100+ datasets found
  1. f

    Pathway enrichment analysis.

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    • +1more
    Updated Feb 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jiao, De-min; Tang, Xia-li; Chen, Qing-yong; Hu, Hui-zhen; Wang, Jian; Li, You; Yan, Li; Chen, Jun; Wang, Li-shan (2017). Pathway enrichment analysis. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001802236
    Explore at:
    Dataset updated
    Feb 23, 2017
    Authors
    Jiao, De-min; Tang, Xia-li; Chen, Qing-yong; Hu, Hui-zhen; Wang, Jian; Li, You; Yan, Li; Chen, Jun; Wang, Li-shan
    Description

    Pathway enrichment analysis.

  2. f

    Top five KEGG pathway enrichment analysis.

    • datasetcatalog.nlm.nih.gov
    Updated Nov 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gao, Nan; Hao, Weiting; Hao, Shengli; Su, Long; Huang, Guannan (2022). Top five KEGG pathway enrichment analysis. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000253961
    Explore at:
    Dataset updated
    Nov 21, 2022
    Authors
    Gao, Nan; Hao, Weiting; Hao, Shengli; Su, Long; Huang, Guannan
    Description

    Top five KEGG pathway enrichment analysis.

  3. f

    Pathway enrichment analysis of differentially expressed genes (Top ten...

    • datasetcatalog.nlm.nih.gov
    Updated Sep 14, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhang, Yihui; Gao, Jianwei; Ding, Qian; Li, Huayin; Wang, Fengde; Li, Jingjuan (2015). Pathway enrichment analysis of differentially expressed genes (Top ten enriched pathways are shown). [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001905579
    Explore at:
    Dataset updated
    Sep 14, 2015
    Authors
    Zhang, Yihui; Gao, Jianwei; Ding, Qian; Li, Huayin; Wang, Fengde; Li, Jingjuan
    Description

    Pathway enrichment analysis of differentially expressed genes (Top ten enriched pathways are shown).

  4. DataSheet_2_pathfindR: An R Package for Comprehensive Identification of...

    • frontiersin.figshare.com
    xlsx
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ege Ulgen; Ozan Ozisik; Osman Ugur Sezerman (2023). DataSheet_2_pathfindR: An R Package for Comprehensive Identification of Enriched Pathways in Omics Data Through Active Subnetworks.xlsx [Dataset]. http://doi.org/10.3389/fgene.2019.00858.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Ege Ulgen; Ozan Ozisik; Osman Ugur Sezerman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pathway analysis is often the first choice for studying the mechanisms underlying a phenotype. However, conventional methods for pathway analysis do not take into account complex protein-protein interaction information, resulting in incomplete conclusions. Previously, numerous approaches that utilize protein-protein interaction information to enhance pathway analysis yielded superior results compared to conventional methods. Hereby, we present pathfindR, another approach exploiting protein-protein interaction information and the first R package for active-subnetwork-oriented pathway enrichment analyses for class comparison omics experiments. Using the list of genes obtained from an omics experiment comparing two groups of samples, pathfindR identifies active subnetworks in a protein-protein interaction network. It then performs pathway enrichment analyses on these identified subnetworks. To further reduce the complexity, it provides functionality for clustering the resulting pathways. Moreover, through a scoring function, the overall activity of each pathway in each sample can be estimated. We illustrate the capabilities of our pathway analysis method on three gene expression datasets and compare our results with those obtained from three popular pathway analysis tools. The results demonstrate that literature-supported disease-related pathways ranked higher in our approach compared to the others. Moreover, pathfindR identified additional pathways relevant to the conditions that were not identified by other tools, including pathways named after the conditions.

  5. f

    Data from: Network-based pathway enrichment analysis.

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Mar 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lauria, Mario; Parolo, Silvia; Priami, Corrado; Scott-Boyer, Marie-Pier; Misselbeck, Karla; Marchetti, Luca; Caberlotto, Laura (2018). Network-based pathway enrichment analysis. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000621876
    Explore at:
    Dataset updated
    Mar 12, 2018
    Authors
    Lauria, Mario; Parolo, Silvia; Priami, Corrado; Scott-Boyer, Marie-Pier; Misselbeck, Karla; Marchetti, Luca; Caberlotto, Laura
    Description

    Network-based pathway enrichment analysis.

  6. f

    Gene set enrichment analysis: KEGG pathways significantly enriched in OCSC...

    • datasetcatalog.nlm.nih.gov
    Updated Feb 17, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wang, Lijuan; Vermeersch, Kathleen A.; Mezencev, Roman; McDonald, John F.; Styczynski, Mark P. (2015). Gene set enrichment analysis: KEGG pathways significantly enriched in OCSC phenotype. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001934910
    Explore at:
    Dataset updated
    Feb 17, 2015
    Authors
    Wang, Lijuan; Vermeersch, Kathleen A.; Mezencev, Roman; McDonald, John F.; Styczynski, Mark P.
    Description

    Gene set enrichment analysis: KEGG pathways significantly enriched in OCSC phenotype.

  7. o

    CellEnrich sample data

    • explore.openaire.eu
    • data-staging.niaid.nih.gov
    • +1more
    Updated Jan 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ulsan National Institute of Science and Technology (2024). CellEnrich sample data [Dataset]. http://doi.org/10.5281/zenodo.12194770
    Explore at:
    Dataset updated
    Jan 1, 2024
    Authors
    Ulsan National Institute of Science and Technology
    Description

    Sample datasets for testing CellEnrich package.

  8. f

    KEGG pathway enrichment analysis.

    • datasetcatalog.nlm.nih.gov
    Updated Jul 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metzger, Lisa A.; Bushel, Pierre R.; Gerrish, Kevin; Sikes, Michael L.; Stone, Jennifer L.; Bellingham-Johnstun, Kimberly S. (2025). KEGG pathway enrichment analysis. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0002051404
    Explore at:
    Dataset updated
    Jul 14, 2025
    Authors
    Metzger, Lisa A.; Bushel, Pierre R.; Gerrish, Kevin; Sikes, Michael L.; Stone, Jennifer L.; Bellingham-Johnstun, Kimberly S.
    Description

    Therapeutic resistance remains a primary obstacle to curing cancer. Healthy cells exposed to genotoxic insult rapidly activate both p53-dependent and -independent non-genetic programs that pause the cell cycle and direct either DNA repair or apoptosis. Cancer cells exploit these same pathways as they respond to stresses induced by cancer therapies. In this study, we investigated a potential role for upstream stimulatory factor 1 (USF1) and USF2 in the p53-independent response of lymphoma cells to genotoxic therapy. We previously found that lymphocytes utilize the responsiveness of USF1 to double-stranded DNA breaks to coordinate T cell receptor beta (Tcrb) gene expression during V(D)J recombination. Here, microarray gene expression analysis of derivatives of the p53-deficient mouse B lymphoma cell line, M12, revealed that simultaneously depleting cells of both USF1 and USF2 altered the expression of 940 gene transcripts (>1.50-fold change, < 0.05 FDR), relative to cells expressing a scrambled control shRNA. Seven days after exposure to a single sublethal (5 Gy) dose of ionizing radiation, USF-depleted (USFKD) cells exhibited widespread and distinct transcriptional responses from those of irradiated controls (5035 and 5054 differentially expressed gene transcripts, respectively, with roughly half shared between both cell types). Gene ontology analyses revealed that USF knockdown induced numerous changes in the expression of genes critical for immune development and function while diminishing the responsiveness of genes linked to DNA damage pathways. Microarray findings were confirmed by RT-qPCR for a panel of genes responsive to USF knockdown and/or irradiation. These findings shed further light on transcriptional responses to ionizing radiation that manifest over time in transformed cells, identifying a novel p53-independent role in lymphocytic DNA damage stress responses for USF.

  9. MSigDB (v2024.1)🛡️🛡️🛡️

    • kaggle.com
    zip
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vijay Veer Singh (2025). MSigDB (v2024.1)🛡️🛡️🛡️ [Dataset]. https://www.kaggle.com/datasets/vijayveersingh/msigdb-gene-set-collections-v2024-1
    Explore at:
    zip(5144185 bytes)Available download formats
    Dataset updated
    Jan 29, 2025
    Authors
    Vijay Veer Singh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Curated Human Gene Signatures for Bioinformatics Research

    The dataset provides gene set files in GMT format for Gene Set Enrichment Analysis (GSEA). The included files are from the Molecular Signatures Database (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb) and cover a variety of biological areas:

    • c7.all.v2023.1.Hs.symbols.gmt: C7 (Immunologic Signatures) - A comprehensive collection of gene sets related to immune system processes.
    • c2.cp.reactome.v2023.1.Hs.symbols.gmt: C2 CP (Canonical Pathways) - Gene sets representing well-established biological pathways from databases like Reactome.
    • c5.go.bp.v2023.1.Hs.symbols.gmt: C5 GO (Biological Process) - Gene sets representing biological processes from the Gene Ontology.
    • c5.go.mf.v2023.1.Hs.symbols.gmt: C5 GO (Molecular Function) - Gene sets representing molecular functions from the Gene Ontology.
    • c5.go.cc.v2023.1.Hs.symbols.gmt: C5 GO (Cellular Component) - Gene sets representing cellular components from the Gene Ontology.

    Description:

    The dataset contains curated gene set collections from the Molecular Signatures Database (MSigDB) v2024.1. Included are key collections such as Reactome Pathways (C2), Gene Ontology (C5 BP, MF, CC), and Immunologic Signatures (C7). These datasets are invaluable for gene enrichment analyses, bioinformatics studies, and research on cellular processes.

    These files can be used with GSEA to analyze gene expression data and identify enriched pathways and functions. Gene sets were obtained from the Molecular Signatures Database (MSigDB) [Subramanian et al., 2005]. The files are distributed under the Creative Commons Attribution 4.0 International License.

    The dataset includes curated gene set collections from the Molecular Signatures Database (MSigDB) v2024.1, for gene enrichment analyses, pathway mapping, and immune system studies.

    C2: Canonical Pathways

    Possible Use Cases:

    • Identifying key molecular pathways related to gene expression changes in disease states
    • Mapping drug interactions and metabolic pathways
    • Conducting pathway-centric analyses of transcriptomic data

    C5: Gene Ontology (GO) Gene Sets

    • Biological Process (BP): Gene sets describing high-level biological objectives (e.g., cell cycle regulation, apoptosis).
    • Molecular Function (MF): Gene sets defining activities at the molecular level (e.g., enzyme binding, receptor activity).
    • Cellular Component (CC): Gene sets describing cellular structures where gene products are active (e.g., nucleus, mitochondria).

    Possible Use Cases:
    - Annotation and interpretation of transcriptomic data
    - Discovery of functional roles for specific genes
    - Enrichment analyses to find key biological activities

    C7: Immunologic Signature Gene Sets

    Possible Use Cases:
    - Immunological studies focusing on disease responses
    - Vaccine development and response evaluation
    - Discovery of immune-related biomarkers

    Citations

    Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545–15550. https://doi.org/10.1073/pnas.0506580102

    Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., & Tamayo, P. (2015). The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Systems, 1(6), 417–425. PMC4707969

    No Endorsement Statement:

    The inclusion of gene sets from MSigDB in this dataset does not imply endorsement by the original authors or associated research groups. These datasets are redistributed under CC BY 4.0 for research purposes with proper attribution.

    Key Features:
    - Hallmark Reactome pathways
    - GO terms (Biological Processes, Molecular Functions, Cellular Components)
    - C7 Immunologic gene sets

    License: CC BY 4.0

    https://www.gsea-msigdb.org/gsea/license_terms_list.jsp

    https://www.gsea-msigdb.org/gsea/msigdb_license_terms.jsp

    Important: No endorsement by original authors or institutions.

  10. f

    Comparison of NASFinder results with pathway enrichment analysis of dataset...

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Mar 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lauria, Mario; Misselbeck, Karla; Parolo, Silvia; Scott-Boyer, Marie-Pier; Caberlotto, Laura; Marchetti, Luca; Priami, Corrado (2018). Comparison of NASFinder results with pathway enrichment analysis of dataset GSE1004. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000621883
    Explore at:
    Dataset updated
    Mar 12, 2018
    Authors
    Lauria, Mario; Misselbeck, Karla; Parolo, Silvia; Scott-Boyer, Marie-Pier; Caberlotto, Laura; Marchetti, Luca; Priami, Corrado
    Description

    Comparison of NASFinder results with pathway enrichment analysis of dataset GSE1004.

  11. f

    Pathway enrichment analysis performed with miRSystem and mirPATH2.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Sep 9, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Schoenberger, Peter G. A.; Brandl, Caroline; Lindner, Moritz; Grassmann, Felix; Hasler, Daniele; Weber, Bernhard H. F.; Fauser, Sascha; Schick, Tina; Helbig, Horst; Meister, Gunter; Fleckenstein, Monika (2014). Pathway enrichment analysis performed with miRSystem and mirPATH2. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001229288
    Explore at:
    Dataset updated
    Sep 9, 2014
    Authors
    Schoenberger, Peter G. A.; Brandl, Caroline; Lindner, Moritz; Grassmann, Felix; Hasler, Daniele; Weber, Bernhard H. F.; Fauser, Sascha; Schick, Tina; Helbig, Horst; Meister, Gunter; Fleckenstein, Monika
    Description

    1genetic associations were reported in or near genes in this pathway by genome wide association studies.2KEGG pathway ID (http://www.genome.jp/kegg/).Pathway enrichment analysis performed with miRSystem and mirPATH2.

  12. f

    Complete table for pathway and functional enrichment analysis for gene-based...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jennings, Barbara A.; Bhutta, Mahmood F.; Cardenas, Ryan; Philpott, Carl; Wilson, Emma; Brewer, Daniel S.; Prinsley, Peter (2023). Complete table for pathway and functional enrichment analysis for gene-based mutational burden analysis. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001019925
    Explore at:
    Dataset updated
    Mar 15, 2023
    Authors
    Jennings, Barbara A.; Bhutta, Mahmood F.; Cardenas, Ryan; Philpott, Carl; Wilson, Emma; Brewer, Daniel S.; Prinsley, Peter
    Description

    Complete table for pathway and functional enrichment analysis for gene-based mutational burden analysis.

  13. f

    Information for Fig 3, detailing the Gene Set Enrichment Analysis (GSEA)...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kipar, Anja; Mattila, Pirkko; Jokiranta, Suvi T.; Miettinen, Simo; Cabrera, Luz E.; Pietilä, Jukka-Pekka; Kareinen, Lauri; Kekäläinen, Eliisa; Kantele, Anu; Strandin, Tomas; Lindgren, Hanna; Sironen, Tarja; Mäki, Sanna; Vapalahti, Olli; Kant, Ravi (2024). Information for Fig 3, detailing the Gene Set Enrichment Analysis (GSEA) databases used for pathway analyses. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001477596
    Explore at:
    Dataset updated
    Aug 22, 2024
    Authors
    Kipar, Anja; Mattila, Pirkko; Jokiranta, Suvi T.; Miettinen, Simo; Cabrera, Luz E.; Pietilä, Jukka-Pekka; Kareinen, Lauri; Kekäläinen, Eliisa; Kantele, Anu; Strandin, Tomas; Lindgren, Hanna; Sironen, Tarja; Mäki, Sanna; Vapalahti, Olli; Kant, Ravi
    Description

    Information for Fig 3, detailing the Gene Set Enrichment Analysis (GSEA) databases used for pathway analyses.

  14. f

    KEGG pathway enrichment analysis.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Dec 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Huang, Wei-Yi; He, Jun-Jun; Lu, Ke-Jing; Elsheikha, Hany M.; Shi, Wei; Zeng, Zi-Xuan; Mei, Xue-Fang; Zhu, Xing-Quan; Zhang, Yao-Yao; Sheng, Zhao-An (2020). KEGG pathway enrichment analysis. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000544248
    Explore at:
    Dataset updated
    Dec 17, 2020
    Authors
    Huang, Wei-Yi; He, Jun-Jun; Lu, Ke-Jing; Elsheikha, Hany M.; Shi, Wei; Zeng, Zi-Xuan; Mei, Xue-Fang; Zhu, Xing-Quan; Zhang, Yao-Yao; Sheng, Zhao-An
    Description

    KEGG pathway enrichment analysis.

  15. S

    Supplementary Figure S1 GSEA and ssGSEA analysis

    • scidb.cn
    Updated Nov 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Li Jiang (2024). Supplementary Figure S1 GSEA and ssGSEA analysis [Dataset]. http://doi.org/10.57760/sciencedb.xbyxb.00039
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 8, 2024
    Dataset provided by
    Science Data Bank
    Authors
    Li Jiang
    Description

    Bubble plots exhibited the top-ranked GSEA results for the top-ranked KEGG pathways in (A) recurrent POP compared with primary POP uterosacral ligaments, and (B) recurrent POP compared with non-POP uterosacral ligaments. The classic GSEA plots showed that both adipose- and inflammation-related pathways were activated in the two contrast matrices for (C) recurrent POP vs.vs primary POP uterosacral ligaments, and (D) recurrent POP vs.vs non-POP uterosacral ligaments. Heatmaps showed hierarchical clustering of ssGSEA scores of KEGG pathways differentially enriched in (E) recurrent POP vs.vs primary POP uterosacral ligaments and (F) recurrent POP vs.vs non-POP uterosacral ligaments. (G) Spearman correlation analysis of pathway ssGSEA scores revealed that PPAR signaling pathways was strongly associated with adipose- and inflammation-related pathways in non-POP, primary POP and recurrent POP uterosacral ligaments. GSEA, g: Gene set enrichment analysis; ssGSEA, the s: Single-sample gene set enrichment analysis; POP, p: Pelvic organ prolapses; NES, n: Normalized enrichment scores.

  16. f

    MetaCore™ enrichment pathway analysis.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Jun 24, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhakta, Suhani M.; Helmer, Rebecca A.; Foreman, Oded; Panchoo, Marlyn; Chilton, Beverly S; Dertien, Janet S. (2013). MetaCore™ enrichment pathway analysis. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001630068
    Explore at:
    Dataset updated
    Jun 24, 2013
    Authors
    Bhakta, Suhani M.; Helmer, Rebecca A.; Foreman, Oded; Panchoo, Marlyn; Chilton, Beverly S; Dertien, Janet S.
    Description

    MetaCore™ enrichment pathway analysis.

  17. Data from: Differential abundance and gene set enrichment in plasma of...

    • zenodo.org
    txt
    Updated May 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Annelien Morlion; Annelien Morlion (2023). Differential abundance and gene set enrichment in plasma of cancer patients versus controls [Dataset]. http://doi.org/10.5281/zenodo.7953708
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 22, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Annelien Morlion; Annelien Morlion
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    DESeq2 differential abundance output for genes with q < 0.05 and |log2 fold change| > 1 in cancer vs control plasma samples:

    • differentialabundance_pancancer.txt: tables with differentially abundant genes (|log2(fold change)|>1 and adjusted p>0.05) per cancer-control comparison (cancertype) in a pan-cancer plasma sample cohort (25 locally advanced to metastatic cancer types - 7 or 8 patients per type - vs 8 cancer-free control donors)
    • differentialabundance_threecancer.txt: tables with differentially abundant genes (|log2(fold change)|>1 and adjusted p>0.05) per cancer-control comparison (cancertype) in the three-cancer plasma cohort (ovarian, prostate and uterine cancer - 11 or 12 patients per type - vs 20 cancer-free controls)
      • Gene_id: Ensembl gene id (GChr38 v91); baseMean: mean of normalized counts for all samples; log2FoldChange: log2 fold change for cancer vs control; lfcSE: standard error for cancer vs control; stat: Wald statistic for cancer vs control; pvalue: Wald test p-value for cancer vs control; padj: Benjamini-Hochberg corrected p-value; cancertype: respective cancer type abbreviation of cancer patient plasma samples that were compared to plasma samples of controls.

    Gene set enrichment analyses based on fold change ranked gene lists (cancer versus control) - results obtained with fgea (v1.22.0):

    • customgenesets.txt: custom gene set lists based on RNA Atlas (&Human Protein Atlas), Tabula Sapiens, GTEX, TCGA data.
      • Reference: reference to create gene sets (including RNA Atlas, Human Protein Atlas, Tabula Sapiens, GTEX, and TCGA); set: set name; genes: gene list for set
    • GSEA_pancancer.txt & GSEA_threecancer.txt: gene set enrichment results based on fold change ranked gene list (specific cancer type versus controls) in pan-cancer cohort and three-cancer cohort, respectively
      • Sets: gene set category (HALLMARK and KEGG: Hallmark and Canonical Pathways gene sets obtained from MSigDB (v2022.1); CUSTOM: custom tissue and cell type specific gene sets as defined in customgenesets.txt); pathway: pathway/set name; pval: enrichment p-value; padj: Benjamini-Hochberg adjusted p-value; log2err: expected error for the standard deviation of the P-value logarithm; ES: enrichment score, same as in Broad GSEA implementation; NES: enrichment score normalized to mean enrichment of random samples of the same size; size: size of the pathway after removing genes without statistic values; leadingEdge: leading edge genes that drive the enrichment; Disease: respective cancer type abbreviation of cancer patient plasma samples that were compared to plasma samples of controls

  18. Additional file 11: of GeneSCF: a real-time based functional enrichment tool...

    • figshare.com
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santhilal Subhash; Chandrasekhar Kanduri (2023). Additional file 11: of GeneSCF: a real-time based functional enrichment tool with support for multiple organisms [Dataset]. http://doi.org/10.6084/m9.figshare.c.3604631_D3.v1
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Santhilal Subhash; Chandrasekhar Kanduri
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Enrichment analysis results for list-B genes from GeneSCF and DAVID 6.7 using KEGG as a reference database. (XLS 112 kb)

  19. Data from: Additional file 1 of Co-expressed Pathways DataBase for Tomato: a...

    • springernature.figshare.com
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Takafumi Narise; Nozomu Sakurai; Takeshi Obayashi; Hiroyuki Ohta; Daisuke Shibata (2023). Additional file 1 of Co-expressed Pathways DataBase for Tomato: a database to predict pathways relevant to a query gene [Dataset]. http://doi.org/10.6084/m9.figshare.c.3796036_D1.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Takafumi Narise; Nozomu Sakurai; Takeshi Obayashi; Hiroyuki Ohta; Daisuke Shibata
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ID correspondence table and information on the SRA Runs. The correspondences among Entrez Gene ID, Kegg Gene ID, and Ensemble Gene ID are shown in Table 1. Information (Run ID, Experiment ID, Study ID, sample tissue and cultivar) on the SRA Runs used to construct the gene expression matrix is shown in Table 2. (XLSX 1015 kb)

  20. f

    Background Gene Lists Used for Gene Ontology and KEGG Pathway Enrichment...

    • datasetcatalog.nlm.nih.gov
    Updated Sep 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laighneach, Aodán; Patlola, Saahithh Redddi; Hallahan, Brian; Corvin, Aiden P.; Holleran, Laurena; Corley, Emma; McKernan, Declan P.; Donohoe, Gary; Kelly, John P.; Morris, Derek W.; Mahoney, Rebecca; McDonald, Colm; Ali, Deema (2024). Background Gene Lists Used for Gene Ontology and KEGG Pathway Enrichment Analysis. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001351390
    Explore at:
    Dataset updated
    Sep 11, 2024
    Authors
    Laighneach, Aodán; Patlola, Saahithh Redddi; Hallahan, Brian; Corvin, Aiden P.; Holleran, Laurena; Corley, Emma; McKernan, Declan P.; Donohoe, Gary; Kelly, John P.; Morris, Derek W.; Mahoney, Rebecca; McDonald, Colm; Ali, Deema
    Description

    Background Gene Lists Used for Gene Ontology and KEGG Pathway Enrichment Analysis.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jiao, De-min; Tang, Xia-li; Chen, Qing-yong; Hu, Hui-zhen; Wang, Jian; Li, You; Yan, Li; Chen, Jun; Wang, Li-shan (2017). Pathway enrichment analysis. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001802236

Pathway enrichment analysis.

Explore at:
Dataset updated
Feb 23, 2017
Authors
Jiao, De-min; Tang, Xia-li; Chen, Qing-yong; Hu, Hui-zhen; Wang, Jian; Li, You; Yan, Li; Chen, Jun; Wang, Li-shan
Description

Pathway enrichment analysis.

Search
Clear search
Close search
Google apps
Main menu