Facebook
TwitterThe Access Network Map of England
is a national composite dataset of Access layers, showing analysis of extent of
Access provision for each Lower Super Output Area (LSOA), as a percentage or
area coverage of access in England. The ‘Access Network Map’ was developed by
Natural England to inform its work to improve opportunities for people to enjoy
the natural environment. This map shows, across England, the
relative abundance of accessible land in relation to where people
live. Due to issues explained below, the map does not, and cannot, provide
a definitive statement of where intervention is necessary. Rather,
it should be used to identify areas of interest which require further
exploration. Natural England believes that places where
people can enjoy the natural environment should be improved and created where
they are most wanted. Access Network Maps help support this work by
providing means to assess the amount of accessible land available in relation
to where people live. They combine all the available good quality data on
access provision into a single dataset and relate this to population.
This provides a common foundation for regional and national teams to use when
targeting resources to improve public access to greenspace, or projects that
rely on this resource. The Access Network Maps are compiled from the
datasets available to Natural England which contain robust, nationally
consistent data on land and routes that are normally available to the public
and are free of charge. Datasets contained in the aggregated
data:•
Agri-environment
scheme permissive access (routes and open access)•
CROW access land
(including registered common land and Section 16)•
Country Parks•
Cycleways (Sustrans
Routes) including Local/Regional/National and Link Routes•
Doorstep Greens•
Local Nature
Reserves•
Millennium Greens•
National Nature
Reserves (accessible sites only)•
National Trails•
Public Rights of
Way•
Forestry Commission
‘Woods for People’ data•
Village Greens –
point data only Due to the quantity and complexity of data
used, it is not possible to display clearly on a single map the precise
boundary of accessible land for all areas. We therefore selected a
unit which would be clearly visible at a variety of scales and calculated the
total area (in hectares) of accessible land in each. The units we
selected are ‘Lower Super Output Areas’ (LSOAs), which represent where
approximately 1,500 people live based on postcode. To calculate the
total area of accessible land for each we gave the linear routes a notional
width of 3 metres so they could be measured in hectares. We then
combined together all the datasets and calculated the total hectares of
accessible land in each LSOA. For further information about this data see the following links:Access Network Mapping GuidanceAccess Network Mapping Metadata Full metadata can be viewed on data.gov.uk.
Facebook
TwitterRelease date: 27 Oct 2020Average views per month: 696Sian Wilson (Senior Development Manager, Crown Estate Scotland)
Facebook
TwitterThis dataset consists of the vector version of the Land Cover Map 2015 (LCM2015) for Great Britain. The vector data set is the core LCM data set from which the full range of other LCM2015 products is derived. It provides a number of attributes including land cover at the target class level (given as an integer value and also as text), the number of pixels within the polygon classified as each land cover type and a probability value provided by the classification algorithm (for full details see the LCM2015 Dataset Documentation). The 21 target classes are based on the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompass the entire range of UK habitats. LCM2015 is a land cover map of the UK which was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. LCM2015 consists of a range of raster and vector products and users should familiarise themselves with the full range (see related records, the CEH web site and the LCM2015 Dataset documentation) to select the product most suited to their needs. LCM2015 was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. It is one of a series of land cover maps, produced by UKCEH since 1990. They include versions in 1990, 2000, 2007, 2015, 2017, 2018 and 2019.
Facebook
TwitterThe Summarised Botanical Value Map for England is a map identifying areas likely to be rich in high quality habitat based on BSBI vascular plant records. Under the Natural Capital and Ecosystem Assessment (NCEA) Pilot, Natural England and the Botanical Society of Britain and Ireland (BSBI) have been working in partnership to use BSBI's vast database of plant records to inform the evidence base for tree-planting activities. Poorly targeted tree planting risks damaging wildlife and carbon-rich habitats, therefore using these data we aim to ensure that areas of high conservation value are preserved in the landscape. The summarised botanical value map provides an easily interpretable output which categorises monads (1 x 1 km grid squares) as being of Low, Moderate or High botanical value according to the presence of Rare, Scarce and Threatened (RST) plant species and/or the proportion of Priority Habitat Positive Indicator (PHPI) species that were recorded within the 1 x 1 km grid square between 1970 and 2021. The PHPI species are a combination of BSBI axiophytes, positive indicators for common standards monitoring and ancient woodland indicators. The dataset includes an overall botanical value, as well as values based on only the presence of RST plant species, and a value for each broad habitat type based on the PHPI species records. By viewing the different attributes, you can gain insights into how valuable a monad is for different habitat types and for plant species of conservation concern, as well as an indication of how well a particular monad has been surveyed. The categories of 'No indicators, poor survey coverage' and 'No indicators, good survey coverage' indicate where no indicator species have been recorded and survey coverage either is above or below a threshold of 3 'recorder days'. A 'recorder day' is defined as being when 40 or more species have been recorded on a single visit and 3 recorder days is assumed sufficient to achieve good survey coverage within a 1 x 1 km grid square. This map is not intended to be used to carry out detailed assessments of individual site suitability for tree planting, for which the RST plant species heatmap at 100 x 100 m resolution and the PHPI heatmaps at 1 x 1 km resolution have been developed by BSBI and Natural England. However, the summarised botanical value map can provide useful insights at a strategic landscape scale, to highlight monads of high value for vascular plants and inform spatial planning and prioritisation, and other land management decision-making. These should be used alongside other environmental datasets and local knowledge to ensure decisions are supported by the appropriate evidence. Please get in contact if you have any queries about the data or appropriate uses at botanicalheatmaps@naturalengland.org.uk Further information can be found in the technical report here: http://nepubprod.appspot.com/publication/5063363230171136. Attribution statement: Contains data supplied by © Natural England © Botanical Society of Britain and Ireland. Reproduced by permission of Ordnance Survey on behalf of HMSO. © Crown copyright and database right 2020. Ordnance Survey Licence number 100022021. Source: Office for National Statistics licensed under the Open Government Licence v.3.0. Contains OS data © Crown copyright and database right [2020] © JNCC, licenced under Open Government Licence v.3.0. Walker, K.J. 2018. Vascular plant 'axiophyte' scores for Great Britain, derived from the assessments of the vice-county recorders of the Botanical Society of Britain and Ireland (May 2016). NERC Environmental Information Data Centre. (Dataset). Available under Open Government Licence v.3.0. Glaves, P., Rotherham, I.D., Wright, B., Handley, C. & Birkbeck, J. 2009. A survey of the coverage, use and application of ancient woodland indicator lists in the UK. Hallam Environmental Consultants Ltd., Biodiversity and Landscape History Research Institute and the Geography, Tourism and Environment Change Research Unit, Sheffield Hallam University. © NERC Copyright 2004. Hill, M. O., Preston C. D. & Roy D. B. 2004. PLANTATT. Attributes of British and Irish Plants: Status, Size, Life history, Geography and Habitats. NERC Centre for Ecology and Hydrology: Huntingdon.
Facebook
TwitterThe Crop Map of England (CROME) is a polygon vector dataset mainly containing the crop types of England. The dataset contains approximately 32 million hexagonal cells classifying England into over 20 main crop types, grassland, and non-agricultural land covers, such as Woodland, Water Bodies, Fallow Land and other non-agricultural land covers. The classification was created automatically using supervised classification (Random Forest Classification) from the combination of Sentinel-1 Radar and Sentinel-2 Optical Satellite images during the period late January 2019 – September 2019. The dataset was created to aid the classification of crop types from optical imagery, which can be affected by cloud cover. The results were checked against survey data collected by field inspectors and visually validated. The data has been split into the Ordnance Survey Ceremonial Counties and each county is given a three letter code. Please refer to the CROME specification document to see which county each CODE label represents.
Facebook
Twitterhttps://eidc.ceh.ac.uk/licences/lcm-raster/plainhttps://eidc.ceh.ac.uk/licences/lcm-raster/plain
This dataset consists of the 25m raster version of the Land Cover Map 1990 (LCM1990) for Great Britain. The 25m raster product consists of three bands: Band 1 - raster representation of the majority (dominant) class per polygon for 21 target classes; Band 2 - mean per polygon probability as reported by the Random Forest classifier (see supporting information); Band 3 - percentage of the polygon covered by the majority class. The 21 target classes are based on the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompass the entire range of UK habitats. This dataset is derived from the vector version of the Land Cover Map, which contains individual parcels of land cover and is the highest available spatial resolution. The 25m raster is the most detailed of the LCM1990 raster products both thematically and spatially, and it is used to derive the 1km products. LCM1990 is a land cover map of the UK which was produced at the UK Centre for Ecology & Hydrology by classifying satellite images (mainly from 1989 and 1990) into 21 Broad Habitat-based classes. It is the first in a series of land cover maps for the UK, which also includes maps for 2000, 2007, 2015, 2017, 2018 and 2019. LCM1990 consists of a range of raster and vector products and users should familiarise themselves with the full range (see related records, the UKCEH web site and the LCM1990 Dataset documentation) to select the product most suited to their needs. This work was supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The England species map was funded by DEFRA’s Natural Capital and Ecosystem Assessment (NCEA) programme. The map was created using satellite remote sensing data (Sentinel-2) and machine learning to classify common tree species in England. The model was trained to distinguish 35 common tree species, with minority species grouped into “Other broadleaf” or “Other conifer” classes for better classification performance. The final product comprises a species classification and confidence raster output.
The species map represents a predicted distribution of common tree species in England, produced using a time series of multispectral satellite remote sensing data (Sentinel-2) and machine learning. A classifier based on the XGBoost algorithm was trained to distinguish tree species, utilising a time-series of surface reflectance data and labelled training samples from the sub-compartment database (SCDB). To enhance classification performance, minority species with fewer than 1,000 training samples were grouped into broader categories, resulting in a total of 35 classes. Given the significant class imbalances, a sample weighting strategy was employed to guard against significant underfitting of the minority classes. Model evaluation demonstrated strong classification performance, with an overall accuracy of 89% and balanced class accuracy of 90%. Predictions were made at the pixel level and used to generate a species classification and confidence raster output. Field validation for Norway spruce within the Ips typographus demarcated area, confirmed a precision of 69%, aligning with test data results for this class. Additional validation using National Forest Inventory (NFI) data further reinforced model reliability, though accuracy was observed to be worse for underrepresented species.
Facebook
TwitterOrdnance Survey ® OpenMap - Local Buildings are polygon features that represent a built entity that includes a roof. This is a generalized building and could be made up of an amalgamation of other buildings and structures.Ordnance Survey ® OpenMap - Local Important Buildings are polygon features that represent buildings that fall within the extent of a functional site across England, Wales and Scotland. Important Buildings are classified into a number of building themes such as: Attraction and Leisure - A feature that provides non-sporting leisure activities for the public. Includes Tourist Attractions.Air Transport - This theme includes all sites associated with movement of passengers and goods by air, or where aircraft take off and land. Includes Airport, Helicopter Station, Heliport.Cultural Facility - A feature that is deemed to be of particular interest to society. Includes Museum, Library, Art Gallery.Education facility - This theme includes a very broad group of sites with a common high level primary function of providing education (either state funded or by fees). Includes: Primary Education, Secondary Education, Higher or University Education, Further Education, Non State Secondary Education, Non State Primary Education, Special Needs Education.Emergency Services - Emergency services are organizations which ensure public safety and health by addressing different emergencies. Includes: Fire Station, Police Station.Medical Facility - This theme includes sites which focus on the provision of secondary medical care services. Includes: Medical Care Accommodation, Hospital, Hospice.Religious Building - A place where members of a religious group congregate for worship. Includes: Places of Worship (churches etc.)Retail - A feature that sells to the general public finished goods. Includes: Post OfficeRoad Transport - This theme includes: Bus Stations, Coach Stations, Road user services.Sports and Leisure Facility - A feature where many different sports can be played. Includes: Sports and Leisure CentreWater Transport - This theme includes sites involved in the transfer of passengers and or goods onto vessels for transport across water. Includes: Port consisting of Docks and Nautical Berthing, Vehicular Ferry Terminal, Passenger Ferry Terminal. With OS OpenMap - Local Buildings and Important Buildings you can: Understand your area in detail, including the location of key sites such as schools and hospitals.Share high-quality maps of development proposals to help interested parties to understand their extent and impact.Analyse data in relation to important public buildings, roads, railways, lines and more.Use in conjunction with other layers such as Functional Sites – an area or extent which represents a certain type of function or activity.Present accurate information consistently with other available open data products. For more information on OS OpenMap see their website: https://www.ordnancesurvey.co.uk/products/os-open-map-local The currency of the data is 10/2025
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A PDF map that shows the health areas in England and Wales as at April 2013. The map shows the health geographies (clinical commissioning group, NHS area teams, and NHS commissioning regions) that became operative in England as at April 2013 and the local health boards in Wales. (File Size - 4 MB)
Facebook
TwitterThis dataset consists of the vector version of the Land Cover Map 1990 (LCM1990) for Great Britain. The vector data set is the core LCM data set from which the full range of other LCM1990 products are derived. It provides a number of attributes including land cover at the target class level (given as an integer value and also as text), the number of pixels within the polygon classified as each land cover type and a probability value provided by the classification algorithm (for full details see the LCM1990 Dataset Documentation). The 21 target classes are based on the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompass the entire range of UK habitats. LCM1990 is a land cover map of the UK which was produced at the UK Centre for Ecology & Hydrology by classifying satellite images (mainly from 1989 and 1990) into 21 Broad Habitat-based classes. It is the first in a series of land cover maps for the UK, which also includes maps for 2000, 2007, 2015, 2017, 2018 and 2019. LCM1990 consists of a range of raster and vector products and users should familiarise themselves with the full range (see related records, the UKCEH web site and the LCM1990 Dataset documentation) to select the product most suited to their needs. This work was supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability.
Facebook
TwitterA PDF map showing the travel to work areas (TTWAs) in the United Kingdom as at December 2011. (File Size - 3 MB)
Facebook
TwitterThese maps are based on the Ordnance Survey quarter-inch to the mile series of maps, for England / Wales and Scotland. Most maps in this series show solid geology only, but there are a few drift maps within the New Series maps of England / Wales. There are three distinct series of quarter-inch maps: - Geological map of England and Wales. Quarter-inch series 1:253 440: Old Series (1889 - 1906). This is a set of hand-coloured maps which were published between 1889 and 1895 with later revisions. They were engraved onto copper. The series was issued as 15 sheets, where sheet 3 was an index to colours. - Geological map of England and Wales. Quarter-inch series 1:253 440: New Series (1906-1977). Following the popularity of the Old Series 'Quarter-inch' map, a New Series of colour-printed maps was issued. This was a long-lived series, with sheets still being published in the late 1970s. Maps were published between 1906–1977. The series was issued as 15 sheets, where sheet 3 was an index to colours. - Geological Survey of Scotland. Quarter-inch series 1:253 440 (1904-1977). These Scottish maps were published in parallel with the English / Welsh New Series, and was issued as 17 sheets. The quarter-inch mapping was superseded in the 1970s - 1980s by the Universal Transverse Mercator (UTM) Series geological maps of the UK and Continental Shelf. Geological maps represent a geologist's compiled interpretation of the geology of an area. A geologist will consider the data available at the time, including measurements and observations collected during field campaigns, as well as their knowledge of geological processes and the geological context to create a model of the geology of an area. This model is then fitted to a topographic basemap and drawn up at the appropriate scale, with generalization if necessary, to create a geological map, which is a representation of the geological model. Explanatory notes and vertical and horizontal cross sections may be published with the map. Geological maps may be created to show various aspects of the geology, or themes. The most common map themes held by BGS are solid (later referred to as bedrock) and drift (later referred to as superficial). These maps are hard-copy paper records stored in the National Geoscience Data Centre (NGDC) and are delivered as digital scans through the BGS website.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The Young Trees map was funded by DEFRA through the Natural Capital and Ecosystem Assessment (NCEA) programme. The young trees mapping project developed a machine learning methodology using remote sensing to identify restocked stands where saplings persist in healthy numbers. The approach uses an eight-year timeframe since planting, crucial for verifying government grant compliance. Automating this methodology ensures easy replication and model transferability across years by training on multi-year data, making it resilient to climatic variations. Validation has confirmed the model’s accuracy, recommending high-confidence thresholds for restock classification. In the future, integration with the National Forest Inventory will enhance woodland mapping, accelerating updates and improving national indicators for forest extent and connectivity.
The aim of the young trees mapping project was to develop a machine learning methodology using remote sensing data, to identify stands where trees have been planted and saplings persist in healthy numbers. This was conducted within restock contexts across a specific timeframe, currently eight years since planting. This timeframe is significant because funding provided by government grants for planting can be reclaimed if it can be demonstrated that the funding has not been utilised by the landowner. Furthermore, the restock status of clearfell polygons has the potential to improve the accuracy of extent and connectivity environmental indicators developed as part of the Tree Health Resilience Strategy (THRS). The aim of this part of the project was to automate the methodology in such a way that it can be easily replicated, and to make the model transferable across years. Specifically, to train the model using multiple years of data, which makes the model agnostic to variable annual climactic conditions. The model is both robust and accurate, as demonstrated by the validation. It is recommended that only polygons with over 95% and under 5% confidence are treated as restocked or not restocked with any certainty. Outside of these limits confidence scores are only indicative of the restock status. In the future, the model is likely to be implemented as part of the National Forest Inventory (NFI) woodland map creation procedure. This will result in accelerated turnover of polygon labels from clearfell to young trees, where appropriate and will provide an important improvement to a national indicator for woodland extent and connectivity.
Facebook
TwitterThe Crop Map of England (CROME) is a polygon vector dataset mainly containing the crop types of England. The dataset contains approximately 32 million hexagonal cells classifying England into over 15 main crop types, grassland, and non-agricultural land covers, such as Woodland, Water Bodies, Fallow Land and other non-agricultural land covers. The classification was created automatically using supervised classification (Random Forest Classification) from the combination of Sentinel-1 Radar Satellite time series images during the period January 2024 – August 2024. The dataset was created to aid the classification of crop types from optical imagery, which can be affected by cloud cover. The results were checked against survey data collected by field inspectors and visually validated. The data has been split into the Ordnance Survey Ceremonial Counties and each county is given a three letter code. Please refer to the CROME specification document to see which county each CODE label represents. Attribution statement: © Rural Payments Agency copyright and/or database right 2024. All rights reserved.
Facebook
TwitterThe Land Cover Map 2024 (UK Land Cover Statistics) dataset summarises the coverage of different land cover types across Great Britain and Northern Ireland, classified into 21 UKCEH land cover classes, based upon Biodiversity Action Plan broad habitats. This data is provided in both .csv and geopackage (vector) formats. Statistics are calculated at country, county, and regional (England only) levels from the Land Cover Map 2024 (10 m classified pixels) datasets for Great Britain and Northern Ireland. A full description of this and all UKCEH LCM2024 products are available from the LCM2024 product documentation. In addition to UKCEH as copyright holders, the Land Cover Map 2024 (UK Land Cover Statistics) products use digital boundary products and reference maps. The source of the data is the Office for National Statistics and they are licensed under the Open Government Licence v.3.0. They contain OS data © Crown copyright and database right [2024]. Full details about this dataset can be found at https://doi.org/10.5285/0171ccb2-1c0c-404f-b782-e7204a86a92f
Facebook
TwitterThis data is experimental, see the ‘Access Constraints or User Limitations’ section for more details. This dataset has been generalised to 10 metre resolution where it is still but the space needed for downloads will be improved.A set of UK wide estimated travel area geometries (isochrones), from Output Area (across England, Scotland, and Wales) and Small Area (across Northern Ireland) population-weighted centroids. The modes used in the isochrone calculations are limited to public transport and walking. Generated using Open Trip Planner routing software in combination with Open Street Maps and open public transport schedule data (UK and Ireland).The geometries provide an estimate of reachable areas by public transport and on foot between 7:15am and 9:15am for a range of maximum travel durations (15, 30, 45 and 60 minutes). For England, Scotland and Wales, these estimates were generated using public transport schedule data for Tuesday 15th November 2022. For Northern Ireland, the date used is Tuesday 6th December 2022.The data is made available as a set of ESRI shape files, in .zip format. This corresponds to a total of 18 files; one for Northern Ireland, one for Wales, twelve for England (one per English region, where London, South East and North West have been split into two files each) and four for Scotland (one per NUTS2 region, where the ‘North-East’ and ‘Highlands and Islands’ have been combined into one shape file, and South West Scotland has been split into two files).The shape files contain the following attributes. For further details, see the ‘Access Constraints or User Limitations’ section:AttributeDescriptionOA21CD or SA2011 or OA11CDEngland and Wales: The 2021 Output Area code.Northern Ireland: The 2011 Small Area code.Scotland: The 2011 Output Area code.centre_latThe population-weighted centroid latitude.centre_lonThe population-weighted centroid longitude.node_latThe latitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_lonThe longitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_distThe distance, in meters, between the population-weighted centroid and the nearest Open Street Map “highway” node.stop_latThe latitude of the nearest public transport stop to the population-weighted centroid.stop_lonThe longitude of the nearest public transport stop to the population-weighted centroid.stop_distThe distance, in metres, between the population-weighted centroid and the nearest public transport stop.centre_inBinary value (0 or 1), where 1 signifies the population-weighted centroid lies within the Output Area/Small Area boundary. 0 indicates the population-weighted centroid lies outside the boundary.node_inBinary value (0 or 1), where 1 signifies the nearest Open Street Map “highway” node lies within the Output Area/Small Area boundary. 0 indicates the nearest Open Street Map node lies outside the boundary.stop_inBinary value (0 or 1), where 1 signifies the nearest public transport stop lies within the Output Area/Small Area boundary. 0 indicates the nearest transport stop lies outside the boundary.iso_cutoffThe maximum travel time, in seconds, to construct the reachable area/isochrone. Values are either 900, 1800, 2700, or 3600 which correspond to 15, 30, 45, and 60 minute limits respectively.iso_dateThe date for which the isochrones were estimated, in YYYY-MM-DD format.iso_typeThe start point from which the estimated isochrone was calculated. Valid values are:from_centroid: calculated using population weighted centroid.from_node: calculated using the nearest Open Street Map “highway” node.from_stop: calculated using the nearest public transport stop.no_trip_found: no isochrone was calculated.geometryThe isochrone geometry.iso_hectarThe area of the isochrone, in hectares.Access constraints or user limitations.These data are experimental and will potentially have a wider degree of uncertainty. They remain subject to testing of quality, volatility, and ability to meet user needs. The methodologies used to generate them are still subject to modification and further evaluation.These experimental data have been published with specific caveats outlined in this section. The data are shared with the analytical community with the purpose of benefitting from the community's scrutiny and in improving the quality and demand of potential future releases. There may be potential modification following user feedback on both its quality and suitability.For England and Wales, where possible, the latest census 2021 Output Area population weighted centroids were used as the starting point from which isochrones were calculated.For Northern Ireland, 2011 Small Area population weighted centroids were used as the starting point from which isochrones were calculated. Small Areas and Output Areas contain a similar number of households within their boundaries. 2011 data was used because this was the most up-to-date data available at the time of generating this dataset. Population weighted centroids for Northern Ireland were calculated internally but may be subject to change - in the future we aim to update these data to be consistent with Census 2021 across the UK.For Scotland, 2011 Output Area population-weighted centroids were used as the starting point from which isochrones were calculated. 2011 data was used because this was the most up-to-date data available at the time of work.The data for England, Scotland and Wales are released with the projection EPSG:27700 (British National Grid).The data for Northern Ireland are released with the projection EPSG:29902 (Irish Grid).The modes used in the isochrone calculations are limited to public transport and walking. Other modes were not considered when generating this data.A maximum value of 1.5 kilometres walking distance was used when generating isochrones. This approximately represents typical walking distances during a commute (based on Department for Transport/Labour Force Survey data and Travel Survey for Northern Ireland technical reports).When generating Northern Ireland data, public transport schedule data for both Northern Ireland and Republic of Ireland were used.Isochrone geometries and calculated areas are subject to public transport schedule data accuracy, Open Trip Planner routing methods and Open Street Map accuracy. The location of the population-weighted centroid can also influence the validity of the isochrones, when this falls on land which is not possible or is difficult to traverse (e.g., private land and very remote locations).The Northern Ireland public transport data were collated from several files, and as such required additional pre-processing. Location data are missing for two bus stops. Some services run by local public transport providers may also be missing. However, the missing data should have limited impact on the isochrone output. Due to the availability of Northern Ireland public transport data, the isochrones for Northern Ireland were calculated on a comparable but slight later date of 6th December 2022. Any potential future releases are likely to contained aligned dates between all four regions of the UK.In cases where isochrones are not calculable from the population-weighted centroid, or when the calculated isochrones are unrealistically small, the nearest Open Street Map ‘highway’ node is used as an alternative starting point. If this then fails to yield a result, the nearest public transport stop is used as the isochrone origin. If this also fails to yield a result, the geometry will be ‘None’ and the ‘iso_hectar’ will be set to zero. The following information shows a further breakdown of the isochrone types for the UK as a whole:from_centroid: 99.8844%from_node: 0.0332%from_stop: 0.0734%no_trip_found: 0.0090%The term ‘unrealistically small’ in the point above refers to outlier isochrones with a significantly smaller area when compared with both their neighbouring Output/Small Areas and the entire regional distribution. These reflect a very small fraction of circumstances whereby the isochrone extent was impacted by the centroid location and/or how Open Trip Planner handled them (e.g. remote location, private roads and/or no means of traversing the land). Analysis showed these outliers were consistently below 100 hectares for 60-minute isochrones. Therefore, In these cases, the isochrone point of origin was adjusted to the nearest node or stop, as outlined above.During the quality assurance checks, the extent of the isochrones was observed to be in good agreement with other routing software and within the limitations stated within this section. Additionally, the use of nearest node, nearest stop, and correction of ‘unrealistically small areas’ was implemented in a small fraction of cases only. This culminates in no data being available for 8 out of 239,768 Output/Small Areas.Data is only available in ESRI shape file format (.zip) at this release.https://www.openstreetmap.org/copyright
Facebook
Twitterhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
This dataset comprises 2 collections of maps. The facsmile collection contains all the marginalia information from the original map as well as the map itself, while the georectified collection contains just the map with an associated index for locating them. Each collection comprises approximately 101 000 monochrome images at 6-inch (1:10560) scale. Each image is supplied in .tiff format with appropriate ArcView and MapInfo world files, and shows the topography for all areas of England, Wales and Scotland as either quarter or, in some cases, full sheets. The images will cover the approximate epochs 1880's, 1900's, 1910's, 1920's and 1930's, but note that coverage is not countrywide for each epoch. The data was purchased by BGS from Sitescope, who obtained it from three sources - Royal Geographical Society, Trinity College Dublin and the Ordnance Survey. The data is for internal use by BGS staff on projects, and is available via a customised application created for the network GDI enabling users to search for and load the maps of their choice. The dataset will have many uses across all the geoscientific disciplines across which BGS operates, and should be viewed as a valuable addition to the BGS archive. There has been a considerable amount of work done during 2005, 2006 and 2007 to improve the accuracy of the OS Historic Map Collection. All maps should now be located to +- 50m or better. This is the best that can be achieved cost effectively. There are a number of reasons why the maps are inaccurate. Firstly, the original maps are paper and many are over 100 years old. They have not been stored in perfect condition. The paper has become distorted to varying degrees over time. The maps were therefore not accurate before scanning. Secondly, different generations of maps will have used different surveying methods and different spatial referencing systems. The same geographical object will not necessarily be in the same spatial location on subsequent editions. Thirdly, we are discussing maps, not plans. There will be cartographic generalisations which will affect the spatial representation and location of geographic objects. Finally, the georectification was not done in BGS but by the company from whom we purchased the maps. The company no longer exists. We do not know the methodology used for georectification.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A PDF map showing the registration districts in England and Wales as at December 2012. (File Size - 3 MB)
Facebook
Twittermixed sampling type - incorporates all previous detailed soil mapping augmented by a reconnaissance survey at 2-3/kme This dataset does not contain any soil parameter information. It can be associated with parameter information on the basis of soil type
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
INDEX VILLARIS: or, An Alphabetical Table of all the cities, market-towns, parishes, villages, and private seats in England and Wales was first published by John Adams in 1680. This dataset consists of a transcription of all 24,000 place-names listed in Index Villaris, together with the the symbols representing Adams's categorisation of each place and modern versions of the place-names and the counties and administrative hundred in which they lie or lay. It also comprises a transcription of the latitude and longitude recorded by Adams, and another set of coordinates generated by the application of a thin plate spline transformation calculated by matching some 2,000 place-names to the accurately-georeferenced CAMPOP Towns dataset.
The dataset is being checked, corrected, and refined to include linkage to other geospatial references such as OpenStreetMap and Wikidata, and will in due course be made available in the Linked Places Format.
Facebook
TwitterThe Access Network Map of England
is a national composite dataset of Access layers, showing analysis of extent of
Access provision for each Lower Super Output Area (LSOA), as a percentage or
area coverage of access in England. The ‘Access Network Map’ was developed by
Natural England to inform its work to improve opportunities for people to enjoy
the natural environment. This map shows, across England, the
relative abundance of accessible land in relation to where people
live. Due to issues explained below, the map does not, and cannot, provide
a definitive statement of where intervention is necessary. Rather,
it should be used to identify areas of interest which require further
exploration. Natural England believes that places where
people can enjoy the natural environment should be improved and created where
they are most wanted. Access Network Maps help support this work by
providing means to assess the amount of accessible land available in relation
to where people live. They combine all the available good quality data on
access provision into a single dataset and relate this to population.
This provides a common foundation for regional and national teams to use when
targeting resources to improve public access to greenspace, or projects that
rely on this resource. The Access Network Maps are compiled from the
datasets available to Natural England which contain robust, nationally
consistent data on land and routes that are normally available to the public
and are free of charge. Datasets contained in the aggregated
data:•
Agri-environment
scheme permissive access (routes and open access)•
CROW access land
(including registered common land and Section 16)•
Country Parks•
Cycleways (Sustrans
Routes) including Local/Regional/National and Link Routes•
Doorstep Greens•
Local Nature
Reserves•
Millennium Greens•
National Nature
Reserves (accessible sites only)•
National Trails•
Public Rights of
Way•
Forestry Commission
‘Woods for People’ data•
Village Greens –
point data only Due to the quantity and complexity of data
used, it is not possible to display clearly on a single map the precise
boundary of accessible land for all areas. We therefore selected a
unit which would be clearly visible at a variety of scales and calculated the
total area (in hectares) of accessible land in each. The units we
selected are ‘Lower Super Output Areas’ (LSOAs), which represent where
approximately 1,500 people live based on postcode. To calculate the
total area of accessible land for each we gave the linear routes a notional
width of 3 metres so they could be measured in hectares. We then
combined together all the datasets and calculated the total hectares of
accessible land in each LSOA. For further information about this data see the following links:Access Network Mapping GuidanceAccess Network Mapping Metadata Full metadata can be viewed on data.gov.uk.