Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Exports of maps, hydrographic or similar charts (printed) to United Kingdom was US$551.04 Thousand during 2024, according to the United Nations COMTRADE database on international trade. United States Exports of maps, hydrographic or similar charts (printed) to United Kingdom - data, historical chart and statistics - was last updated on March of 2025.
PLEASE NOTE: This data product is not available in Shapefile format or KML at https://naturalengland-defra.opendata.arcgis.com/datasets/Defra::living-england-habitat-map-phase-4/about, as the data exceeds the limits of these formats. Please select an alternative download format.This data product is also available for download in multiple formats via the Defra Data Services Platform at https://environment.data.gov.uk/explore/4aa716ce-f6af-454c-8ba2-833ebc1bde96?download=true.The Living England project, led by Natural England, is a multi-year programme delivering a satellite-derived national habitat layer in support of the Environmental Land Management (ELM) System and the Natural Capital and Ecosystem Assessment (NCEA) Pilot. The project uses a machine learning approach to image classification, developed under the Defra Living Maps project (SD1705 – Kilcoyne et al., 2017). The method first clusters homogeneous areas of habitat into segments, then assigns each segment to a defined list of habitat classes using Random Forest (a machine learning algorithm). The habitat probability map displays modelled likely broad habitat classifications, trained on field surveys and earth observation data from 2021 as well as historic data layers. This map is an output from Phase IV of the Living England project, with future work in Phase V (2022-23) intending to standardise the methodology and Phase VI (2023-24) to implement the agreed standardised methods.The Living England habitat probability map will provide high-accuracy, spatially consistent data for a range of Defra policy delivery needs (e.g. 25YEP indicators and Environment Bill target reporting Natural capital accounting, Nature Strategy, ELM) as well as external users. As a probability map, it allows the extrapolation of data to areas that we do not have data. These data will also support better local and national decision making, policy development and evaluation, especially in areas where other forms of evidence are unavailable. Process Description: A number of data layers are used to inform the model to provide a habitat probability map of England. The main sources layers are Sentinel-2 and Sentinel-1 satellite data from the ESA Copericus programme. Additional datasets were incorporated into the model (as detailed below) to aid the segmentation and classification of specific habitat classes. Datasets used:Agri-Environment Higher Level Stewardship (HLS) Monitoring, British Geological Survey Bedrock Mapping 1:50k, Coastal Dune Geomatics Mapping Ground Truthing, Crop Map of England (RPA), Dark Peak Bog State Survey, Desktop Validation and Manual Points, EA Integrated Height Model 10m, EA Saltmarsh Zonation and Extent, Field Unit NEFU, Living England Collector App NEFU/EES, Long Term Monitoring Network (LTMN), Lowland Heathland Survey, National Forest Inventory (NFI), National Grassland Survey, National Plant Monitoring Scheme, NEFU Surveys, Northumberland Border Mires, OS Vector Map District , Priority Habitats Inventory (PHI) B Button, European Space Agency (ESA) Sentinel-1 and Sentinel-2 , Space2 Eye Lens: Ainsdale NNR, Space2 Eye Lens: State of the Bog Bowland Survey, Space2 Eye Lens: State of the Bog Dark Peak Condition Survey, Space2 Eye Lens: State of the Bog (MMU) Mountain Hare Habitat Survey Dark Peak, Uplands Inventory, West Pennines Designation NVC Survey, Wetland Inventories, WorldClim - Global Climate DataFull metadata can be viewed on data.gov.uk.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Living England project, led by Natural England, is a multi-year programme delivering a satellite-derived national habitat layer in support of the Environmental Land Management (ELM) System and the Natural Capital and Ecosystem Assessment (NCEA) Pilot. The project uses a machine learning approach to image classification, developed under the Defra Living Maps project (SD1705 – Kilcoyne et al., 2017). The method first clusters homogeneous areas of habitat into segments, then assigns each segment to a defined list of habitat classes using Random Forest (a machine learning algorithm). The habitat probability map displays modelled likely broad habitat classifications, trained on field surveys and earth observation data from 2021 as well as historic data layers. This map is an output from Phase IV of the Living England project, with future work in Phase V (2022-23) intending to standardise the methodology and Phase VI (2023-24) to implement the agreed standardised methods. The Living England habitat probability map will provide high-accuracy, spatially consistent data for a range of Defra policy delivery needs (e.g. 25YEP indicators and Environment Bill target reporting Natural capital accounting, Nature Strategy, ELM) as well as external users. As a probability map, it allows the extrapolation of data to areas that we do not have data. These data will also support better local and national decision making, policy development and evaluation, especially in areas where other forms of evidence are unavailable. Process Description: A number of data layers are used to inform the model to provide a habitat probability map of England. The main sources layers are Sentinel-2 and Sentinel-1 satellite data from the ESA Copericus programme. Additional datasets were incorporated into the model (as detailed below) to aid the segmentation and classification of specific habitat classes. Datasets used: Agri-Environment Higher Level Stewardship (HLS) Monitoring, British Geological Survey Bedrock Mapping 1:50k, Coastal Dune Geomatics Mapping Ground Truthing, Crop Map of England (RPA), Dark Peak Bog State Survey, Desktop Validation and Manual Points, EA Integrated Height Model 10m, EA Saltmarsh Zonation and Extent, Field Unit NEFU, Living England Collector App NEFU/EES, Long Term Monitoring Network (LTMN), Lowland Heathland Survey, National Forest Inventory (NFI), National Grassland Survey, National Plant Monitoring Scheme, NEFU Surveys, Northumberland Border Mires, OS Vector Map District , Priority Habitats Inventory (PHI) B Button, European Space Agency (ESA) Sentinel-1 and Sentinel-2 , Space2 Eye Lens: Ainsdale NNR, Space2 Eye Lens: State of the Bog Bowland Survey, Space2 Eye Lens: State of the Bog Dark Peak Condition Survey, Space2 Eye Lens: State of the Bog (MMU) Mountain Hare Habitat Survey Dark Peak, Uplands Inventory, West Pennines Designation NVC Survey, Wetland Inventories, WorldClim - Global Climate Data Attribution statement: "Contains data supplied by ©Natural England ©Centre for Ecology and Hydrology, Natural England Licence No. 2011/052 British Geological Survey © NERC. All rights reserved., © Environment Agency copyright and/or database right 2015. All rights reserved. ©Natural England © Crown copyright and database right [2014], © Rural Payments Agency, © Natural England © 1995–2020 Esri, Contains Environment Agency information © Environment Agency and/or database rights. Some information used in this product is © Bluesky International Ltd/Getmapping PLC. Contains freely available data supplied by Natural Environment Research Council (Centre for Ecology & Hydrology; British Antarctic Survey; British Geological Survey). Contains OS data © Crown copyright and database right, © Environment Agency copyright and/or database right 2015. All rights reserved., Esri, Maxar, Earthstar Geographics, USDA FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community, Contains Ordnance Survey data © Crown copyright and database right 2021., EODS / CEDA ARD: ESA Copernicus: 'Contains modified Copernicus Sentinel data [2021]', © Carlos Bedson Manchester Metropolitan University, © Copyright 2020, worldclim.org" Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315. Pescott, O.L.; Walker, K.J.; Day, J.; Harris, F.; Roy, D.B. (2020). National Plant Monitoring Scheme survey data (2015-2019). NERC Environmental Information Data Centre. https://doi.org/10.5285/cdb8707c-eed7-4da7-8fa3-299c65124ef2 © UK Centre for Ecology & Hydrology © Joint Nature Conservation Committee © Plantlife © Botanical Society of Britain and Ireland The following acknowledgement is required for use of this dataset: The National Plant Monitoring Scheme (NPMS) is organised and funded by the UK Centre for Ecology & Hydrology, Botanical Society of Britain and Ireland, Plantlife and the Joint Nature Conservation Committee. The NPMS is indebted to all volunteers who contribute data to the scheme.
This map shows the extent of the various datasets comprising the World Elevation dynamic (Terrain, TopoBathy) and tiled (Terrain 3D, TopoBathy 3D, World Hillshade, World Hillshade (Dark)) services.The tiled services (Terrain 3D, TopoBathy 3D, World Hillshade, World Hillshade (Dark)) also include an additional data source from Maxar's Precision3D covering parts of the globe.Topography sources listed in the table below are part of Terrain, TopoBathy, Terrain 3D, TopoBathy 3D, World Hillshade and World Hillshade (Dark), while bathymetry sources are part of TopoBathy and TopoBathy 3D only. Data Source Native Pixel Size Approximate Pixel Size (meters) Coverage Primary Source Country/Region
Topography
Australia 1m 1 meter 1 Partial areas of Australia Geoscience Australia Australia
Moreton Bay, Australia 1m 1 meter 1 Moreton Bay region, Australia Moreton Bay Regional Council Australia
New South Wales, Australia 5m 5 meters 5 New South Wales State, Australia DFSI Australia
SRTM 1 arc second DEM-S 0.0002777777777779 degrees 31 Australia Geoscience Australia Australia
Burgenland 50cm 0.5 meters 0.5 Burgenland State, Austria Land Burgenland Austria
Upper Austria 50cm 0.5 meters 0.5 Upper Austria State, Austria Land Oberosterreich Austria
Austria 1m 1 meter 1 Austria BEV Austria
Austria 10m 10 meters 10 Austria BEV Austria
Wallonie 50cm 0.5 meters 0.5 Wallonie state, Belgium Service public de Wallonie (SPW) Belgium
Vlaanderen 1m 1 meter 1 Vlaanderen state, Belgium agentschap Digitaal Vlaanderen Belgium
Canada HRDEM 1m 1 meter 1 Partial areas of Canada Natural Resources Canada Canada
Canada HRDEM 2m 2 meter 2 Partial areas of the southern part of Canada Natural Resources Canada Canada
Denmark 40cm 0.4 meters 0.4 Denmark KDS Denmark
Denmark 10m 10 meters 10 Denmark KDS Denmark
England 1m 1 meter 1 England Environment Agency England
Estonia 1m 1 meter 1 Estonia Estonian Land Board Estonia
Estonia 5m 5 meters 5 Estonia Estonian Land Board Estonia
Estonia 10m 10 meters 10 Estonia Estonian Land Board Estonia
Finland 2m 2 meters 2 Finland NLS Finland
Finland 10m 10 meters 10 Finland NLS Finland
France 1m 1 meter 1 France IGN-F France
Bavaria 1m 1 meter 1 Bavaria State, Germany Bayerische Vermessungsverwaltung Germany
Berlin 1m 1 meter 1 Berlin State, Germany Geoportal Berlin Germany
Brandenburg 1m 1 meter 1 Brandenburg State, Germany GeoBasis-DE/LGB Germany
Hamburg 1m 1 meter 1 Hamburg State, Germany LGV Hamburg Germany
Hesse 1m 1 meter 1 Hesse State, Germany HVBG Germany
Nordrhein-Westfalen 1m 1 meter 1 Nordrhein-Westfalen State, Germany Land NRW Germany
Saxony 1m 1 meter 1 Saxony State, Germany Landesamt für Geobasisinformation Sachsen (GeoSN) Germany
Sachsen-Anhalt 2m 2 meters 2 Sachsen-Anhalt State, Germany LVermGeo LSA Germany
Hong Kong 50cm 0.5 meters 0.5 Hong Kong CEDD Hong Kong SAR
Italy TINITALY 10m 10 meters 10 Italy INGV Italy
Japan DEM5A *, DEM5B * 0.000055555555 degrees 5 Partial areas of Japan GSI Japan
Japan DEM10B * 0.00011111111 degrees 10 Japan GSI Japan
Latvia 1m 1 meters 1 Latvia Latvian Geospatial Information Agency Latvia
Latvia 10m 10 meters 10 Latvia Latvian Geospatial Information Agency Latvia
Latvia 20m 20 meters 20 Latvia Latvian Geospatial Information Agency Latvia
Lithuania 1m 1 meters 1 Lithuania NZT Lithuania
Lithuania 10m 10 meters 10 Lithuania NZT Lithuania
Netherlands (AHN3/AHN4) 50cm 0.5 meters 0.5 Netherlands AHN Netherlands
Netherlands (AHN3/AHN4) 10m 10 meters 10 Netherlands AHN Netherlands
New Zealand 1m 1 meters 1 Partial areas of New Zealand Land Information New Zealand (Sourced from LINZ. CC BY 4.0) New Zealand
Northern Ireland 10m 10 meters 10 Northern Ireland OSNI Northern Ireland
Norway 10m 10 meters 10 Norway NMA Norway
Poland 1m 1 meter 1 Partial areas of Poland GUGIK Poland
Poland 5m 5 meters 5 Partial areas of Poland GUGIK Poland
Scotland 1m 1 meter 1 Partial areas of Scotland Scottish Government et.al Scotland
Slovakia 1m 1 meter 1 Slovakia ÚGKK SR Slovakia
Slovakia 10m 10 meters 10 Slovakia GKÚ Slovakia
Slovenia 1m 1 meter 1 Slovenia ARSO Slovenia
Madrid City 1m 1 meter 1 Madrid city, Spain Ayuntamiento de Madrid Spain
Spain 2m (MDT02 2019 CC-BY 4.0 scne.es) 2 meters 2 Partial areas of Spain IGN Spain
Spain 5m 5 meters 5 Spain IGN Spain
Spain 10m 10 meters 10 Spain IGN Spain
Varnamo 50cm 0.5 meters 0.5 Varnamo municipality, Sweden Värnamo Kommun Sweden
Canton of Basel-Landschaft 25cm 0.25 meters 0.25 Canton of Basel-Landschaft, Switzerland Geoinformation Kanton Basel-Landschaft Switzerland
Grand Geneva 50cm 0.5 meters 0.5 Grand Geneva metropolitan, France/Switzerland SITG Switzerland and France
Switzerland swissALTI3D 50cm 0.5 meters 0.5 Switzerland and Liechtenstein swisstopo Switzerland and Liechtenstein
Switzerland swissALTI3D 10m 10 meters 10 Switzerland and Liechtenstein swisstopo Switzerland and Liechtenstein
OS Terrain 50 50 meters 50 United Kingdom Ordnance Survey United Kingdom
Douglas County 1ft 1 foot 0.3048 Douglas County, Nebraska, USA Douglas County NE United States
Lancaster County 1ft 1 foot 0.3048 Lancaster County, Nebraska, USA Lancaster County NE United States
Sarpy County 1ft 1 foot 0.3048 Sarpy County, Nebraska, USA Sarpy County NE United States
Cook County 1.5 ft 1.5 foot 0.46 Cook County, Illinois, USA ISGS United States
3DEP 1m 1 meter 1 Partial areas of the conterminous United States, Puerto Rico USGS United States
NRCS 1m 1 meter 1 Partial areas of the conterminous United States NRCS USDA United States
San Mateo County 1m 1 meter 1 San Mateo County, California, USA San Mateo County CA United States
FEMA LiDAR DTM 3 meters 3 Partial areas of the conterminous United States FEMA United States
NED 1/9 arc second 0.000030864197530866 degrees 3 Partial areas of the conterminous United States USGS United States
3DEP 5m 5 meter 5 Alaska, United States USGS United States
NED 1/3 arc second 0.000092592592593 degrees 10 conterminous United States, Hawaii, Alaska, Puerto Rico, and Territorial Islands of the United States USGS United States
NED 1 arc second 0.0002777777777779 degrees 31 conterminous United States, Hawaii, Alaska, Puerto Rico, Territorial Islands of the United States; Canada and Mexico USGS United States
NED 2 arc second 0.000555555555556 degrees 62 Alaska, United States USGS United States
Wales 1m 1 meter 1 Wales Welsh Government Wales
WorldDEM4Ortho 0.00022222222 degrees 24 Global (excluding the countries of Azerbaijan, DR Congo and Ukraine) Airbus Defense and Space GmbH World
SRTM 1 arc second 0.0002777777777779 degrees 31 all land areas between 60 degrees north and 56 degrees south except Australia NASA World
EarthEnv-DEM90 0.00083333333333333 degrees 93 Global N Robinson,NCEAS World
SRTM v4.1 0.00083333333333333 degrees 93 all land areas between 60 degrees north and 56 degrees south except Australia CGIAR-CSI World
GMTED2010 7.5 arc second 0.00208333333333333 degrees 232 Global USGS World
GMTED2010 15 arc second 0.00416666666666666 degrees 464 Global USGS World
GMTED2010 30 arc second 0.0083333333333333 degrees 928 Global USGS World
Bathymetry
Canada west coast 10 meters 10 Canada west coast Natural Resources Canada Canada
Gulf of Mexico 40 feet 12 Northern Gulf of Mexico BOEM Gulf of Mexico
MH370 150 meters 150 MH370 flight search area (Phase 1) of Indian Ocean Geoscience Australia Indian Ocean
Switzerland swissBATHY3D 1 - 3 meters 1, 2, 3 Lakes of Switzerland swisstopo Switzerland
NCEI 1/9 arc second 0.000030864197530866 degrees 3 Puerto Rico, U.S Virgin Islands and partial areas of eastern and western United States coast NOAA NCEI United States
NCEI 1/3 arc second 0.000092592592593 degrees 10 Partial areas of eastern and western United States coast NOAA NCEI United States
CRM 1 arc second (Version 2) 0.0002777777777779 degrees 31 Southern California coast of United States NOAA United States
NCEI 1 arc second 0.0002777777777779 degrees 31 Partial areas of northeastern United States coast NOAA NCEI United States
CRM 3 arc second 0.00083333333333333 degrees 93 United States Coast NOAA United States
NCEI 3 arc second 0.00083333333333333 degrees 93 Partial areas of northeastern United States coast NOAA NCEI United States
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United Kingdom Exports of maps, hydrographic or similar charts (printed) to United States was US$19.98 Million during 2024, according to the United Nations COMTRADE database on international trade. United Kingdom Exports of maps, hydrographic or similar charts (printed) to United States - data, historical chart and statistics - was last updated on March of 2025.
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
A PDF map that shows the counties and unitary authorities in the United Kingdom as at 1 April 2023. (File Size - 583 KB)
The population of the United Kingdom in 2023 was estimated to be approximately 68.3 million in 2023, with almost 9.48 million people living in South East England. London had the next highest population, at over 8.9 million people, followed by the North West England at 7.6 million. With the UK's population generally concentrated in England, most English regions have larger populations than the constituent countries of Scotland, Wales, and Northern Ireland, which had populations of 5.5 million, 3.16 million, and 1.92 million respectively. English counties and cities The United Kingdom is a patchwork of various regional units, within England the largest of these are the regions shown here, which show how London, along with the rest of South East England had around 18 million people living there in this year. The next significant regional units in England are the 47 metropolitan and ceremonial counties. After London, the metropolitan counties of the West Midlands, Greater Manchester, and West Yorkshire were the biggest of these counties, due to covering the large urban areas of Birmingham, Manchester, and Leeds respectively. Regional divisions in Scotland, Wales and Northern Ireland The smaller countries that comprise the United Kingdom each have different local subdivisions. Within Scotland these are called council areas whereas in Wales the main regional units are called unitary authorities. Scotland's largest Council Area by population is that of Glasgow City at over 622,000, while in Wales, it was the Cardiff Unitary Authority at around 372,000. Northern Ireland, on the other hand, has eleven local government districts, the largest of which is Belfast with a population of around 348,000.
In the century between Napoleon's defeat and the outbreak of the First World War (known as the "Pax Britannica"), the British Empire grew to become the largest and most powerful empire in the world. At its peak in the 1910s and 1920s, it encompassed almost one quarter of both the world's population and its land surface, and was known as "the empire on which the sun never sets". The empire's influence could be felt across the globe, as Britain could use its position to affect trade and economies in all areas of the world, including many regions that were not part of the formal empire (for example, Britain was able to affect trading policy in China for over a century, due to its control of Hong Kong and the neighboring colonies of India and Burma). Some historians argue that because of its economic, military, political and cultural influence, nineteenth century Britain was the closest thing to a hegemonic superpower that the world ever had, and possibly ever will have. "Rule Britannia" Due to the technological and logistical restrictions of the past, we will never know the exact borders of the British Empire each year, nor the full extent of its power. However, by using historical sources in conjunction with modern political borders, we can gain new perspectives and insights on just how large and influential the British Empire actually was. If we transpose a map of all former British colonies, dominions, mandates, protectorates and territories, as well as secure territories of the East India Trading Company (EIC) (who acted as the precursor to the British Empire) onto a current map of the world, we can see that Britain had a significant presence in at least 94 present-day countries (approximately 48 percent). This included large territories such as Australia, the Indian subcontinent, most of North America and roughly one third of the African continent, as well as a strategic network of small enclaves (such as Gibraltar and Hong Kong) and islands around the globe that helped Britain to maintain and protect its trade routes. The sun sets... Although the data in this graph does not show the annual population or size of the British Empire, it does give some context to how Britain has impacted and controlled the development of the world over the past four centuries. From 1600 until 1920, Britain's Empire expanded from a small colony in Newfoundland, a failing conquest in Ireland, and early ventures by the EIC in India, to Britain having some level of formal control in almost half of all present-day countries. The English language is an official language in all inhabited continents, its political and bureaucratic systems are used all over the globe, and empirical expansion helped Christianity to become the most practiced major religion worldwide. In the second half of the twentieth century, imperial and colonial empires were eventually replaced by global enterprises. The United States and Soviet Union emerged from the Second World War as the new global superpowers, and the independence movements in longstanding colonies, particularly Britain, France and Portugal, gradually succeeded. The British Empire finally ended in 1997 when it seceded control of Hong Kong to China, after more than 150 years in charge. Today, the United Kingdom consists of four constituent countries, and it is responsible for three crown dependencies and fourteen overseas territories, although the legacy of the British Empire can still be seen, and it's impact will be felt for centuries to come.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This geolocated dataset derives from several surveys commissioned by the English Crown in 1565, enquiring into the state of the various ports, landing places, and coastal communities of England and Wales.
Please see the GitHub repository for details of the sources used and visualisation of their geographic scope.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
Regions were built up of complete counties/unitary authorities so, although they were subject to change, they always reflected administrative boundaries as at the end of the previous year.
The Region area list contains nine areas for English Regions, and provides coverage of England only.
Please visit ONS Beginner's Guide to UK Geography for more info.
The boundaries are available as either extent of the realm (usually this is the Mean Low Water mark but in some cases boundaries extend beyond this to include off shore islands) or
clipped to the coastline (Mean High Water mark).
Living England is a multi-year project which delivers a broad habitat map for the whole of England, created using satellite imagery, field data records and other geospatial data in a machine learning framework. The Living England habitat map shows the extent and distribution of broad habitats across England aligned to the UKBAP classification, providing a valuable insight into our natural capital assets and helping to inform land management decisions. Living England is a project within Natural England, funded by and supports the Defra Natural Capital and Ecosystem Assessment (NCEA) Programme and Environmental Land Management (ELM) Schemes to provide an openly available national map of broad habitats across England.This dataset includes very complex geometry with a large number of features so it has a default viewing distance set to 1:80,000 (City in the map viewer).Process Description:A number of data layers are used to develop a ground dataset of habitat reference data, which are then used to inform a machine-learning model and spatial analyses to generate a map of the likely locations and distributions of habitats across England. The main source data layers underpinning the spatial framework and models are Sentinel-2 and Sentinel-1 satellite data from the ESA Copernicus programme, Lidar from the EA's national Lidar Programme and collected data through the project's national survey programme. Additional datasets informing the approach as detailed below and outlined in the accompanying technical user guide.Datasets used:OS MasterMap® Topography Layer; Geology aka BGS Bedrock Mapping 1:50k; Long Term Monitoring Network; Uplands Inventory; Coastal Dune Geomatics Mapping Ground Truthing; Crop Map of England (RPA) CROME; Lowland Heathland Survey; National Grassland Survey; National Plant Monitoring Scheme; NE field Unit Surveys; Northumberland Border Mires Survey; Sentinel-2 multispectral imagery; Sentinel-1 backscatter imagery; Sentinel-1 single look complex (SLC) imagery; National forest inventory (NFI); Cranfield NATMAP; Agri-Environment HLS Monitoring; Living England desktop validation; Priority Habitat Inventory; Space2 Eye Lens: Ainsdale NNR, State of the Bog Bowland Survey, State of the Bog Dark Peak Condition Survey, State of the Bog Manchester Metropolitan University (MMU) Mountain Hare Habitat Survey Dark Peak, State of the Bog; Moors for the Future Dark Peak Survey; West Pennines Designation NVC Survey; Wetland Annex 1 inventory; Soils-BGS Soil Parent Material; Met Office HadUK gridded climate product; Saltmarsh Extent and Zonation; EA LiDAR DSM & DTM; New Forest Mires Wetland Survey; New Forest Mires Wetland Survey; West Cumbria Mires Survey; England Peat Map Vegetation Surveys; NE protected sites monitoring; ERA5; OS Open Built-up Areas; OS Boundaries dataset; EA IHM (Integrated height model) DTM; OS VectorMap District; EA Coastal Flood Boundary: Extreme Sea Levels; AIMS Spatial Sea Defences; LIDAR Sand Dunes 2022; EA Coastal saltmarsh species surveys; Aerial Photography GB (APGB); NASA SRT (Shuttle Radar Topography Mission) M30; Provisional Agricultural Land Classification; Renewable Energy Planning Database (REPD); Open Street Map 2024.Attribute descriptions: Column Heading Full Name Format Description
SegID SegID Character (100) Unique Living England segment identifier. Format is LEZZZZ_BGZXX_YYYYYYY where Z = release year (2223 for this version), X = BGZ and Y = Unique 7-digit number
Prmry_H Primary_Habitat Date Primary Living England Habitat
Relblty
Reliability
Character (12)
Reliability Metric Score
Mdl_Hbs Model_Habs Interger List of likely habitats output by the Random Forest model.
Mdl_Prb Model_Probs Double (6,2) List of probabilities for habitats listed in ‘Model_Habs’, calculated by the Random Forest model.
Mixd_Sg Mixed_Segment Character (50) Indication of the likelihood a segment contains a mixture of dominant habitats. Either Unlikely or Probable.
Source Source
Description of how the habitat classification was derived. Options are: Random Forest; Vector OSMM Urban; Vector Classified OS Water; Vector EA saltmarsh; LE saltmarsh & QA; Vector RPA Crome, ALC grades 1-4; Vector LE Bare Ground Analysis; LE QA Adjusted
SorcRsn Source_Reason
Reasoning for habitat class adjustment if ‘Source’ equals ‘LE QA Adjusted’
Shap_Ar Shape_Area
Segment area (m2) Full metadata can be viewed on data.gov.uk.
In 2022, London had a gross domestic product of over 508 billion British pounds, by far the most of any region of the United Kingdom. The region of South East England which surrounds London had the second-highest GDP in this year, at over 341 billion pounds. North West England, which includes the major cities of Manchester and Liverpool, had the third-largest GDP among UK regions, at approximately 223.5 billion pounds. Levelling Up the UK London’s economic dominance of the UK can clearly be seen when compared to the other regions of the country. In terms of GDP per capita, the gap between London and the rest of the country is striking, standing at 57,338 pounds per person in the UK capital, compared with just over 33,593 pounds in the rest of the country. To address the economic imbalance, successive UK governments have tried to implement "levelling-up policies", which aim to boost investment and productivity in neglected areas of the country. The success of these programs going forward may depend on their scale, as it will likely take high levels of investment to reverse economic neglect regions have faced in the recent past. Overall UK GDP The gross domestic product for the whole of the United Kingdom amounted to 2.56 trillion British pounds in 2024. During this year, GDP grew by 0.9 percent, following a growth rate of 0.4 percent in 2023. Due to the overall population of the UK growing faster than the economy, however, GDP per capita in the UK fell in both 2023 and 2024. Nevertheless, the UK remains one of the world’s biggest economies, with just five countries (the United States, China, Japan, Germany, and India) having larger economies. It is it likely that several other countries will overtake the UK economy in the coming years, with Indonesia, Brazil, Russia, and Mexico all expected to have larger economies than Britain by 2050.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset is part of the Geographical repository maintained by Opendatasoft. This dataset contains data for countries in the United Kingdom.Processors and tools are using this data.EnhancementsAdd ISO 3166-3 codes.Simplify geometries to provide better performance across the services.
Environmental Sensitivity Index (ESI) maps are an integral component in oil-spill contingency planning and assessment. They serve as a source of information in the event of an oil spill incident. ESI maps contain three types of information: shoreline habitats (classified according to their sensitivity to oiling), sensitive biological resources, and human-use resources. Most often, this information is plotted on 7.5 minute USGS quadrangles, although in the Alaska ESI maps, USGS topographic maps at scales of 1:63,360 and 1:250,000 are used, and in other ESI maps, NOAA charts have been used as the base map. Collections of these maps, grouped by state or a logical geographic area, are published as ESI atlases. Digital data have been published for most of the U.S. shoreline, including Alaska, Hawaii, and Puerto Rico.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset contains additional distribution map data for various species of Cetacea and Seals included as part of the 3rd UK Habitats Directive Report submitted to the European Commission in 2013. Every six years, all EU Member States are required (under Article 17 of the Directive) to report on the implementation of the EU Habitats Directive. Further details are provided in the lineage section.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset contains the range map data for all the Habitats included as part of the 3rd UK Habitats Directive Report submitted to the European Commission in 2013. The range maps are derived from the distribution maps. Every six years, all EU Member States are required (under Article 17 of the Directive) to report on the implementation of the EU Habitats Directive. Most of the data are at the 10km square resolution and based on a standardised EU wide grid rather than GB and Ireland Grids. (The transformation process is described in the lineage section). The Report considered the conservation status of all terrestrial and marine habitats listed under Annex I of the Directive that were present within the UK during the reporting period (2007-2012). This included: *69 terrestrial habitats within the UK Atlantic region; *8 marine habitats within the UK Marine Atlantic region;
Data shows the location of Priority Habitat Chalk rivers and Streams. Replaces the existing 1:50,000 scale data.Based on Environment Agency Detailed River Network (DRN) version 3. All fields from DRN have been retained. This subset of chalk rivers uses the old 1:50,000 Biodiversity Action Plan (BAP) chalk river data, BGS geology, WWF report "The State of England’s Chalk Streams" and stakeholder knowledge to produce an updated chalk river network for England.Full metadata can be viewed on data.gov.uk (to follow).
Mineral resource occurrence data covering the world, most thoroughly within the U.S. This database contains the records previously provided in the Mineral Resource Data System (MRDS) of USGS and the Mineral Availability System/Mineral Industry Locator System (MAS/MILS) originated in the U.S. Bureau of Mines, which is now part of USGS. The MRDS is a large and complex relational database developed over several decades by hundreds of researchers and reporters. While database records describe mineral resources worldwide, the compilation of information was intended to cover the United States completely, and its coverage of resources in other countries is incomplete. The content of MRDS records was drawn from reports previously published or made available to USGS researchers. Some of those original source materials are no longer available. The information contained in MRDS was intended to reflect the reports used as sources and is current only as of the date of those source reports. Consequently MRDS does not reflect up-to-date changes to the operating status of mines, ownership, land status, production figures and estimates of reserves and resources, or the nature, size, and extent of workings. Information on the geological characteristics of the mineral resource are likely to remain correct, but aspects involving human activity are likely to be out of date.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Areas which the Secretary of State considers to be urban (with a population greater than or equal to 100,000 people) where, under the Environmental Noise Directive (Round 2), Defra is required to undertake Strategic Noise Mapping.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Exports of maps, hydrographic or similar charts (printed) to United Kingdom was US$551.04 Thousand during 2024, according to the United Nations COMTRADE database on international trade. United States Exports of maps, hydrographic or similar charts (printed) to United Kingdom - data, historical chart and statistics - was last updated on March of 2025.