2 datasets found
  1. Heat pump COP drop - synthetic faults

    • kaggle.com
    zip
    Updated Feb 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathieu Vallee (2023). Heat pump COP drop - synthetic faults [Dataset]. https://www.kaggle.com/datasets/mathieuvallee/ai-dhc-heatpump-cop
    Explore at:
    zip(68378018 bytes)Available download formats
    Dataset updated
    Feb 28, 2023
    Authors
    Mathieu Vallee
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This dataset contains data generated in the AI DHC project.

    This dataset contains synthetic fault data for decrease of the COP of a heat pump

    The IEA DHC Annex XIII project “Artificial Intelligence for Failure Detection and Forecasting of Heat Production and Heat demand in District Heating Networks” is developing Artificial Intelligence (AI) methods for forecasting heat demand and heat production and is evaluating algorithms for detecting faults which can be used by interested stakeholders (operators, suppliers of DHC components and manufacturers of control devices).

    See https://github.com/mathieu-vallee/ai-dhc for the models and pythons scripts used to generate the dataset

    Please cite this dataset as: Vallee, M., Wissocq T., Gaoua Y., Lamaison N., Generation and Evaluation of a Synthetic Dataset to improve Fault Detection in District Heating and Cooling Systems, 2023 (under review at the Energy journal)

    Disclaimer notice (IEA DHC): This project has been independently funded by the International Energy Agency Technology Collaboration Programme on District Heating and Cooling including Combined Heat and Power (IEA DHC).

    Any views expressed in this publication are not necessarily those of IEA DHC.

    IEA DHC can take no responsibility for the use of the information within this publication, nor for any errors or omissions it may contain.

    Information contained herein have been compiled or arrived from sources believed to be reliable. Nevertheless, the authors or their organizations do not accept liability for any loss or damage arising from the use thereof. Using the given information is strictly your own responsibility.

    Disclaimer Notice (Authors):

    This publication has been compiled with reasonable skill and care. However, neither the authors nor the DHC Contracting Parties (of the International Energy Agency Technology Collaboration Programme on District Heating & Cooling) make any representation as to the adequacy or accuracy of the information contained herein, or as to its suitability for any particular application, and accept no responsibility or liability arising out of the use of this publication. The information contained herein does not supersede the requirements given in any national codes, regulations or standards, and should not be regarded as a substitute

    Copyright:

    All property rights, including copyright, are vested in IEA DHC. In particular, all parts of this publication may be reproduced, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise only by crediting IEA DHC as the original source. Republishing of this report in another format or storing the report in a public retrieval system is prohibited unless explicitly permitted by the IEA DHC Operating Agent in writing.

  2. Explainable AI (XAI) Drilling Dataset

    • kaggle.com
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raphael Wallsberger (2023). Explainable AI (XAI) Drilling Dataset [Dataset]. https://www.kaggle.com/datasets/raphaelwallsberger/xai-drilling-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Raphael Wallsberger
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset is part of the following publication at the TransAI 2023 conference: R. Wallsberger, R. Knauer, S. Matzka; "Explainable Artificial Intelligence in Mechanical Engineering: A Synthetic Dataset for Comprehensive Failure Mode Analysis" DOI: http://dx.doi.org/10.1109/TransAI60598.2023.00032

    This is the original XAI Drilling dataset optimized for XAI purposes and it can be used to evaluate explanations of such algortihms. The dataset comprises 20,000 data points, i.e., drilling operations, stored as rows, 10 features, one binary main failure label, and 4 binary subgroup failure modes, stored in columns. The main failure rate is about 5.0 % for the whole dataset. The features that constitute this dataset are as follows:

    • ID: Every data point in the dataset is uniquely identifiable, thanks to the ID feature. This ensures traceability and easy referencing, especially when analyzing specific drilling scenarios or anomalies.
    • Cutting speed vc (m/min): The cutting speed is a pivotal parameter in drilling, influencing the efficiency and quality of the drilling process. It represents the speed at which the drill bit's cutting edge moves through the material.
    • Spindle speed n (1/min): This feature captures the rotational speed of the spindle or drill bit, respectively.
    • Feed f (mm/rev): Feed denotes the depth the drill bit penetrates into the material with each revolution. There is a balance between speed and precision, with higher feeds leading to faster drilling but potentially compromising hole quality.
    • Feed rate vf (mm/min): The feed rate is a measure of how quickly the material is fed to the drill bit. It is a determinant of the overall drilling time and influences the heat generated during the process.
    • Power Pc (kW): The power consumption during drilling can be indicative of the efficiency of the process and the wear state of the drill bit.
    • Cooling (%): Effective cooling is paramount in drilling, preventing overheating and reducing wear. This ordinal feature captures the cooling level applied, with four distinct states representing no cooling (0%), partial cooling (25% and 50%), and high to full cooling (75% and 100%).
    • Material: The type of material being drilled can significantly influence the drilling parameters and outcomes. This dataset encompasses three primary materials: C45K hot-rolled heat-treatable steel (EN 1.0503), cast iron GJL (EN GJL-250), and aluminum-silicon (AlSi) alloy (EN AC-42000), each presenting its unique challenges and considerations. The three materials are represented as “P (Steel)” for C45K, “K (Cast Iron)” for cast iron GJL and “N (Non-ferrous metal)” for AlSi alloy.
    • Drill Bit Type: Different materials often require specialized drill bits. This feature categorizes the type of drill bit used, ensuring compatibility with the material and optimizing the drilling process. It consists of three categories, which are based on the DIN 1836: “N” for C45K, “H” for cast iron and “W” for AlSi alloy [5].
    • Process time t (s): This feature captures the full duration of each drilling operation, providing insights into efficiency and potential bottlenecks.

    • Main failure: This binary feature indicates if any significant failure on the drill bit occurred during the drilling process. A value of 1 flags a drilling process that encountered issues, which in this case is true when any of the subgroup failure modes are 1, while 0 indicates a successful drilling operation without any major failures.

    Subgroup failures: - Build-up edge failure (215x): Represented as a binary feature, a build-up edge failure indicates the occurrence of material accumulation on the cutting edge of the drill bit due to a combination of low cutting speeds and insufficient cooling. A value of 1 signifies the presence of this failure mode, while 0 denotes its absence. - Compression chips failure (344x): This binary feature captures the formation of compressed chips during drilling, resulting from the factors high feed rate, inadequate cooling and using an incompatible drill bit. A value of 1 indicates the occurrence of at least two of the three factors above, while 0 suggests a smooth drilling operation without compression chips. - Flank wear failure (278x): A binary feature representing the wear of the drill bit's flank due to a combination of high feed rates and low cutting speeds. A value of 1 indicates significant flank wear, affecting the drilling operation's accuracy and efficiency, while 0 denotes a wear-free operation. - Wrong drill bit failure (300x): As a binary feature, it indicates the use of an inappropriate drill bit for the material being drilled. A value of 1 signifies a mismatch, leading to potential drilling issues, while 0 indicates the correct drill bit usage.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Mathieu Vallee (2023). Heat pump COP drop - synthetic faults [Dataset]. https://www.kaggle.com/datasets/mathieuvallee/ai-dhc-heatpump-cop
Organization logo

Heat pump COP drop - synthetic faults

Machine Learning for Fault Detection in District Heating and Cooling systems

Explore at:
zip(68378018 bytes)Available download formats
Dataset updated
Feb 28, 2023
Authors
Mathieu Vallee
License

Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically

Description

This dataset contains data generated in the AI DHC project.

This dataset contains synthetic fault data for decrease of the COP of a heat pump

The IEA DHC Annex XIII project “Artificial Intelligence for Failure Detection and Forecasting of Heat Production and Heat demand in District Heating Networks” is developing Artificial Intelligence (AI) methods for forecasting heat demand and heat production and is evaluating algorithms for detecting faults which can be used by interested stakeholders (operators, suppliers of DHC components and manufacturers of control devices).

See https://github.com/mathieu-vallee/ai-dhc for the models and pythons scripts used to generate the dataset

Please cite this dataset as: Vallee, M., Wissocq T., Gaoua Y., Lamaison N., Generation and Evaluation of a Synthetic Dataset to improve Fault Detection in District Heating and Cooling Systems, 2023 (under review at the Energy journal)

Disclaimer notice (IEA DHC): This project has been independently funded by the International Energy Agency Technology Collaboration Programme on District Heating and Cooling including Combined Heat and Power (IEA DHC).

Any views expressed in this publication are not necessarily those of IEA DHC.

IEA DHC can take no responsibility for the use of the information within this publication, nor for any errors or omissions it may contain.

Information contained herein have been compiled or arrived from sources believed to be reliable. Nevertheless, the authors or their organizations do not accept liability for any loss or damage arising from the use thereof. Using the given information is strictly your own responsibility.

Disclaimer Notice (Authors):

This publication has been compiled with reasonable skill and care. However, neither the authors nor the DHC Contracting Parties (of the International Energy Agency Technology Collaboration Programme on District Heating & Cooling) make any representation as to the adequacy or accuracy of the information contained herein, or as to its suitability for any particular application, and accept no responsibility or liability arising out of the use of this publication. The information contained herein does not supersede the requirements given in any national codes, regulations or standards, and should not be regarded as a substitute

Copyright:

All property rights, including copyright, are vested in IEA DHC. In particular, all parts of this publication may be reproduced, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise only by crediting IEA DHC as the original source. Republishing of this report in another format or storing the report in a public retrieval system is prohibited unless explicitly permitted by the IEA DHC Operating Agent in writing.

Search
Clear search
Close search
Google apps
Main menu