Energy journal)
Disclaimer notice (IEA DHC): This project has been independently funded by the International Energy Agency Technology Collaboration Programme on District Heating and Cooling including Combined Heat and Power (IEA DHC).
Any views expressed in this publication are not necessarily those of IEA DHC.
IEA DHC can take no responsibility for the use of the information within this publication, nor for any errors or omissions it may contain.
Information contained herein have been compiled or arrived from sources believed to be reliable. Nevertheless, the authors or their organizations do not accept liability for any loss or damage arising from the use thereof. Using the given information is strictly your own responsibility.
Disclaimer Notice (Authors):
This publication has been compiled with reasonable skill and care. However, neither the authors nor the DHC Contracting Parties (of the International Energy Agency Technology Collaboration Programme on District Heating & Cooling) make any representation as to the adequacy or accuracy of the information contained herein, or as to its suitability for any particular application, and accept no responsibility or liability arising out of the use of this publication. The information contained herein does not supersede the requirements given in any national codes, regulations or standards, and should not be regarded as a substitute
Copyright:
All property rights, including copyright, are vested in IEA DHC. In particular, all parts of this publication may be reproduced, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise only by crediting IEA DHC as the original source. Republishing of this report in another format or storing the report in a public retrieval system is prohibited unless explicitly permitted by the IEA DHC Operating Agent in writing.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset is part of the following publication at the TransAI 2023 conference: R. Wallsberger, R. Knauer, S. Matzka; "Explainable Artificial Intelligence in Mechanical Engineering: A Synthetic Dataset for Comprehensive Failure Mode Analysis" DOI: http://dx.doi.org/10.1109/TransAI60598.2023.00032
This is the original XAI Drilling dataset optimized for XAI purposes and it can be used to evaluate explanations of such algortihms. The dataset comprises 20,000 data points, i.e., drilling operations, stored as rows, 10 features, one binary main failure label, and 4 binary subgroup failure modes, stored in columns. The main failure rate is about 5.0 % for the whole dataset. The features that constitute this dataset are as follows:
Process time t (s): This feature captures the full duration of each drilling operation, providing insights into efficiency and potential bottlenecks.
Main failure: This binary feature indicates if any significant failure on the drill bit occurred during the drilling process. A value of 1 flags a drilling process that encountered issues, which in this case is true when any of the subgroup failure modes are 1, while 0 indicates a successful drilling operation without any major failures.
Subgroup failures: - Build-up edge failure (215x): Represented as a binary feature, a build-up edge failure indicates the occurrence of material accumulation on the cutting edge of the drill bit due to a combination of low cutting speeds and insufficient cooling. A value of 1 signifies the presence of this failure mode, while 0 denotes its absence. - Compression chips failure (344x): This binary feature captures the formation of compressed chips during drilling, resulting from the factors high feed rate, inadequate cooling and using an incompatible drill bit. A value of 1 indicates the occurrence of at least two of the three factors above, while 0 suggests a smooth drilling operation without compression chips. - Flank wear failure (278x): A binary feature representing the wear of the drill bit's flank due to a combination of high feed rates and low cutting speeds. A value of 1 indicates significant flank wear, affecting the drilling operation's accuracy and efficiency, while 0 denotes a wear-free operation. - Wrong drill bit failure (300x): As a binary feature, it indicates the use of an inappropriate drill bit for the material being drilled. A value of 1 signifies a mismatch, leading to potential drilling issues, while 0 indicates the correct drill bit usage.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset contains data generated in the AI DHC project.
This dataset contains synthetic fault data for decrease of the COP of a heat pump
The IEA DHC Annex XIII project “Artificial Intelligence for Failure Detection and Forecasting of Heat Production and Heat demand in District Heating Networks” is developing Artificial Intelligence (AI) methods for forecasting heat demand and heat production and is evaluating algorithms for detecting faults which can be used by interested stakeholders (operators, suppliers of DHC components and manufacturers of control devices).
See https://github.com/mathieu-vallee/ai-dhc for the models and pythons scripts used to generate the dataset
Please cite this dataset as: Vallee, M., Wissocq T., Gaoua Y., Lamaison N., Generation and Evaluation of a Synthetic Dataset to improve Fault Detection in District Heating and Cooling Systems, 2023 (under review at the Energy journal)
Disclaimer notice (IEA DHC): This project has been independently funded by the International Energy Agency Technology Collaboration Programme on District Heating and Cooling including Combined Heat and Power (IEA DHC).
Any views expressed in this publication are not necessarily those of IEA DHC.
IEA DHC can take no responsibility for the use of the information within this publication, nor for any errors or omissions it may contain.
Information contained herein have been compiled or arrived from sources believed to be reliable. Nevertheless, the authors or their organizations do not accept liability for any loss or damage arising from the use thereof. Using the given information is strictly your own responsibility.
Disclaimer Notice (Authors):
This publication has been compiled with reasonable skill and care. However, neither the authors nor the DHC Contracting Parties (of the International Energy Agency Technology Collaboration Programme on District Heating & Cooling) make any representation as to the adequacy or accuracy of the information contained herein, or as to its suitability for any particular application, and accept no responsibility or liability arising out of the use of this publication. The information contained herein does not supersede the requirements given in any national codes, regulations or standards, and should not be regarded as a substitute
Copyright:
All property rights, including copyright, are vested in IEA DHC. In particular, all parts of this publication may be reproduced, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise only by crediting IEA DHC as the original source. Republishing of this report in another format or storing the report in a public retrieval system is prohibited unless explicitly permitted by the IEA DHC Operating Agent in writing.