Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
(:unav)...........................................
Facebook
Twitter[From The Landmap Project: Introduction, "http://www.landmap.ac.uk/background/intro.html"]
A joint project to provide orthorectified satellite image mosaics of Landsat,
SPOT and ERS radar data and a high resolution Digital Elevation Model for the
whole of the UK. These data will be in a form which can easily be merged with
other data, such as road networks, so that any user can quickly produce a
precise map of their area of interest.
Predominately aimed at the UK academic and educational sectors these data and
software are held online at the Manchester University super computer facility
where users can either process the data remotely or download it to their local
network.
Please follow the links to the left for more information about the project or
how to obtain data or access to the radar processing system at MIMAS. Please
also refer to the MIMAS spatial-side website,
"http://www.mimas.ac.uk/spatial/", for related remote sensing materials.
Facebook
TwitterThe landscape Change Program is an archive of paired historic and recent photos of Vermont landscapes. The program is funded by the National Science Foundation to digitally document how the Vermont landscape has changed over time.
The landscape of Vermont has changed considerably since it first emerged from the ocean during the collision of huge tectonic plates. For a time, geologically speaking, sediments that became Vermont had been in a warm tropical sea at the equator. Slowly they had moved north. Mountains were born and began to erode. Massive glaciers more than a kilometer thick blanketed Vermont. Soon after the glaciers left, Native Americans inhabited the area. Colonial settlers moved in, clearing the land and leaving just a quarter of the total area forested, making way for agriculture, then sheep, then dairy. Hundreds of hill farms sprang up and many were later abandoned as western soils called. Now the Vermont landscape is mostly forested and yet increasingly developed. The face of Vermont has changed dramatically over time. The shared appreciation and acknowledgement of this rich landscape history is the goal of this project.
[Summary provided by the University of Vermont.]
Facebook
TwitterThe PALEOMAP project produces paleogreographic maps illustrating the Earth's plate tectonic, paleogeographic, climatic, oceanographic and biogeographic development from the Precambrian to the Modern World and beyond.
A series of digital data sets has been produced consisting of plate tectonic data, climatically sensitive lithofacies, and biogeographic data. Software has been devloped to plot maps using the PALEOMAP plate tectonic model and digital geographic data sets: PGIS/Mac, Plate Tracker for Windows 95, Paleocontinental Mapper and Editor (PCME), Earth System History GIS (ESH-GIS), PaleoGIS(uses ArcView), and PALEOMAPPER.
Teaching materials for educators including atlases, slide sets, VHS animations, JPEG images and CD-ROM digital images.
Some PALEOMAP products include: Plate Tectonic Computer Animation (VHS) illustrating motions of the continents during the last 850 million years.
Paleogeographic Atlas consisting of 20 full color paleogeographic maps. (Scotese, 1997).
Paleogeographic Atlas Slide Set (35mm)
Paleogeographic Digital Images (JPEG, PC/Mac diskettes)
Paleogeographic Digital Image Archive (EPS, PC/Mac Zip disk) consists of the complete digital archive of original digital graphic files used to produce plate tectonic and paleographic maps for the Paleographic Atlas.
GIS software such as PaleoGIS and ESH-GIS.
Facebook
TwitterThis is a PDF format map of the country, as released by the United Nations.
Facebook
TwitterThis is a PDF format map of the country, as released by the United Nations.
Facebook
TwitterForest Ecosystem Dynamics (FED) Project Spatial Data Archive: Elevation Contours for the Northern Experimental Forest
The Biospheric Sciences Branch (formerly Earth Resources Branch) within the Laboratory for Terrestrial Physics at NASA's Goddard Space Flight Center and associated University investigators are involved in a research program entitled Forest Ecosystem Dynamics (FED) which is fundamentally concerned with vegetation change of forest ecosystems at local to regional spatial scales (100 to 10,000 meters) and temporal scales ranging from monthly to decadal periods (10 to 100 years). The nature and extent of the impacts of these changes, as well as the feedbacks to global climate, may be addressed through modeling the interactions of the vegetation, soil, and energy components of the boreal ecosystem.
The Howland Forest research site lies within the Northern Experimental Forest of International Paper. The natural stands in this boreal-northern hardwood transitional forest consist of spruce-hemlock-fir, aspen-birch, and hemlock-hardwood mixtures. The topography of the region varies from flat to gently rolling, with a maximum elevation change of less than 68 m within 10 km. Due to the region's glacial history, soil drainage classes within a small area may vary widely, from well drained to poorly drained. Consequently, an elaborate patchwork of forest communities has developed, supporting exceptional local species diversity.
This data layer contains elevation contours for the 10 X 10 km area located within the Northern Experimental Forest. Contours and elevation benchmarks from the United States Geological Survey 7.5" Maine quadsheets for Howland and Lagrange were digitized, and elevation data in feet were added.
The data was revised by projecting it into NAD83 datum by L. Prihodko at NASA Goddard Space Flight Center. Although the data was received at GSFC with an undeclared datum, it was assumed to be in North American Datum of 1927 (NAD27) because the original map from which the data were digitized was in NAD27. Also, the data fit exactly within the bounds of the FED site grid (even Universal Transverse Mercator projections) in NAD27. After projecting the data into NAD83 it was checked to insure that the change was a linear translation of the coordinates.
Facebook
TwitterThe data set consists of 1:25,000 topographic maps covering Lutzow-Holm Bukt coast and major bare rock areas and inland mountains. The contour interval is 10 m. Maps of Lutzow-Holm Bukt coast were published in 1965 - 1986, and those of Prince Olav coast in 1974 - 1985. Total number of map sheets for these areas is 61. Maps of Yamato Mountains were published in 1980 with 11 sheets. All maps have been digitized into raster data and are available with TIFF format.
Facebook
TwitterThis 1 km resolution 41-class land cover classification map of South America was produced from 1-15 km National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data over the time period 1987 through 1991.
These data were originally acquired from Woods Hole Research Center ("http://terra.whrc.org/science/tropfor/setLBA.htm") and were modified as described in documentation provided when data are ordered from EOS-WEBSTER.
Digital images of these data are also available from the EOS-WEBSTER Image Gallary. Please see the Data Tab at the following URL: "http://eos-earthdata.sr.unh.edu/". These images can be downloaded as JPEGs and used directly in a document or printed.
Facebook
TwitterForest Ecosystem Dynamics (FED) Project Spatial Data Archive: Digital Elevation Model for the Northern Experimental Forest
The Biospheric Sciences Branch (formerly Earth Resources Branch) within the Laboratory for Terrestrial Physics at NASA's Goddard Space Flight Center and associated University investigators are involved in a research program entitled Forest Ecosystem Dynamics (FED) which is fundamentally concerned with vegetation change of forest ecosystems at local to regional spatial scales (100 to 10,000 meters) and temporal scales ranging from monthly to decadal periods (10 to 100 years). The nature and extent of the impacts of these changes, as well as the feedbacks to global climate, may be addressed through modeling the interactions of the vegetation, soil, and energy components of the boreal ecosystem.
The Howland Forest research site lies within the Northern Experimental Forest of International Paper. The natural stands in this boreal-northern hardwood transitional forest consist of spruce-hemlock-fir, aspen-birch, and hemlock-hardwood mixtures. The topography of the region varies from flat to gently rolling, with a maximum elevation change of less than 68 m within 10 km. Due to the region's glacial history, soil drainage classes within a small area may vary widely, from well drained to poorly drained. Consequently, an elaborate patchwork of forest communities has developed, supporting exceptional local species diversity.
Howland DEM is a digital elevation model of the 10km X 10km area located within the Northern Experimental Forest. The contours and elevation benchmarks from the United States Geological Survey 7.5'quadsheets for Howland and Lagrange were digitized and then rasterized into a 10m X 10m grid.
The data was revised by projecting it into NAD83 datum by L. Prihodko at NASA Goddard Space Flight Center. Although the data was received at GSFC with an undeclared datum, it was assumed to be in North American Datum of 1927 (NAD27) because the original map from which the data were digitized was in NAD27. Also, the data fit exactly within the bounds of the FED site grid (even Universal Transverse Mercator projections) in NAD27. After projecting the data into NAD83 it was checked to insure that the change was a linear translation of the coordinates only and that the gridded values did not undergo any changes.
Facebook
TwitterForest Ecosystem Dynamics (FED) Project Spatial Data Archive: Global Positioning System Ground Control Points and Field Site Locations from 1993
The Biospheric Sciences Branch (formerly Earth Resources Branch) within the Laboratory for Terrestrial Physics at NASA's Goddard Space Flight Center and associated University investigators are involved in a research program entitled Forest Ecosystem Dynamics (FED) which is fundamentally concerned with vegetation change of forest ecosystems at local to regional spatial scales (100 to 10,000 meters) and temporal scales ranging from monthly to decadal periods (10 to 100 years). The nature and extent of the impacts of these changes, as well as the feedbacks to global climate, may be addressed through modeling the interactions of the vegetation, soil, and energy components of the boreal ecosystem.
The Howland Forest research site lies within the Northern Experimental Forest of International Paper. The natural stands in this boreal-northern hardwood transitional forest consist of spruce-hemlock-fir, aspen-birch, and hemlock-hardwood mixtures. The topography of the region varies from flat to gently rolling, with a maximum elevation change of less than 68 m within 10 km. Due to the region's glacial history, soil drainage classes within a small area may vary widely, from well drained to poorly drained. Consequently, an elaborate patchwork of forest communities has developed, supporting exceptional local species diversity.
This data set is in ARC/INFO export format and contains Global Positioning Systems (GPS) ground control points in and around the International Paper Experimental Forest, Howland ME. A Trimble roving receiver placed on the top of the cab of a pick-up truck and leveled was used to collect position information at selected sites (road intersections) across the FED project study area. The field collected data was differentially corrected using base files measured by a Trimble Community Base Station. The Community Base Station is run by the Forestry Department at the University of Maine, Orono (UMO). The base station was surveyed by the Surveying Engineering Department at UMO using classical geodetic methods. Trimble software was used to produce coordinates in Universal Transverse Mercator (UTM) WGS84. Coordinates were adjusted based on field notes. All points were collected during December 1993 and differentially corrected.
Facebook
TwitterContents: gridded sea surface heights above geoid; dynamic topography is the sum of sea level anomaly (SLA) and mean dynamic topography (MDT, Rio05 here)
Use: study of the general circulation (ocean gyres ...)
Global gridded data (1/3°x1/3° on a Mercator grid), available in near-real time and in delayed time in NetCDF format.
In delayed time, two types of products are available: - "Ref" (Reference) series: homogeneous datasets based on two satellites (Topex/Poseidon, Jason-1 + ERS, Envisat) with the same groundtrack. Sampling is stable in time. - "Upd" (Updated) series: up-to-date datasets with up to four satellites at a given time (adding GFO and/or Topex/Poseidon on its new orbit). Sampling and Long Wavelength Errors determination are improved, but quality of the series is not homogeneous.
Absolute geostrophic velocities are also available for gridded merged data.
Regional products with an improved quality are available in local areas ("http://www.aviso.oceanobs.com/html/donnees/produits/hauteurs/regional/")
Facebook
TwitterIce sheet elevation data are collected over Greenland with NASA's Airborne Topographic Mapper (ATM). The data are known as the Greenland Airborne Precision Elevation Survey (GRAPES).
The ATM is a laser altimeter flown on NASA aircraft. The Global Positioning System (GPS) of orbiting satellites is used to navigate the aircraft's autopilot in order to provide precise location information for repeat coverage.
The data are collected yearly starting in 1991. The GRAPES data currently available include results from the 1993 mission, with other data to be included soon. Flight trajectory data are available for all years beginning with 1993.
The data collected by ATM form baseline measurements of ice elevation of Greenland. The data will be used in conjunction with the future elevation measurements of the Geoscience Laser Altimeter System (GLAS) instrument onboard the ICESat satellite (to be launched in 2001). Changes in ice sheet elevation measurements provide a better understanding of glacial changes that may be due to global climate change.
For more information, see http://atm.wff.nasa.gov/
[This summary was derived from the pages of the Observational Science Branch at NASA Wallops Flight Facility. The Observational Science Branch is a division of NASA's Goddard Space Flight Center Laboratory for Hydrospheric Processes.]
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
(:unav)...........................................