Facebook
TwitterThe dataset contains Local Authority Boundaries for Great Britain (England, Scotland and Wales) as of December 2021. A total of 363 Local Authority objects are included. Created for future use in folium choropleth maps when combined with other datasets that contain the matching Local Authority Codes. Additionally, subsets were created for convenience holding the boundaries of local authorities in England and Wales together, and in each individual country, i.e., England, Scotland and Wales on their own.
The original dataset was downloaded from ONS. Since the dataset was too large for most use cases (129.4MB) due to the level of detail, it was simplified with https://mapshaper.org/ using the default method (Visvalingam / weighted area) with 'prevent shape removal' enabled. The simplification was set to 1.4%, followed by intersection repair and export back to geojson. The shape coordinates were originally in British National Grid (BNG) format, which had to be converted to WGS84 (latitude and longitude) format. Finally, the coordinates were rounded to 6 decimal places, resulting in a file containing 2.2MB of uncompressed data with a sensible level of detail. The individual country data were extracted, based on the LAD21CD property, to create the additional files.
https://www.ons.gov.uk/methodology/geography/licences
Digital boundary products and reference maps are supplied under the Open Government Licence. You must use the following copyright statements when you reproduce or use this material:
- Source: Office for National Statistics licensed under the Open Government Licence v.3.0
- Contains OS data © Crown copyright and database right 2023
Facebook
TwitterThe purpose of this project was to explore the institutions and organisations that are shaping the development of local energy systems in Great Britain, comparing England, Scotland and Wales. The project was part of the UK Energy Research Centre (UKERC).
Institutional mapping explores functional relationships and powers relevant to decision-making. It focuses on the key actors, their interactions, where power is located, who has the ability to influence and make decisions, and sources of funding. The objective is to create a (simplified) visual representation of the different groups and organizations within a community and their relationships and importance for decision-making. In order to explore the governance frameworks and actor networks for LES in England, Wales and Scotland governance mapping was carried out for the three jurisdictions. Draft institutional maps of local energy systems in England, Scotland and Wales were developed through a desk-based review of key organisations, (formal) institutions, rules, relationships and decision-making power based on a database of LES relevant strategy documents and policy instruments (data also deposited). These maps were validated based on interviews with energy system stakeholders to valuate accuracy, and explore informal agenda setting power, future policy needs and governance gaps. Interviews were carried out with a total of 21 people, across 18 organisations, including government, local authorities, distribution network operators, regulators, consultants and NGOs. Maps were revised and finalised based on interview outputs and published in September 2022. The institutional maps developed are deposited here together with the interview schedule.
This project explored the development of locally integrated energy systems in Great Britain. It compared development across England, Scotland and Wales in order to investigate the interactions between the different policy frameworks across GB and the local/regional energy business models, partnerships and funding mechanisms in use.
Facebook
TwitterThese maps are based on the Ordnance Survey quarter-inch to the mile series of maps, for England / Wales and Scotland. Most maps in this series show solid geology only, but there are a few drift maps within the New Series maps of England / Wales. There are three distinct series of quarter-inch maps: - Geological map of England and Wales. Quarter-inch series 1:253 440: Old Series (1889 - 1906). This is a set of hand-coloured maps which were published between 1889 and 1895 with later revisions. They were engraved onto copper. The series was issued as 15 sheets, where sheet 3 was an index to colours. - Geological map of England and Wales. Quarter-inch series 1:253 440: New Series (1906-1977). Following the popularity of the Old Series 'Quarter-inch' map, a New Series of colour-printed maps was issued. This was a long-lived series, with sheets still being published in the late 1970s. Maps were published between 1906–1977. The series was issued as 15 sheets, where sheet 3 was an index to colours. - Geological Survey of Scotland. Quarter-inch series 1:253 440 (1904-1977). These Scottish maps were published in parallel with the English / Welsh New Series, and was issued as 17 sheets. The quarter-inch mapping was superseded in the 1970s - 1980s by the Universal Transverse Mercator (UTM) Series geological maps of the UK and Continental Shelf. Geological maps represent a geologist's compiled interpretation of the geology of an area. A geologist will consider the data available at the time, including measurements and observations collected during field campaigns, as well as their knowledge of geological processes and the geological context to create a model of the geology of an area. This model is then fitted to a topographic basemap and drawn up at the appropriate scale, with generalization if necessary, to create a geological map, which is a representation of the geological model. Explanatory notes and vertical and horizontal cross sections may be published with the map. Geological maps may be created to show various aspects of the geology, or themes. The most common map themes held by BGS are solid (later referred to as bedrock) and drift (later referred to as superficial). These maps are hard-copy paper records stored in the National Geoscience Data Centre (NGDC) and are delivered as digital scans through the BGS website.
Facebook
TwitterCEH Land Cover plus: Pesticides maps annual average pesticide applications across England, Wales and Scotland. The product provides application estimates for 162 different active ingredients including herbicides, insecticides, molluscicides and fungicides. It is produced at a 1km resolution with units of kg active ingredient applied per year, averaged between 2012 and 2017. Pesticide application rates (kg/km2/yr) are calculated for each of the crops grown in each 1km square, using information from CEH Land Cover® Plus: Crops 2015, 2016 and 2017 to determine where each crop is grown. Pesticide application data is provided by the Pesticide Usage Survey. Uncertainty maps are produced alongside each active ingredient map to quantify the level of confidence in the estimated applications. Uncertainty is quantified using the distribution of each parameter estimate obtained from the modelling method and is expressed relative to the total application. The product builds upon the Centre for Ecology & Hydrology (CEH) Land Cover® Plus: Crops product. These maps were created under the NERC funded ASSIST (Achieving Sustainable Agricultural Systems) project to enable exploration of the impacts of agrochemical usage on the environment, enabling farmers and policymakers to implement better, more sustainable agricultural practices.
Facebook
Twitterhttps://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This data is experimental, see the ‘Access Constraints or User Limitations’ section for more details. This dataset has been generalised to 10 metre resolution where it is still but the space needed for downloads will be improved.A set of UK wide estimated travel area geometries (isochrones), from Output Area (across England, Scotland, and Wales) and Small Area (across Northern Ireland) population-weighted centroids. The modes used in the isochrone calculations are limited to public transport and walking. Generated using Open Trip Planner routing software in combination with Open Street Maps and open public transport schedule data (UK and Ireland).The geometries provide an estimate of reachable areas by public transport and on foot between 7:15am and 9:15am for a range of maximum travel durations (15, 30, 45 and 60 minutes). For England, Scotland and Wales, these estimates were generated using public transport schedule data for Tuesday 15th November 2022. For Northern Ireland, the date used is Tuesday 6th December 2022.The data is made available as a set of ESRI shape files, in .zip format. This corresponds to a total of 18 files; one for Northern Ireland, one for Wales, twelve for England (one per English region, where London, South East and North West have been split into two files each) and four for Scotland (one per NUTS2 region, where the ‘North-East’ and ‘Highlands and Islands’ have been combined into one shape file, and South West Scotland has been split into two files).The shape files contain the following attributes. For further details, see the ‘Access Constraints or User Limitations’ section:AttributeDescriptionOA21CD or SA2011 or OA11CDEngland and Wales: The 2021 Output Area code.Northern Ireland: The 2011 Small Area code.Scotland: The 2011 Output Area code.centre_latThe population-weighted centroid latitude.centre_lonThe population-weighted centroid longitude.node_latThe latitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_lonThe longitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_distThe distance, in meters, between the population-weighted centroid and the nearest Open Street Map “highway” node.stop_latThe latitude of the nearest public transport stop to the population-weighted centroid.stop_lonThe longitude of the nearest public transport stop to the population-weighted centroid.stop_distThe distance, in metres, between the population-weighted centroid and the nearest public transport stop.centre_inBinary value (0 or 1), where 1 signifies the population-weighted centroid lies within the Output Area/Small Area boundary. 0 indicates the population-weighted centroid lies outside the boundary.node_inBinary value (0 or 1), where 1 signifies the nearest Open Street Map “highway” node lies within the Output Area/Small Area boundary. 0 indicates the nearest Open Street Map node lies outside the boundary.stop_inBinary value (0 or 1), where 1 signifies the nearest public transport stop lies within the Output Area/Small Area boundary. 0 indicates the nearest transport stop lies outside the boundary.iso_cutoffThe maximum travel time, in seconds, to construct the reachable area/isochrone. Values are either 900, 1800, 2700, or 3600 which correspond to 15, 30, 45, and 60 minute limits respectively.iso_dateThe date for which the isochrones were estimated, in YYYY-MM-DD format.iso_typeThe start point from which the estimated isochrone was calculated. Valid values are:from_centroid: calculated using population weighted centroid.from_node: calculated using the nearest Open Street Map “highway” node.from_stop: calculated using the nearest public transport stop.no_trip_found: no isochrone was calculated.geometryThe isochrone geometry.iso_hectarThe area of the isochrone, in hectares.Access constraints or user limitations.These data are experimental and will potentially have a wider degree of uncertainty. They remain subject to testing of quality, volatility, and ability to meet user needs. The methodologies used to generate them are still subject to modification and further evaluation.These experimental data have been published with specific caveats outlined in this section. The data are shared with the analytical community with the purpose of benefitting from the community's scrutiny and in improving the quality and demand of potential future releases. There may be potential modification following user feedback on both its quality and suitability.For England and Wales, where possible, the latest census 2021 Output Area population weighted centroids were used as the starting point from which isochrones were calculated.For Northern Ireland, 2011 Small Area population weighted centroids were used as the starting point from which isochrones were calculated. Small Areas and Output Areas contain a similar number of households within their boundaries. 2011 data was used because this was the most up-to-date data available at the time of generating this dataset. Population weighted centroids for Northern Ireland were calculated internally but may be subject to change - in the future we aim to update these data to be consistent with Census 2021 across the UK.For Scotland, 2011 Output Area population-weighted centroids were used as the starting point from which isochrones were calculated. 2011 data was used because this was the most up-to-date data available at the time of work.The data for England, Scotland and Wales are released with the projection EPSG:27700 (British National Grid).The data for Northern Ireland are released with the projection EPSG:29902 (Irish Grid).The modes used in the isochrone calculations are limited to public transport and walking. Other modes were not considered when generating this data.A maximum value of 1.5 kilometres walking distance was used when generating isochrones. This approximately represents typical walking distances during a commute (based on Department for Transport/Labour Force Survey data and Travel Survey for Northern Ireland technical reports).When generating Northern Ireland data, public transport schedule data for both Northern Ireland and Republic of Ireland were used.Isochrone geometries and calculated areas are subject to public transport schedule data accuracy, Open Trip Planner routing methods and Open Street Map accuracy. The location of the population-weighted centroid can also influence the validity of the isochrones, when this falls on land which is not possible or is difficult to traverse (e.g., private land and very remote locations).The Northern Ireland public transport data were collated from several files, and as such required additional pre-processing. Location data are missing for two bus stops. Some services run by local public transport providers may also be missing. However, the missing data should have limited impact on the isochrone output. Due to the availability of Northern Ireland public transport data, the isochrones for Northern Ireland were calculated on a comparable but slight later date of 6th December 2022. Any potential future releases are likely to contained aligned dates between all four regions of the UK.In cases where isochrones are not calculable from the population-weighted centroid, or when the calculated isochrones are unrealistically small, the nearest Open Street Map ‘highway’ node is used as an alternative starting point. If this then fails to yield a result, the nearest public transport stop is used as the isochrone origin. If this also fails to yield a result, the geometry will be ‘None’ and the ‘iso_hectar’ will be set to zero. The following information shows a further breakdown of the isochrone types for the UK as a whole:from_centroid: 99.8844%from_node: 0.0332%from_stop: 0.0734%no_trip_found: 0.0090%The term ‘unrealistically small’ in the point above refers to outlier isochrones with a significantly smaller area when compared with both their neighbouring Output/Small Areas and the entire regional distribution. These reflect a very small fraction of circumstances whereby the isochrone extent was impacted by the centroid location and/or how Open Trip Planner handled them (e.g. remote location, private roads and/or no means of traversing the land). Analysis showed these outliers were consistently below 100 hectares for 60-minute isochrones. Therefore, In these cases, the isochrone point of origin was adjusted to the nearest node or stop, as outlined above.During the quality assurance checks, the extent of the isochrones was observed to be in good agreement with other routing software and within the limitations stated within this section. Additionally, the use of nearest node, nearest stop, and correction of ‘unrealistically small areas’ was implemented in a small fraction of cases only. This culminates in no data being available for 8 out of 239,768 Output/Small Areas.Data is only available in ESRI shape file format (.zip) at this release.https://www.openstreetmap.org/copyright
Facebook
TwitterStrategi is detailed digital map data, ideal for applications requiring an overview of geographical information on England, Scotland and Wales. It is derived from the Ordnance Survey 1:250 000 scale topographic database and provides mapping for applications requiring a regional overview.
Geographical features within Strategi are represented as vector (point and line) data, enabling you to link your business information to relevant features on the map for planning purposes and statistical analysis.
Facebook
Twitterhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
The 1:63 360 / 1:50 000 scale map series are the most useful scale for most purposes. They provide almost complete coverage of onshore Great Britain. The BGS collection of 1:63 360 and 1:50 000 scale maps comprises two map series: - Geological Survey of England and Wales 1:63 360 / 1:50 000 Geological Map Series [New Series]. These maps are based on the Ordnance Survey One-inch New Series topographic basemaps and provide almost complete coverage of England and Wales, with the exception of sheet 180 (Knighton). The quarter-sheets of 1:63 360 Old Series sheets 91 to 110 coincide with sheets 1 to 73 of the New Series maps. These earlier maps often carry two sheet numbers which refer to the Old Series and the New Series. - Geological Survey of Scotland 1:63 360 / 1:50 000 Geological Map Series. These maps are based on the Ordnance Survey First, Second, Third and Fourth editions of the One-inch map of Scotland. The maps used the most recent topographic basemap available at the time. In the Western Isles, one-inch mapping was abandoned and replaced by maps at 1:100 000 scale, which are associated with this series. Sheets were traditionally issued at 1:63 360 scale, with the first 1:50 000 maps appearing in 1972. Sheets at 1:50 000 scale may be either facsimile enlargements of an existing 1:63 360 sheets, or may contain new geology and cartography. The latter bear the additional series designation '1:50 000 series'. Within the Scottish series, new mapping at 1:50 000 scale was split into east and west sheets. For example, the original one-inch sheet 32 became 1:50 000 sheets 32E and 32W. A number of irregular sheets were also introduced with the new 1:50 000 scale mapping. There are a number of irregular special sheets within both series. Geological maps represent a geologist's compiled interpretation of the geology of an area. A geologist will consider the data available at the time, including measurements and observations collected during field campaigns, as well as their knowledge of geological processes and the geological context to create a model of the geology of an area. This model is then fitted to a topographic basemap and drawn up at the appropriate scale, with generalization if necessary, to create a geological map, which is a representation of the geological model. Explanatory notes and vertical and horizontal cross sections may be published with the map. Geological maps may be created to show various aspects of the geology, or themes. The most common map themes held by BGS are solid (later referred to as bedrock) and drift (later referred to as superficial). These maps are, for the most part, hard-copy paper records stored in the National Geoscience Data Centre (NGDC) and are delivered as digital scans through the BGS website.
Facebook
Twitterhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
This layer of the GeoIndex shows the location of available 1:10000 scale digital geological maps within Great Britain. The Digital Geological Map of Great Britain project (DiGMapGB) has prepared 1:625 000, 1:250 000 and 1:50 000 scale datasets for England, Wales and Scotland. The datasets themselves are available as vector data in a variety of formats in which they are structured into themes primarily for use in geographical information systems (GIS) where they can be integrated with other types of spatial data for analysis and problem solving in many earth-science-related issues. The DiGMapGB-10 dataset is as yet incomplete, current work is concentrated on extending the geographical cover, especially to cover high priority urban areas.
Facebook
TwitterThe Wildscape Atlas was a projected spin-off product from Prof. Alice Coleman’s Second Land Utilisation Survey of Britain (https://maps.nls.uk/series/second-land-utilisation-survey), jointly edited by Coleman and Geoff Sinclair, her Chief Vegetation Surveyor. Within the field maps for the 2LUSB, the volunteer surveyors initially coloured areas of 'Wildscape' as yellow. “Wildscape is mountain and moorland, heath and coast, bog and fen, all the areas that spring spontaneously to mind at the mention of nature conservation. In this country they are more often semi-natural than natural but nevertheless they are the closest to nature of all British landscapes” (Coleman, 1970). A separate survey of vegetation cover of these Wildscapes was completed by 1969 in England and 1974 in Wales which underpins the 'Wildscape Atlas'. This data has now been scanned and georeferenced and made available alongside the 2LUSB data on the National Library of Scotland. Attribution statement: Wildscape Atlas for England and Wales © Trustees of the Land Use Research Unit, 1969-1974
Facebook
Twitterhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
This layer of the GeoIndex shows the location of available 1:50000 scale digital geological maps within Great Britain. The Digital Geological Map of Great Britain project (DiGMapGB) has prepared 1:625 000, 1:250 000 and 1:50 000 scale datasets for England, Wales and Scotland. The datasets themselves are available as vector data in a variety of formats in which they are structured into themes primarily for use in geographical information systems (GIS) where they can be integrated with other types of spatial data for analysis and problem solving in many earth-science-related issues. Most of the 1:50 000 scale geological maps for England & Wales and for Scotland are now available digitally as part of the DiGMapGB-50 dataset. It integrates geological information from a variety of sources. These include recent digital maps, older 'paper only' maps, and desk compilations for sheets with no published maps.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The Wader Zonal Map - a.k.a. Wader Sensitivity Map (WSM) and Breeding Wader Sensitivity Map - was produced by the British Trust for Ornithology (BTO) in partnership with the Forestry Commission and the Cairngorm National Park Authority. This layer shows the predicted relative abundance of ten species of breeding wader for each 1km square of England, Scotland and Wales.
Facebook
Twitterhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
This dataset comprises 2 collections of maps. The facsmile collection contains all the marginalia information from the original map as well as the map itself, while the georectified collection contains just the map with an associated index for locating them. Each collection comprises approximately 101 000 monochrome images at 6-inch (1:10560) scale. Each image is supplied in .tiff format with appropriate ArcView and MapInfo world files, and shows the topography for all areas of England, Wales and Scotland as either quarter or, in some cases, full sheets. The images will cover the approximate epochs 1880's, 1900's, 1910's, 1920's and 1930's, but note that coverage is not countrywide for each epoch. The data was purchased by BGS from Sitescope, who obtained it from three sources - Royal Geographical Society, Trinity College Dublin and the Ordnance Survey. The data is for internal use by BGS staff on projects, and is available via a customised application created for the network GDI enabling users to search for and load the maps of their choice. The dataset will have many uses across all the geoscientific disciplines across which BGS operates, and should be viewed as a valuable addition to the BGS archive. There has been a considerable amount of work done during 2005, 2006 and 2007 to improve the accuracy of the OS Historic Map Collection. All maps should now be located to +- 50m or better. This is the best that can be achieved cost effectively. There are a number of reasons why the maps are inaccurate. Firstly, the original maps are paper and many are over 100 years old. They have not been stored in perfect condition. The paper has become distorted to varying degrees over time. The maps were therefore not accurate before scanning. Secondly, different generations of maps will have used different surveying methods and different spatial referencing systems. The same geographical object will not necessarily be in the same spatial location on subsequent editions. Thirdly, we are discussing maps, not plans. There will be cartographic generalisations which will affect the spatial representation and location of geographic objects. Finally, the georectification was not done in BGS but by the company from whom we purchased the maps. The company no longer exists. We do not know the methodology used for georectification.
Facebook
TwitterColourful and easy to use, Bartholomew’s maps became a trademark series. The maps were popular and influential, especially for recreation, and the series sold well, particularly with cyclists and tourists. To begin with, Bartholomew printed their half-inch maps in Scotland as stand-alone sheets known as 'District Sheets' and by 1886 the whole of Scotland was covered. They then revised the maps into an ordered set of 29 sheets covering Scotland in a regular format. This was first published under the title Bartholomew’s Reduced Ordnance Survey of Scotland. The half-inch maps of Scotland formed the principal content for Bartholomew's Survey Atlas of Scotland published in 1895. Bartholomew then moved south of the Border to the more lucrative but competitive market in England and Wales, whilst continuing to revise the Scottish sheets. The first complete coverage of Great Britain at the half-inch scale was achieved by 1903, and this is the layer shown here.The half-inch maps were distinctive for using different layers of colour to represent landscape relief. A subtle and innovative gradation of colour bands were employed for land at different heights. Lighter greens were used for low ground closest to sea-level, darker greens and browns for higher ground, with white used for mountain tops. Whilst layer colouring had been developed in Germany from the 1860s, Bartholomew's development of it was both innovative and influential. John Bartholomew junior (1831-1893) first used the firm's trademark layer colouring in Baddeley’s Thorough Guide to the English Lake District (1880). His son, John George Bartholomew (1860-1920), later went on to refine the style. You can see Bartholomew’s continued experimentation with layer colour palettes in the Cairngorms layer colour explorer ( http://geo.nls.uk/maps/bartholomew/layers/ )
Bartholomew based their half-inch maps on more detailed Ordnance Survey mapping at one-inch to the mile (1:63,360). The firm had published 'Reduced Ordnance Maps' of Scotland, England and Wales at this scale from the 1890s. These maps were progressively revised and updated with new information. Usually Bartholomew made revisions the sheets right up to the time of publication, so the date of publication is the best guide to the approximate date of the features shown on the map. You can view the dates of publication for the series at:
● Scotland: https://maps.nls.uk/series/bart_half_scotland.html
● England and Wales: https://maps.nls.uk/series/bart_half_england.html
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
(:unav)...........................................
Facebook
TwitterData identifying landscape areas (shown as polygons) attributed with type of mass movement e.g. landslip. The scale of the data is 1:10 000 scale. Onshore coverage is partial with approximately 30% of England, Scotland and Wales available in the version 2 data release. BGS intend to continue developing coverage at this scale; current focus is to include all large priority urban areas, along with road and rail transport corridors. Mass movement describes areas where deposits have moved down slope under gravity to form landslips. These landslips can affect bedrock, superficial or artificial ground. Mass movement deposits are described in the BGS Rock Classification Scheme Volume 4. However the data also includes foundered strata, where ground has collapsed due to subsidence (this is not described in the Rock Classification Scheme). Caution should be exercised with this data; historically BGS has not always recorded mass movement events and due to the dynamic nature of occurrence significant changes may have occurred since the data was released. The data are available in vector format (containing the geometry of each feature linked to a database record describing their attributes) as ESRI shapefiles and are available under BGS data licence.
Facebook
Twitterhttps://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This data is experimental, see the ‘Access Constraints or User Limitations’ section for more details. This dataset has been generalised to 10 metre resolution where it is still but the space needed for downloads will be improved.A set of UK wide estimated travel area geometries (isochrones), from Output Area (across England, Scotland, and Wales) and Small Area (across Northern Ireland) population-weighted centroids. The modes used in the isochrone calculations are limited to public transport and walking. Generated using Open Trip Planner routing software in combination with Open Street Maps and open public transport schedule data (UK and Ireland).The geometries provide an estimate of reachable areas by public transport and on foot between 7:15am and 9:15am for a range of maximum travel durations (15, 30, 45 and 60 minutes). For England, Scotland and Wales, these estimates were generated using public transport schedule data for Tuesday 15th November 2022. For Northern Ireland, the date used is Tuesday 6th December 2022.The data is made available as a set of ESRI shape files, in .zip format. This corresponds to a total of 18 files; one for Northern Ireland, one for Wales, twelve for England (one per English region, where London, South East and North West have been split into two files each) and four for Scotland (one per NUTS2 region, where the ‘North-East’ and ‘Highlands and Islands’ have been combined into one shape file, and South West Scotland has been split into two files).The shape files contain the following attributes. For further details, see the ‘Access Constraints or User Limitations’ section:AttributeDescriptionOA21CD or SA2011 or OA11CDEngland and Wales: The 2021 Output Area code.Northern Ireland: The 2011 Small Area code.Scotland: The 2011 Output Area code.centre_latThe population-weighted centroid latitude.centre_lonThe population-weighted centroid longitude.node_latThe latitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_lonThe longitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_distThe distance, in meters, between the population-weighted centroid and the nearest Open Street Map “highway” node.stop_latThe latitude of the nearest public transport stop to the population-weighted centroid.stop_lonThe longitude of the nearest public transport stop to the population-weighted centroid.stop_distThe distance, in metres, between the population-weighted centroid and the nearest public transport stop.centre_inBinary value (0 or 1), where 1 signifies the population-weighted centroid lies within the Output Area/Small Area boundary. 0 indicates the population-weighted centroid lies outside the boundary.node_inBinary value (0 or 1), where 1 signifies the nearest Open Street Map “highway” node lies within the Output Area/Small Area boundary. 0 indicates the nearest Open Street Map node lies outside the boundary.stop_inBinary value (0 or 1), where 1 signifies the nearest public transport stop lies within the Output Area/Small Area boundary. 0 indicates the nearest transport stop lies outside the boundary.iso_cutoffThe maximum travel time, in seconds, to construct the reachable area/isochrone. Values are either 900, 1800, 2700, or 3600 which correspond to 15, 30, 45, and 60 minute limits respectively.iso_dateThe date for which the isochrones were estimated, in YYYY-MM-DD format.iso_typeThe start point from which the estimated isochrone was calculated. Valid values are:from_centroid: calculated using population weighted centroid.from_node: calculated using the nearest Open Street Map “highway” node.from_stop: calculated using the nearest public transport stop.no_trip_found: no isochrone was calculated.geometryThe isochrone geometry.iso_hectarThe area of the isochrone, in hectares.Access constraints or user limitations.These data are experimental and will potentially have a wider degree of uncertainty. They remain subject to testing of quality, volatility, and ability to meet user needs. The methodologies used to generate them are still subject to modification and further evaluation.These experimental data have been published with specific caveats outlined in this section. The data are shared with the analytical community with the purpose of benefitting from the community's scrutiny and in improving the quality and demand of potential future releases. There may be potential modification following user feedback on both its quality and suitability.For England and Wales, where possible, the latest census 2021 Output Area population weighted centroids were used as the starting point from which isochrones were calculated.For Northern Ireland, 2011 Small Area population weighted centroids were used as the starting point from which isochrones were calculated. Small Areas and Output Areas contain a similar number of households within their boundaries. 2011 data was used because this was the most up-to-date data available at the time of generating this dataset. Population weighted centroids for Northern Ireland were calculated internally but may be subject to change - in the future we aim to update these data to be consistent with Census 2021 across the UK.For Scotland, 2011 Output Area population-weighted centroids were used as the starting point from which isochrones were calculated. 2011 data was used because this was the most up-to-date data available at the time of work.The data for England, Scotland and Wales are released with the projection EPSG:27700 (British National Grid).The data for Northern Ireland are released with the projection EPSG:29902 (Irish Grid).The modes used in the isochrone calculations are limited to public transport and walking. Other modes were not considered when generating this data.A maximum value of 1.5 kilometres walking distance was used when generating isochrones. This approximately represents typical walking distances during a commute (based on Department for Transport/Labour Force Survey data and Travel Survey for Northern Ireland technical reports).When generating Northern Ireland data, public transport schedule data for both Northern Ireland and Republic of Ireland were used.Isochrone geometries and calculated areas are subject to public transport schedule data accuracy, Open Trip Planner routing methods and Open Street Map accuracy. The location of the population-weighted centroid can also influence the validity of the isochrones, when this falls on land which is not possible or is difficult to traverse (e.g., private land and very remote locations).The Northern Ireland public transport data were collated from several files, and as such required additional pre-processing. Location data are missing for two bus stops. Some services run by local public transport providers may also be missing. However, the missing data should have limited impact on the isochrone output. Due to the availability of Northern Ireland public transport data, the isochrones for Northern Ireland were calculated on a comparable but slight later date of 6th December 2022. Any potential future releases are likely to contained aligned dates between all four regions of the UK.In cases where isochrones are not calculable from the population-weighted centroid, or when the calculated isochrones are unrealistically small, the nearest Open Street Map ‘highway’ node is used as an alternative starting point. If this then fails to yield a result, the nearest public transport stop is used as the isochrone origin. If this also fails to yield a result, the geometry will be ‘None’ and the ‘iso_hectar’ will be set to zero. The following information shows a further breakdown of the isochrone types for the UK as a whole:from_centroid: 99.8844%from_node: 0.0332%from_stop: 0.0734%no_trip_found: 0.0090%The term ‘unrealistically small’ in the point above refers to outlier isochrones with a significantly smaller area when compared with both their neighbouring Output/Small Areas and the entire regional distribution. These reflect a very small fraction of circumstances whereby the isochrone extent was impacted by the centroid location and/or how Open Trip Planner handled them (e.g. remote location, private roads and/or no means of traversing the land). Analysis showed these outliers were consistently below 100 hectares for 60-minute isochrones. Therefore, In these cases, the isochrone point of origin was adjusted to the nearest node or stop, as outlined above.During the quality assurance checks, the extent of the isochrones was observed to be in good agreement with other routing software and within the limitations stated within this section. Additionally, the use of nearest node, nearest stop, and correction of ‘unrealistically small areas’ was implemented in a small fraction of cases only. This culminates in no data being available for 8 out of 239,768 Output/Small Areas.Data is only available in ESRI shape file format (.zip) at this release.https://www.openstreetmap.org/copyright
Facebook
TwitterNot relevant Map covers England, Wales and Scotland and Northern Ireland. A vector map is available under licence. CEH LCM 2015 is available under the same conditions as outlined above.
Facebook
TwitterThe population of the United Kingdom in 2024 was estimated to be approximately 69.3 million, with over 9.6 million people living in South East England. London had the next highest population, at almost 9.1 million people, followed by the North West England at 7.7 million. With the UK's population generally concentrated in England, most English regions have larger populations than the constituent countries of Scotland, Wales, and Northern Ireland, which had populations of 5.5 million, 3.2 million, and 1.9 million respectively. English counties and cities The United Kingdom is a patchwork of various regional units, within England the largest of these are the regions shown here, which show how London, along with the rest of South East England had around 18 million people living there in this year. The next significant regional units in England are the 47 metropolitan and ceremonial counties. After London, the metropolitan counties of the West Midlands, Greater Manchester, and West Yorkshire were the biggest of these counties, due to covering the large urban areas of Birmingham, Manchester, and Leeds respectively. Regional divisions in Scotland, Wales and Northern Ireland The smaller countries that comprise the United Kingdom each have different local subdivisions. Within Scotland these are called council areas, whereas in Wales the main regional units are called unitary authorities. Scotland's largest Council Area by population is that of Glasgow City at over 650,000, while in Wales, it was the Cardiff Unitary Authority at around 384,000. Northern Ireland, on the other hand, has eleven local government districts, the largest of which is Belfast with a population of approxiamtely 352,000.
Facebook
TwitterGreat Britain's (England, Scotland, Wales) cities (e.g. London, Birmingham, Edinburgh) named and represented as point features with an indicative bounding box. This data is often used for geocoding, service delivery and statistical analysis. OS Cities Data is available in a number of Ordnance Survey (OS) products: OS Open Names (bounding box and point geometry), OS Names API, MasterMap Topography Layer (point geometry), Vector Map Local (point geometry) and Vector Map District (point geometry). Small-scale cartographic representations are also available in OS cartographic products. All data is collected by Ordnance Survey as part of their role as the National Mapping Agency of Great Britain.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A PDF map that shows the Nomenclature of Territorial Units for Statistics, level 1, 2 and 3 and Local Administrative Units, level 1 areas in England and Wales as at January 2012 and in Scotland as at December 2008. (File Size - 6 MB)
Facebook
TwitterThe dataset contains Local Authority Boundaries for Great Britain (England, Scotland and Wales) as of December 2021. A total of 363 Local Authority objects are included. Created for future use in folium choropleth maps when combined with other datasets that contain the matching Local Authority Codes. Additionally, subsets were created for convenience holding the boundaries of local authorities in England and Wales together, and in each individual country, i.e., England, Scotland and Wales on their own.
The original dataset was downloaded from ONS. Since the dataset was too large for most use cases (129.4MB) due to the level of detail, it was simplified with https://mapshaper.org/ using the default method (Visvalingam / weighted area) with 'prevent shape removal' enabled. The simplification was set to 1.4%, followed by intersection repair and export back to geojson. The shape coordinates were originally in British National Grid (BNG) format, which had to be converted to WGS84 (latitude and longitude) format. Finally, the coordinates were rounded to 6 decimal places, resulting in a file containing 2.2MB of uncompressed data with a sensible level of detail. The individual country data were extracted, based on the LAD21CD property, to create the additional files.
https://www.ons.gov.uk/methodology/geography/licences
Digital boundary products and reference maps are supplied under the Open Government Licence. You must use the following copyright statements when you reproduce or use this material:
- Source: Office for National Statistics licensed under the Open Government Licence v.3.0
- Contains OS data © Crown copyright and database right 2023