The U.S. Army Corps of Engineers Geospatial Open Data provides shared and trusted USACE geospatial data, services and applications for use by our partner agencies and the public.
United States Army Corps of Engineers (USACE) Sea Level Analysis ToolThe Sea Level Analysis Tool (SLAT) is a user-friendly web application that enables users to visualize observed sea level data, compare observations to projected sea level change, and estimate when tidal and extreme water levels will intersect with elevation thresholds related to local infrastructure (e.g., roads, power generating facilities, dunes). SLAT facilitates the application of United States Army Corps of Engineers (USACE) Engineer Regulation (ER) 1100-2-8162 and Engineering Pamphlet (EP) 1100-2-1, which provide guidance for incorporating sea level change into USACE projects.
The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updatesTitle: Office of the State Engineer Open Data Site - WATER DATAItem type: URLSummary: Office of the State Engineer Open Data Site - with Points of Diversion, Adjudications, ISC Regional Water Planning Areas, Administrative BoundariesNotes: Prepared by: Link uploaded by EMcRae_NMCDCSource: This is a web map interface provided and maintained by the Office of the State Engineer. Feature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=0a94ca44ed994a48b4e9ceb75809be2dUID: 68, 26Data Requested: availability of water, and soil water and land resourcesMethod of Acquisition: This map is publicly available. The Office of the State Engineers GIS team is friendly and there to offer assistance if needed. Date Acquired: Map identified and linked in May of 2022Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 3, 5Tags: PENDING
800+ GIS Engineers with 25+ years of experience in geospatial, We provide following as Advance Geospatial Services:
Analytics (AI)
Change detection
Feature extraction
Road assets inventory
Utility assets inventory
Map data production
Geodatabase generation
Map data Processing /Classifications
Contour Map Generation
Analytics (AI)
Change Detection
Feature Extraction
Imagery Data Processing
Ortho mosaic
Ortho rectification
Digital Ortho Mapping
Ortho photo Generation
Analytics (Geo AI)
Change Detection
Map Production
Web application development
Software testing
Data migration
Platform development
AI-Assisted Data Mapping Pipeline AI models trained on millions of images are used to predict traffic signs, road markings , lanes for better and faster data processing
Our Value Differentiator
Experience & Expertise -More than Two decade in Map making business with 800+ GIS expertise -Building world class products with our expertise service division & skilled project management -International Brand “Mappls” in California USA, focused on “Advance -Geospatial Services & Autonomous drive Solutions”
Value Added Services -Production environment with continuous improvement culture -Key metrics driven production processes to align customer’s goals and deliverables -Transparency & visibility to all stakeholder -Technology adaptation by culture
Flexibility -Customer driven resource management processes -Flexible resource management processes to ramp-up & ramp-down within short span of time -Robust training processes to address scope and specification changes -Priority driven project execution and management -Flexible IT environment inline with critical requirements of projects
Quality First -Delivering high quality & cost effective services -Business continuity process in place to address situation like Covid-19/ natural disasters -Secure & certified infrastructure with highly skilled resources and management -Dedicated SME team to ensure project quality, specification & deliverables
Link to Engineering Design Documents for Sioux Falls, South Dakota.
This data set contains geolocation information of the infrastructure locations for the SnowEx20 Intensive Observation Period (IOP) and Time Series (TS) campaigns. Available scientific infrastructure locations in this data set are tower and sensor locations, aircraft flight lines, planned and actual snow pit locations, and time-lapse camera locations. Additionally, this data set contains areal snow depth and tree density classification matrix over the Grand Mesa, CO study area.
Polygons showing USACE Civil Works District boundaries. This dataset was digitized from the NRCS Watershed Boundary Dataset (WBD). Where districts follow administrative boundaries, such as County and State lines, National Atlas and Census datasets were used. USACE District GIS POCs also submitted data to incorporate into this dataset. This dataset has been simplified +/- 30 feet to reduce file size and speed up drawing time. 05/05/20 - Update to show new LRC boundary. Minor change between LRL and LRH. 07/31/24 - Update to show new SAA Caribbean District.
The River Management Program provides technical and regulatory assistance for those activities that involve construction or excavation in rivers and streams. The River Management Engineers issue stream alteration permits and provide river diagnostics, alternatives analysis, project design, and construction inspection for instream work. They also provide technical and regulatory assistance for emergency and next-flood protective measures during flood recovery operations.
This container has the shapefiles signs, intersection signals, and sign post. Please contact the City of Gillette GIS Division at (307) 686-5364 or gisadmin@gillettewy.gov for more information. last updated: 2025-07-20 17:07:23.617779
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tool and data set of road networks for 80 of the most populated urban areas in the world. The data consist of a graph edge list for each city and two corresponding GIS shapefiles (i.e., links and nodes).Make your own data with our ArcGIS, QGIS, and python tools available at: http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646
https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms
Question Paper Solutions of chapter GIS of GIS & Remote Sensing, 8th Semester , Civil Engineering
Levee stations, usually in feet but in some cases miles, snapped to 2017 Delta levee centerlines (derived from the 2017 Delta LiDAR). Base source for station locations are surveyed field markers on the levees or distance-derived CAD files, in either case as supplied by local maintaining agency's engineers. DWR collected station location data and snapped the stations into the levee centerline file from 2012. After updated levee centerlines were created, the existing points were snapped to the new lines. So there is some small difference between the supplied station locations, previous station locations and these station locations. In some cases, multiple series of stations exist for a district, generally associated with distinct waterways. Also, district levees may be demarked in feet or in miles. The label fields are simply cartographic support, the label data are identical in all cases, but are provided to support fast labeling at more infrequent intervals as needed. Stationing is not as simple as it may seem. In some cases, multiple sets of stationing exist for a district's levees (see Sherman Island for example). What this dataset intends to represent is the current stationing used by District engineers for that District on levee maintenance and improvement projects. As changes are made to the stationing, and the new stationing data become available to the Levee Program, they will be added to this database. Some islands also have separate groups of stations for various parts of the district. This version is current as of 03/24/2020. Source of the original levee stationing is DWR Delta Levees Program, compiled from data provided by internal files, from CSU Chico State, MBK Engineers, KSN Engineers, Siegfried Engineers, Malani & Associates, Green Mountain Engineers, and DCC Engineers. Processing work done by CA DWR, Division of Engineering, Geodetic Branch, Geospatial Data Support Section, specifically by Arina Ushakova (Research Data Analyst I), and initial QC by Joel Dudas (Senior Engineer, Water Resources).
https://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/
A dataset that explores Green Card sponsorship trends, salary data, and employer insights for forest engineering (gis) in the U.S.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
DescriptionFeatures in this dataset represent CDOT Engineering Regions for the State of Colorado. Features are represented by polygon geographic shapes.
Last Update
2025
Update FrequencyAs needed
Data Owner
Division of Transportation Development
Data Contact
GIS Support Unit
Collection Method
Projection
NAD83 / UTM zone 13N
Coverage Area
Statewide
Temporal
Disclaimer/Limitations
There are no restrictions and legal prerequisites for using the data set. The State of Colorado assumes no liability relating to the completeness, correctness, or fitness for use of this data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Filtered global GEBCO 2014 bathymetry/topography raster, intended for qmesh tutorials.
Dataset created and maintained by the Summit County Engineer showing engineering stations within the Engineer's jurisdiction.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IIt includes data that were used in the manuscript(A Geospatial and Binomial Logistic Regression Model to Prioritize Sampling for Per- and Polyfluorinated Alkyl Substances (PFAS) in Public Water Systems.) It includes layers that were created in online ArcGIS pro in manuscript and result of regression model that was done in the manuscript.
This data set contains reduced-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area 156.15° W - 157.07° W, 71.15° N - 71.41° N) and the Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitialGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats.
Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format).
The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest.
Data are available either via FTP or on CD-ROM.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Planning, Engineering & Permitting - GIS Mapping files
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Building Information Modeling (BIM) software market, valued at $8.72 billion in 2025, is experiencing robust growth, projected to expand at a compound annual growth rate (CAGR) of 13.90% from 2025 to 2033. This expansion is fueled by several key factors. Increasing adoption of digital technologies within the architecture, engineering, and construction (AEC) industries is a primary driver. BIM software offers significant advantages in improving project planning, collaboration, and cost management, leading to increased efficiency and reduced errors. The rising complexity of construction projects globally, coupled with stringent regulatory requirements for building safety and sustainability, further necessitates the use of advanced BIM solutions. Growth is also being driven by the increasing availability of cloud-based BIM platforms, which enhance accessibility and collaboration among stakeholders. The market is segmented by solution type (software and services), application (commercial, residential, industrial, and others), and end-user (contractors, architects, facilities managers, and others). North America currently holds a significant market share, driven by early adoption and robust technological infrastructure; however, Asia Pacific is projected to witness substantial growth due to rapid urbanization and infrastructure development. The competitive landscape is marked by both established players like Autodesk, Bentley Systems, and Nemetschek, and emerging innovative companies. These companies are continuously investing in research and development to enhance functionalities, integrate new technologies like artificial intelligence and machine learning, and develop user-friendly interfaces to cater to a wider user base. While the market faces some restraints such as the high initial investment costs of BIM software and the need for skilled professionals, the long-term benefits and increasing awareness of its advantages are expected to outweigh these challenges. The market's future trajectory is positive, with continued growth driven by technological advancements, industry adoption, and the overarching need for efficient and sustainable construction practices. The projected market size in 2033 will significantly surpass the 2025 value, reflecting the considerable growth potential of the BIM software market. Recent developments include: July 2024 - Esri and Autodesk have deepened their partnership to enhance data interoperability between Geographic Information Systems (GIS) and Building Information Modeling (BIM), with ArcGIS Pro now offering direct-read support for BIM and CAD elements from Autodesk's tools. This collaboration aims to integrate GIS and BIM workflows more seamlessly, potentially transforming how architects, engineers, and construction professionals work with geospatial and design data in the AEC industry., June 2024 - Hexagon, the Swedish technology giant, has acquired Voyansi, a Cordoba-based company specializing in Building Information Modelling (BIM), to enhance its portfolio of BIM solutions. This acquisition not only strengthens Hexagon's position in the global BIM market but also recognizes the talent in Argentina's tech sector, particularly in Córdoba, where Voyansi has been developing design, architecture, and engineering services for global construction markets for the past 15 years., April 2024 - Hyundai Engineering has partnered with Trimble Solution Korea to co-develop a Building Information Modeling (BIM) process management program, aiming to enhance construction site productivity through advanced 3D modeling technology. This collaboration highlights the growing importance of BIM in the construction industry, with the potential to optimize steel structure and precast concrete construction management, shorten project timelines, and reduce costs compared to traditional construction methods.. Key drivers for this market are: Governmental Mandates and International Standards Encouraging BIM Adoption, Boosting Project Performance and Productivity. Potential restraints include: Governmental Mandates and International Standards Encouraging BIM Adoption, Boosting Project Performance and Productivity. Notable trends are: Government Mandates Fueling BIM Growth.
The U.S. Army Corps of Engineers Geospatial Open Data provides shared and trusted USACE geospatial data, services and applications for use by our partner agencies and the public.