46 datasets found
  1. a

    Population Density in the US 2020 Census

    • hub.arcgis.com
    • data-bgky.hub.arcgis.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of South Florida GIS (2024). Population Density in the US 2020 Census [Dataset]. https://hub.arcgis.com/maps/58e4ee07a0e24e28949903511506a8e4
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset authored and provided by
    University of South Florida GIS
    Area covered
    Description

    This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  2. Z

    Gridded population maps of Germany from disaggregated census data and...

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    Updated Mar 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    van der Linden, Sebastian (2021). Gridded population maps of Germany from disaggregated census data and bottom-up estimates [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4601291
    Explore at:
    Dataset updated
    Mar 13, 2021
    Dataset provided by
    van der Linden, Sebastian
    Hostert, Patrick
    Schug, Franz
    Frantz, David
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Germany
    Description

    This dataset features three gridded population dadasets of Germany on a 10m grid. The units are people per grid cell.

    Datasets

    DE_POP_VOLADJ16: This dataset was produced by disaggregating national census counts to 10m grid cells based on a weighted dasymetric mapping approach. A building density, building height and building type dataset were used as underlying covariates, with an adjusted volume for multi-family residential buildings.

    DE_POP_TDBP: This dataset is considered a best product, based on a dasymetric mapping approach that disaggregated municipal census counts to 10m grid cells using the same three underyling covariate layers.

    DE_POP_BU: This dataset is based on a bottom-up gridded population estimate. A building density, building height and building type layer were used to compute a living floor area dataset in a 10m grid. Using federal statistics on the average living floor are per capita, this bottom-up estimate was created.

    Please refer to the related publication for details.

    Temporal extent

    The building density layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: http://doi.org/10.1594/PANGAEA.920894)

    The building height layer is representative for ca. 2015 (doi: 10.5281/zenodo.4066295)

    The building types layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: 10.5281/zenodo.4601219)

    The underlying census data is from 2018.

    Data format

    The data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (.tif). There is a mosaic in GDAL Virtual format (.vrt), which can readily be opened in most Geographic Information Systems.

    Further information

    For further information, please see the publication or contact Franz Schug (franz.schug@geo.hu-berlin.de). A web-visualization of this dataset is available here.

    Publication

    Schug, F., Frantz, D., van der Linden, S., & Hostert, P. (2021). Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLOS ONE. DOI: 10.1371/journal.pone.0249044

    Acknowledgements

    Census data were provided by the German Federal Statistical Offices.

    Funding This dataset was produced with funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950).

  3. d

    Domestic well locations and populations served in the contiguous U.S.: 1990,...

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Domestic well locations and populations served in the contiguous U.S.: 1990, Block-group method (BGM) map. [Dataset]. https://catalog.data.gov/dataset/domestic-well-locations-and-populations-served-in-the-contiguous-u-s-1990-block-group-meth
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States, Contiguous United States
    Description

    In this dataset we present two maps that estimate the location and population served by domestic wells in the contiguous United States. The first methodology, called the “Block Group Method” or BGM, builds upon the original block-group data from the 1990 census (the last time the U.S. Census queried the population regarding their source of water) by incorporating higher resolution census block data. The second methodology, called the “Road-Enhanced Method” or REM, refines the locations by using a buffer expansion and shrinkage technique along roadways to define areas where domestic wells exist. The fundamental assumption with this method is that houses (and therefore domestic wells) are located near a named road. The results are presented as two nationally consistent domestic-well population datasets. While both methods can be considered valid, the REM map is more precise in locating domestic wells; the REM map had a smaller amount of spatial bias (nearly equal vs biased in type 1 error), total error (10.9% vs 23.7%,), and distance error (2.0 km vs 2.7 km), when comparing the REM and BGM maps to a California calibration map. However, the BGM map is more inclusive of all potential locations for domestic wells. The primary difference in the BGM and the REM is the mapping of low density areas. The REM has a 57% reduction in areas mapped as low density (populations greater than 0 but less than 1 person per km), concentrating populations into denser regions. Therefore, if one is trying to capture all of the potential areas of domestic-well usage, then the BGM map may be more applicable. If location is more imperative, then the REM map is better at identifying areas of the landscape with the highest probability of finding a domestic well. Depending on the purpose of a study, a combination of both maps can be used. For space concerns, the datasets have been divided into two separate geodatabases. The BGM map geodatabase and the REM map database.

  4. n

    Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): National Identifier...

    • earthdata.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • +3more
    Updated Sep 26, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESDIS (2011). Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): National Identifier Grid [Dataset]. http://doi.org/10.7927/H40K26HS
    Explore at:
    Dataset updated
    Sep 26, 2011
    Dataset authored and provided by
    ESDIS
    Description

    The Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): National Identifier Grid is derived from the land area grid to create a raster surface where pixels (cells) that cover the same nation or territory have the same value. The countries and territories are not official representations of country boundaries; rather they represent the area covered by the statistical data as provided. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Food Policy Research Institute (IFPRI), The World Bank, and Centro Internacional de Agricultura Tropical (CIAT).

  5. d

    Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Land and Geographic...

    • catalog.data.gov
    • data.nasa.gov
    • +2more
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Land and Geographic Unit Area Grids [Dataset]. https://catalog.data.gov/dataset/global-rural-urban-mapping-project-version-1-grumpv1-land-and-geographic-unit-area-grids-4b08b
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Description

    The Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Land and Geographic Unit Area Grids measure land areas in square kilometers and the mean Unit size (population-weighted) in square kilometers. The land area grid permits the summation of areas (net of permanent ice and water) at the same resolution as the population density, count, and urban-rural grids. The mean Unit size grids provide a quantitative surface that indicates the size of the input Unit(s) from which population count and density grids are derived. Additional global grids are created from the 30 arc-second grid at 1/4, 1/2, and 1 degree resolutions. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Food Policy Research Institute (IFPRI), The World Bank, and Centro Internacional de Agricultura Tropical (CIAT).

  6. d

    2019 Cartographic Boundary Shapefile, Current Place for Alabama, 1:500,000

    • catalog.data.gov
    Updated Dec 3, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). 2019 Cartographic Boundary Shapefile, Current Place for Alabama, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2019-cartographic-boundary-shapefile-current-place-for-alabama-1-500000
    Explore at:
    Dataset updated
    Dec 3, 2020
    Area covered
    Alabama
    Description

    The 2019 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The cartographic boundary files include both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. The boundaries of most incorporated places in this file are as of January 1, 2019, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all CDPs were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2010 Census.

  7. a

    Mapping The Green Book in New York City

    • gis-day-monmouthnj.hub.arcgis.com
    Updated Apr 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SkyeLam (2021). Mapping The Green Book in New York City [Dataset]. https://gis-day-monmouthnj.hub.arcgis.com/items/c61ac50131594a4fb2ff371e2bce7517
    Explore at:
    Dataset updated
    Apr 16, 2021
    Dataset authored and provided by
    SkyeLam
    Area covered
    New York
    Description

    My ArcGIS StoryMap is centered around The Green Book, an annual travel guide that allowed African Americans to travel safely during the height of the Jim Crow Era in the United States. More specifically, The Green Book listed establishments, such as hotels and restaurants, that would openly accept and welcome black customers into their businesses. As someone who is interested in the intersection between STEM and the humanities, I wanted to utilize The Science of Where to formulate a project that would reveal important historical implications to the public. Therefore, my overarching goal was to map each location in The Green Book in order to draw significant conclusions regarding racial segregation in one of the largest cities in the entire world.Although a more detailed methodology of my work can be found in the project itself, the following is a step by step walkthrough of my overall scientific process:Develop a question in relation to The Green Book to be solved through the completion of the project.Perform background research on The Green Book to gain a more comprehensive understanding of the subject matter.Formulate a hypothesis that answers the proposed question based on the background research.Transcribe names and addresses for each of the hotel listings in The Green Book into a comma separated values file.Transcribe names and addresses for each of the restaurants listings in The Green Book into a comma separated values file.Repeat Steps 4 and 5 for the 1940, 1950, 1960, and 1966 publications of The Green Book. In total, there should be eight unique database files (1940 New York City Hotels, 1940 New York City Restaurants, 1950 New York City Hotels, 1950 New York City Restaurants, 1960 New York City Hotels, 1960 New York City Restaurants, 1966 New York City Hotels, and 1966 New York City Restaurants.)Construct an address locator that references a New York City street base map to plot the information from the databases in Step 6 as points on a map.Manually plot locations that the address locator did not automatically match on the map.Repeat Steps 7 and 8 for all eight database files.Find and match the point locations for each listing in The Green Book with historical photographs.Generate a map tour using the geotagged images for each point from Step 10.Create a point density heat map for the locations in all eight database files.Research and obtain professional and historically accurate racial demographic data for New York City during the same time period as when The Green Book was published.Generate a hot spot map of the black population percentage using the demographic data.Analyze any geospatial trends between the point density heat maps for The Green Book and the black population percentage hot spot maps from the demographic data.Research and obtain professional and historically accurate redlining data for New York City during the same time period as when The Green Book was published.Overlay the points from The Green Book listings from Step 9 on top of the redlining shapefile.Count the number of point features completely located within each redlining zone ranking utilizing the spatial join tool.Plot the data recorded from Step 18 in the form of graphs.Analyze any geospatial trends between the listings for The Green Book and its location relative to the redlining ranking zones.Draw conclusions from the analyses in Steps 15 and 20 to present a justifiable rationale for the results._Student Generated Maps:New York City Pin Location Maphttps://arcg.is/15i4nj1940 New York City Hotels Maphttps://arcg.is/WuXeq1940 New York City Restaurants Maphttps://arcg.is/L4aqq1950 New York City Hotels Maphttps://arcg.is/1CvTGj1950 New York City Restaurants Maphttps://arcg.is/0iSG4r1960 New York City Hotels Maphttps://arcg.is/1DOzeT1960 New York City Restaurants Maphttps://arcg.is/1rWKTj1966 New York City Hotels Maphttps://arcg.is/4PjOK1966 New York City Restaurants Maphttps://arcg.is/1zyDTv11930s Manhattan Black Population Percentage Enumeration District Maphttps://arcg.is/1rKSzz1930s Manhattan Black Population Percentage Hot Spot Map (Same as Previous)https://arcg.is/1rKSzz1940 Hotels Point Density Heat Maphttps://arcg.is/jD1Ki1940 Restaurants Point Density Heat Maphttps://arcg.is/1aKbTS1940 Hotels Redlining Maphttps://arcg.is/8b10y1940 Restaurants Redlining Maphttps://arcg.is/9WrXv1950 Hotels Redlining Maphttps://arcg.is/ruGiP1950 Restaurants Redlining Maphttps://arcg.is/0qzfvC01960 Hotels Redlining Maphttps://arcg.is/1KTHLK01960 Restaurants Redlining Maphttps://arcg.is/0jiu9q1966 Hotels Redlining Maphttps://arcg.is/PXKn41966 Restaurants Redlining Maphttps://arcg.is/uCD05_Bibliography:Image Credits (In Order of Appearance)Header/Thumbnail Image:Student Generated Collage (Created Using Pictures from the Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library, https://digitalcollections.nypl.org/collections/the-green-book#/?tab=about.)Mob Violence Image:Kelley, Robert W. “A Mob Rocks an out of State Car Passing.” Life Magazine, www.life.com/history/school-integration-clinton-history, The Green Book Example Image:Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library Digital Collections, https://images.nypl.org/index.php?id=5207583&t=w. 1940s Borough of Manhattan Hotels and Restaurants Photographs:“Manhattan 1940s Tax Photos.” NYC Municipal Archives Collections, The New York City Department of Records & Information Services, https://nycma.lunaimaging.com/luna/servlet/NYCMA~5~5?cic=NYCMA~5~5.Figure 1:Student Generated GraphFigure 2:Student Generated GraphFigure 3:Student Generated GraphGIS DataThe Green Book Database:Student Generated (See Above)The Green Book Listings Maps:Student Generated (See Above)The Green Book Point Density Heat Maps:Student Generated (See Above)The Green Book Road Trip Map:Student GeneratedLION New York City Single Line Street Base Map:https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-lion.page 1930s Manhattan Census Data:https://s4.ad.brown.edu/Projects/UTP2/ncities.htm Mapping Inequality Redlining Data:https://dsl.richmond.edu/panorama/redlining/#loc=12/40.794/-74.072&city=manhattan-ny&text=downloads 1940 The Green Book Document:Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library. "The Negro Motorist Green-Book: 1940" The New York Public Library Digital Collections, 1940, https://digitalcollections.nypl.org/items/dc858e50-83d3-0132-2266-58d385a7b928. 1950 The Green Book Document:Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library. "The Negro Motorist Green-Book: 1950" The New York Public Library Digital Collections, 1950, https://digitalcollections.nypl.org/items/283a7180-87c6-0132-13e6-58d385a7b928. 1960 The Green Book Document:Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library. "The Travelers' Green Book: 1960" The New York Public Library Digital Collections, 1960, https://digitalcollections.nypl.org/items/a7bf74e0-9427-0132-17bf-58d385a7b928. 1966 The Green Book Document:Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library. "Travelers' Green Book: 1966-67 International Edition" The New York Public Library Digital Collections, 1966, https://digitalcollections.nypl.org/items/27516920-8308-0132-5063-58d385a7bbd0. Hyperlink Credits (In Order of Appearance)Referenced Hyperlink #1: Coen, Ross. “Sundown Towns.” Black Past, 23 Aug. 2020, blackpast.org/african-american-history/sundown-towns.Referenced Hyperlink #2: Foster, Mark S. “In the Face of ‘Jim Crow’: Prosperous Blacks and Vacations, Travel and Outdoor Leisure, 1890-1945.” The Journal of Negro History, vol. 84, no. 2, 1999, pp. 130–149., doi:10.2307/2649043. Referenced Hyperlink #3:Driskell, Jay. “An Atlas of Self-Reliance: The Negro Motorist's Green Book (1937-1964).” National Museum of American History, Smithsonian Institution, 30 July 2015, americanhistory.si.edu/blog/negro-motorists-green-book. Referenced Hyperlink #4:Kahn, Eve M. “The 'Green Book' Legacy, a Beacon for Black Travelers.” The New York Times, The New York Times, 6 Aug. 2015, www.nytimes.com/2015/08/07/arts/design/the-green-book-legacy-a-beacon-for-black-travelers.html. Referenced Hyperlink #5:Giorgis, Hannah. “The Documentary Highlighting the Real 'Green Book'.” The Atlantic, Atlantic Media Company, 25 Feb. 2019, www.theatlantic.com/entertainment/archive/2019/02/real-green-book-preserving-stories-of-jim-crow-era-travel/583294/. Referenced Hyperlink #6:Staples, Brent. “Traveling While Black: The Green Book's Black History.” The New York Times, The New York Times, 25 Jan. 2019, www.nytimes.com/2019/01/25/opinion/green-book-black-travel.html. Referenced Hyperlink #7:Pollak, Michael. “How Official Is Official?” The New York Times, The New York Times, 15 Oct. 2010, www.nytimes.com/2010/10/17/nyregion/17fyi.html. Referenced Hyperlink #8:“New Name: Avenue Becomes a Boulevard.” The New York Times, The New York Times, 22 Oct. 1987, www.nytimes.com/1987/10/22/nyregion/new-name-avenue-becomes-a-boulevard.html. Referenced Hyperlink #9:Norris, Frank. “Racial Dynamism in Los Angeles, 1900–1964.” Southern California Quarterly, vol. 99, no. 3, 2017, pp. 251–289., doi:10.1525/scq.2017.99.3.251. Referenced Hyperlink #10:Shertzer, Allison, et al. Urban Transition Historical GIS Project, 2016, https://s4.ad.brown.edu/Projects/UTP2/ncities.htm. Referenced Hyperlink #11:Mitchell, Bruce. “HOLC ‘Redlining’ Maps: The Persistent Structure Of Segregation And Economic Inequality.” National Community Reinvestment Coalition, 20 Mar. 2018,

  8. w

    Poverty Mapping Project: Global Subnational Prevalence of Child Malnutrition...

    • data.wu.ac.at
    bin
    Updated Mar 19, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2015). Poverty Mapping Project: Global Subnational Prevalence of Child Malnutrition [Dataset]. https://data.wu.ac.at/schema/data_gov/MjcwMzZhMmEtMzc5NC00NDEyLTg1ZjItMDJkZTlmMWQ4YTM4
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 19, 2015
    Dataset provided by
    National Aeronautics and Space Administration
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    e729ec0b421236c738315ed3a86c4cf5e090d524
    Description

    The Global Subnational Prevalence of Child Malnutrition dataset consists of estimates of the

    percentage of children with weight-for-age z-scores that are more than two standard deviations below the median of the NCHS/CDC/WHO

    International Reference Population. Data are reported for the most recent year with subnational information available at the time of

    development. The data products include a shapefile (vector data) of percentage rates, grids (raster data) of rates (per thousand in

    order to preserve precision in integer format), the number of children under five (the rate denominator), and the number of

    underweight children under five (the rate numerator), and a tabular dataset of the same and associated data. This dataset is produced

    by the Columbia University Center for International Earth Science Information Network (CIESIN).

  9. USA 2020 Census Population Characteristics - Place Geographies

    • data-isdh.opendata.arcgis.com
    • scwp-lacounty.hub.arcgis.com
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). USA 2020 Census Population Characteristics - Place Geographies [Dataset]. https://data-isdh.opendata.arcgis.com/maps/9c84c24c55a04c3b8317f37e536e6a8a
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, Consolidated City, Census Designated Place, Incorporated Place boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.   To see the full list of attributes available in this service, go to the "Data" tab above, and then choose "Fields" at the top right. Each attribute contains definitions, additional details, and the formula for calculated fields in the field description.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, Consolidated City, Census Designated Place, Incorporated PlaceNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This layer is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  10. G

    Population of Canada, 10km Gridded

    • open.canada.ca
    • catalogue.arctic-sdi.org
    esri rest, fgdb/gdb +3
    Updated Feb 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agriculture and Agri-Food Canada (2023). Population of Canada, 10km Gridded [Dataset]. https://open.canada.ca/data/en/dataset/c6c48391-fd2f-4d8a-93c8-eb74f58a859b
    Explore at:
    fgdb/gdb, shp, esri rest, geojson, pdfAvailable download formats
    Dataset updated
    Feb 23, 2023
    Dataset provided by
    Agriculture and Agri-Food Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 2011 - Jan 1, 2016
    Area covered
    Canada
    Description

    The Population of Canada, 10km Gridded national scale datasets display the distribution and areal extent of rural, urban and total populations across Canada for both 2011 and 2016. The 10km gridded framework is the same 10km gridded framework used within the Biomass Inventory Mapping and Analysis Tool. This data was created for AAFC by Statistics Canada using AAFC’s 10km gridded framework. The purpose of this data is to display the distribution of rural and urban populations across a 10km x 10km grid of Canada.

  11. d

    Poverty Mapping Project: Global Subnational Infant Mortality Rates

    • datadiscoverystudio.org
    • data.wu.ac.at
    Updated Mar 19, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). Poverty Mapping Project: Global Subnational Infant Mortality Rates [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/71b1e95270c540ccb3cba3f8fe9badb9/html
    Explore at:
    Dataset updated
    Mar 19, 2015
    Description

    The Global Subnational Infant Mortality Rates consists of estimates of infant mortality rates for the year 2000. The infant mortality rate for a region or country is defined as the number of children who die before their first birthday for every 1,000 live births. The data products include a shapefile (vector data) of rates, grids (raster data) of rates (per 10,000 live births in order to preserve precision in integer format), births (the rate denominator) and deaths (the rate numerator), and a tabular dataset of the same and associated data. Over 10,000 national and subnational units are represented in the tabular and grid datasets, while the shapefile uses approximately 1,000 units in order to protect the intellectual property of source datasets for Brazil, China, and Mexico. This dataset is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).

  12. a

    RTB Mapping application

    • hub.arcgis.com
    • data.amerigeoss.org
    • +1more
    Updated Aug 12, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2015). RTB Mapping application [Dataset]. https://hub.arcgis.com/datasets/81ea77e8b5274b879b9d71010d8743aa
    Explore at:
    Dataset updated
    Aug 12, 2015
    Dataset authored and provided by
    ArcGIS StoryMaps
    Description

    RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.

  13. GlobPOP: A 31-year (1990-2020) global gridded population dataset generated...

    • zenodo.org
    tiff
    Updated Apr 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie (2025). GlobPOP: A 31-year (1990-2020) global gridded population dataset generated by cluster analysis and statistical learning [Dataset]. http://doi.org/10.5281/zenodo.10088105
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Apr 18, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Update Notice 数据更新通知

    We are pleased to announce that the GlobPOP dataset for the years 2021-2022 has undergone a comprehensive quality check and has now been updated accordingly. Following the established methodology that ensures the high precision and reliability, these latest updates allow for even more comprehensive time-series analysis. The updated GlobPOP dataset remains available in GeoTIFF format for easy integration into your existing workflows.

    2021-2022 年的 GlobPOP 数据集经过全面的质量检查,现已进行相应更新。 遵循确保高精度和可靠性的原有方法,本次更新允许进行更全面的时间序列分析。 更新后的 GlobPOP 数据集仍以 GeoTIFF 格式提供,以便轻松集成到您现有的工作流中。

    To reflect these updates, our interactive web application has also been refreshed. Users can now explore the updated national population time-series curves from 1990 to 2022. This can be accessed via the same link: https://globpop.shinyapps.io/GlobPOP/. Thank you for your continued support of the GlobPOP, and we hope that the updated data will further enhance your research and policy analysis endeavors.

    交互式网页反映了人口最新动态,用户现在可以探索感兴趣的国家1990 年至 2022 年人口时间序列曲线,并将其与人口普查数据进行比较。感谢您对 GlobPOP 的支持,我们希望更新的数据将进一步加强您的研究和政策分析工作。

    If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.

    如果您遇到任何问题,请通过电子邮件联系我们。

    Introduction

    Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.

    Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.

    With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.

    Data description

    The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)

    Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:

    GlobPOP_Count_30arc_1990_I32

    Field 1: GlobPOP(Global gridded population)
    Field 2: Pixel unit is population "Count" or population "Density"
    Field 3: Spatial resolution is 30 arc seconds
    Field 4: Year "1990"
    Field 5: Data type is I32(Int 32) or F32(Float32)

    More information

    Please refer to the paper for detailed information:

    Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.

    The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.

  14. Mapping for Environmental Justice's map for the state of Colorado

    • redivis.com
    application/jsonl +7
    Updated Jun 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Impact Data Collaborative (2022). Mapping for Environmental Justice's map for the state of Colorado [Dataset]. https://redivis.com/datasets/e7qz-a6b024b0q
    Explore at:
    stata, csv, application/jsonl, avro, parquet, sas, arrow, spssAvailable download formats
    Dataset updated
    Jun 21, 2022
    Dataset provided by
    Redivis Inc.
    Authors
    Environmental Impact Data Collaborative
    Area covered
    Colorado
    Description

    Abstract

    MEJ aims to create easy-to-use, publicly-available maps that paint a holistic picture of intersecting environmental, social, and health impacts experienced by communities across the US.

    With guidance from the residents of impacted communities, MEJ combines environmental, public health, and demographic data into an indicator of vulnerability for communities in every state. MEJ’s goal is to fill an existing data gap for individual states without environmental justice mapping tools, and to provide a valuable tool for advocates, scholars, students, lawyers, and policy makers.

    Methodology

    The negative effects of pollution depend on a combination of vulnerability and exposure. People living in poverty, for example, are more likely to develop asthma or die due to air pollution. The method MEJ uses, following the method developed for CalEnviroScreen, reflects this in the two overall components of a census tract’s final “Cumulative EJ Impact”: population characteristics and pollution burden. The CalEnviroScreen methodology was developed through an intensive, multi-year effort to develop a science-backed, peer-reviewed tool to assess environmental justice in a holistic way, and has since been replicated by several other states.

    CalEnviroScreen Methodology:

    • Population characteristics are a combination of socioeconomic data (often referred to as the social determinants of health) and health data that together reflect a populations' vulnerability to pollutants. Pollution burden is a combination of direct exposure to a pollutant and environmental effects, which are adverse environmental conditions caused by pollutants, such as toxic waste sites or wastewater releases. Together, population characteristics and pollution burden help describe the disproportionate impact that environmental pollution has on different communities.

    • Every indicator is ranked as a percentile from 0 to 100 and averaged with the others of the same component to form an overall score for that component. Each component score is then percentile ranked to create a component percentile. The Sensitive Populations component score, for example, is the average of a census tract’s Asthma, Low Birthweight Infants, and Heart Disease indicator percentiles, and the Sensitive Populations component percentile is the percentile rank of the Sensitive Populations score.

    • The Population Characteristics score is the average of the Sensitive Populations component score and the Socioeconomic Factors component score. The Population Characteristics percentile is the percentile rank of the Population Characteristics score.

    • The Pollution Burden score is the average of the Pollution Exposure component score and one half of the Environmental Effects component score (Environmental Effects may have a smaller effect on health outcomes than the indicators included the Exposures component so are weighted half as much as Exposures). The Pollution Burden percentile is the percentile rank of the Pollution Burden score.

    • The Populaton Characteristics and Pollution Burden scores are then multiplied to find the final Cumulative EJ Impact score for a census tract, and then this final score is percentile-ranked to find a census tract's final Cumulative EJ Impact percentile.

    • Census tracts with no population aren't given a Population Characteristics score.

    • Census tracts with an indicator score of zero are assigned a percentile rank of zero. Percentile rank is then only calculated for those census tracts with a score above zero.

    • Census tracts that are missing data for more than two indicators don't receive a final Cumulative EJ Impact ranking.

    %3C!-- --%3E

  15. a

    Legislative Districts of Idaho for 1992 - 2002 [Historical]

    • hub.arcgis.com
    • s.cnmilf.com
    • +1more
    Updated Mar 9, 2002
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho (2002). Legislative Districts of Idaho for 1992 - 2002 [Historical] [Dataset]. https://hub.arcgis.com/documents/93c121842de2404d9bca2f4fe0c9f008
    Explore at:
    Dataset updated
    Mar 9, 2002
    Dataset authored and provided by
    University of Idaho
    Area covered
    Description

    The downloadable ZIP file contains Esri shapefiles and PDF maps. Contains the information used to determine the location of the new legislative and congressional district boundaries for the state of Idaho as adopted by Idaho's first Commission on Redistricting on March 9, 2002. Contains viewable and printable legislative and congressional district maps, viewable and printable reports, and importable geographic data files.These data were contributed to INSIDE Idaho at the University of Idaho Library in 2001. CD/DVD -ROM availability: https://alliance-primo.hosted.exlibrisgroup.com/permalink/f/m1uotc/CP71156191150001451These files were created by a six-person, by-partisan commission, consisting of six commission members, three democrats and three republicans. This commission was given 90 days to redraw congressional and legislative district boundaries for the state of Idaho. Due to lawsuits, the process was extended. This legislative plan was approved by the commission on March 9th, 2002 and was previously called L97. All digital data originates from TIGER/Line files and 2000 U.S. Census data.Frequently asked questions:How often are Idaho's legislative and congressional districts redrawn? Once every ten years after each census, as required by law, or when directed by the Idaho Supreme Court. The most recent redistricting followed the 2000 census. Redistricting is not expected to occur again in Idaho until after the 2010 census. Who redrew Idaho's legislative and congressional districts? In 2001, for the first time, Idaho used a citizens' commission to redraw its legislative and congressional district boundaries. Before Idaho voters amended the state Constitution in 1994 to create a Redistricting Commission, redistricting was done by a committee of the Idaho Legislature. The committee's new district plans then had to pass the Legislature before becoming law. Who was on the Redistricting Commission? Idaho's first Commission on Redistricting was composed of Co-Chairmen Kristi Sellers of Chubbuck and Tom Stuart of Boise and Stanley. The other four members were Raymond Givens of Coeur d'Alene, Dean Haagenson of Hayden Lake, Karl Shurtliff of Boise, John Hepworth of Buhl (who resigned effective December 4, 2001), and Derlin Taylor of Burley (who was appointed to replace Mr. Hepworth). What are the requirements for being a Redistricting Commissioner? According to Idaho Law, no person may serve on the commission who: 1. Is not a registered voter of the state at the time of selection; or 2. Is or has been within one (1) year a registered lobbyist; or 3. Is or has been within two (2) years prior to selection an elected official or elected legislative district, county or state party officer. (This requirement does not apply to precinct committeepersons.) The individual appointing authorities may consider additional criteria beyond these statutory requirements. Idaho law also prohibits a person who has served on the Redistricting Commission from serving in either house of the legislature for five years following their service on the commission. When did Idaho's first Commission on Redistricting meet? Idaho law allows the Commission only 90 days to conduct its business. The Redistricting Commission was formed on June 5, 2001. Its 90-day time period would expire on September 3, 2001. After holding hearings around the state in June and July, a majority of the Commission voted to adopt new legislative and congressional districts on August 22, 2001. On November 29th, the Idaho Supreme Court ruled the Commission's legislative redistricting plan unconstitutional and directed them to reconvene and adopt an alternative plan. The Commission did so, adopting a new plan on January 8, 2000. The Idaho Supreme Court found the Commission's second legislative map unconstitutional on March 1, 2002 and ordered the Commission to try again. The Commission adopted a third plan on March 9, 2002. The Supreme Court denied numerous challenges to this third map. It then became the basis for the 2002 primary and General elections and is expected to be used until the 2012 elections. What is the basic timetable for Idaho to redraw its legislative and congressional districts?Typically, and according to Idaho law, the Redistricting Commission cannot be formally convened until after Idaho has received the official census counts and not before June 1 of a year ending in one. Idaho's first Commission on redistricting was officially created on June 5, 2001. By law, a Commission then has 90 days (or until September 3, 2001 in the case of Idaho's first Commission) to approve new legislative and congressional district boundaries based on the most recent census figures. If at least four of the six commissioners fail to approve new legislative and congressional district plans before that 90-day time period expires, the Commission will cease to exist. The law is silent as to what happens next. Could you summarize the important dates for Idaho's first Commission on Redistricting one more time please? After January 1, 2001 but before April 1, 2001: As required by federal law, the Census Bureau must deliver to the states the small area population counts upon which redistricting is based. The Census Bureau determines the exact date within this window when Idaho will get its population figures. Idaho's were delivered on March 23, 2001. Why conduct a census anyway? The original and still primary reason for conducting a national census every ten years is to determine how the 435 seats in the United States House of Representatives are to be apportioned among the 50 states. Each state receives its share of the 435 seats in the U.S. House based on the proportion of its population to that of the total U.S. population. For example, the population shifts during the 1990's resulted in the Northeastern states losing population and therefore seats in Congress to the Southern and the Western states. What is reapportionment? Reapportionment is a federal issue that applies only to Congress. It is the process of dividing up the 435 seats in the U.S. House of Representatives among the 50 states based on each state's proportion of the total U.S. population as determined by the most recent census. Apportionment determines the each state's power, as expressed by the size of their congressional delegation, in Congress and, through the electoral college, directly affects the selection of the president (each state's number of votes in the electoral college equals the number of its representatives and senators in Congress). Like all states, Idaho has two U.S. senators. Based on our 1990 population of 1,006,000 people and our 2000 population of 1,293,953, and relative to the populations of the other 49 states, Idaho will have two seats in the U.S. House of Representatives. Even with the state's 28.5% population increase from 1990 to 2000, Idaho will not be getting a third seat in the U.S. House of Representatives. Assuming Idaho keeps growing at the same rate it did through the decade of the 1990's, it will likely be 30 or 40 years (after 3 or 4 more censuses) before Idaho gets a third congressional seat. What is redistricting? Redistricting is the process of redrawing the boundaries of legislative and congressional districts within each state to achieve population equality among all congressional districts and among all legislative districts. The U.S. Constitution requires this be done for all congressional districts after each decennial census. The Idaho Constitution also requires that this be done for all legislative districts after each census. The democratic principle behind redistricting is "one person, one vote." Requiring that districts be of equal population ensures that every elected state legislator or U.S. congressman represents very close to the same number of people in that state, therefore, each citizen's vote will carry the same weight. How are reapportionment and redistricting related to the census? The original and still primary reason for conducting a census every ten years is to apportion the (now) 435 seats in the U.S. House of Representatives among the several states. The census records population changes and is the legally recognized basis for redrawing electoral districts of equal population. Why is redistricting so important? In a democracy, it is important for all citizens to have equal representation. The political parties also see redistricting as an opportunity to draw districts that favor electing their members and, conversely, that are unfavorable for electing their political opposition. (It's for this reason that redistricting has been described as "the purest form of political bloodsport.") What is PL 94-171? Public Law (PL) 94-171 (Title 13, United States Code) was enacted by Congress in 1975. It was intended to provide state legislatures with small-area census population totals for use in redistricting. The law's origins lie with the "one person, one vote" court decisions in the 1960's. State legislatures needed to reconcile Census Bureau's small geographic area boundaries with voting tabulation districts (precincts) boundaries to create legislative districts with balanced populations. The Census Bureau worked with state legislatures and others to meet this need beginning with the 1980 census. The resulting Public Law 94-171 allows states to work voluntarily with the Census Bureau to match voting district boundaries with small-area census boundaries. With this done, the Bureau can report to those participating states the census population totals broken down by major race group and Hispanic origin for the total population and for persons aged 18 years and older for each census subdivision. Idaho participated in the Bureau's Census 2000 Redistricting Data Program and, where counties used visible features to

  16. ACS Median Household Income Variables - Boundaries

    • coronavirus-resources.esri.com
    • resilience.climate.gov
    • +8more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Median Household Income Variables - Boundaries [Dataset]. https://coronavirus-resources.esri.com/maps/45ede6d6ff7e4cbbbffa60d34227e462
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  17. d

    Development of an ultra-dense genetic map of the sunflower genome

    • search.dataone.org
    • data.niaid.nih.gov
    • +2more
    Updated Apr 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John E. Bowers; Savithri Nambeesan; Jonathan Corbi; John M. Burke; Michael S. Barker; Loren H. Rieseberg; Steven J. Knapp (2025). Development of an ultra-dense genetic map of the sunflower genome [Dataset]. http://doi.org/10.5061/dryad.h0jg4
    Explore at:
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    John E. Bowers; Savithri Nambeesan; Jonathan Corbi; John M. Burke; Michael S. Barker; Loren H. Rieseberg; Steven J. Knapp
    Time period covered
    Dec 20, 2012
    Description

    The development of ultra-dense genetic maps has the potential to facilitate detailed comparative genomic analyses and whole genome sequence assemblies. Here we describe the use of a custom Affymetrix GeneChip containing nearly 2.4 million features (25 bp sequences) targeting 86,023 unigenes from sunflower (Helianthus annuus L.) and related species to test for single-feature polymorphisms (SFPs) in a recombinant inbred line (RIL) mapping population derived from a cross between confectionery and oilseed sunflower lines (RHA280 x RHA801). We then employed an existing genetic map derived from this same population to rigorously filter out low quality data and place 67,486 features corresponding to 22,481 unigenes on the sunflower genetic map. The resulting map contains a substantial fraction of all sunflower genes and will thus facilitate a number of downstream applications, including genome assembly and the identification of candidate genes underlying QTL or traits of interest.

  18. f

    Table_7_High-Density Linkage Map Construction and QTL Identification in a...

    • frontiersin.figshare.com
    xlsx
    Updated Jun 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xinpeng Qi; Elizabeth L. Ogden; Hamed Bostan; Daniel J. Sargent; Judson Ward; Jessica Gilbert; Massimo Iorizzo; Lisa J. Rowland (2023). Table_7_High-Density Linkage Map Construction and QTL Identification in a Diploid Blueberry Mapping Population.XLSX [Dataset]. http://doi.org/10.3389/fpls.2021.692628.s008
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    Frontiers
    Authors
    Xinpeng Qi; Elizabeth L. Ogden; Hamed Bostan; Daniel J. Sargent; Judson Ward; Jessica Gilbert; Massimo Iorizzo; Lisa J. Rowland
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Genotyping by sequencing approaches have been widely applied in major crops and are now being used in horticultural crops like berries and fruit trees. As the original and largest producer of cultivated blueberry, the United States maintains the most diverse blueberry germplasm resources comprised of many species of different ploidy levels. We previously constructed an interspecific mapping population of diploid blueberry by crossing the parent F1#10 (Vaccinium darrowii Fla4B × diploid V. corymbosum W85–20) with the parent W85–23 (diploid V. corymbosum). Employing the Capture-Seq technology developed by RAPiD Genomics, with an emphasis on probes designed in predicted gene regions, 117 F1 progeny, the two parents, and two grandparents of this population were sequenced, yielding 131.7 Gbp clean sequenced reads. A total of 160,535 single nucleotide polymorphisms (SNPs), referenced to 4,522 blueberry genome sequence scaffolds, were identified and subjected to a parent-dependent sliding window approach to further genotype the population. Recombination breakpoints were determined and marker bins were deduced to construct a high density linkage map. Twelve blueberry linkage groups (LGs) consisting of 17,486 SNP markers were obtained, spanning a total genetic distance of 1,539.4 cM. Among 18 horticultural traits phenotyped in this population, quantitative trait loci (QTLs) that were significant over at least 2 years were identified for chilling requirement, cold hardiness, and fruit quality traits of color, scar size, and firmness. Interestingly, in 1 year, a QTL associated with timing of early bloom, full bloom, petal fall, and early green fruit was identified in the same region harboring the major QTL for chilling requirement. In summary, we report here the first high density bin map of a diploid blueberry mapping population and the identification of several horticulturally important QTLs.

  19. Data from: Mapping the Quantitative Field Resistance to Stripe Rust in a...

    • catalog.data.gov
    • datasetcatalog.nlm.nih.gov
    • +1more
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Mapping the Quantitative Field Resistance to Stripe Rust in a Hard Winter Wheat Population ‘Overley’ × ‘Overland’ [Dataset]. https://catalog.data.gov/dataset/data-from-mapping-the-quantitative-field-resistance-to-stripe-rust-in-a-hard-winter-wheat--85b44
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    Data reported in research published in Crop Science, “Mapping the quantitative field resistance to stripe rust in a hard winter wheat population ‘Overley’ × ‘Overland.’” Authors are Wardah Mustahsan, Mary J. Guttieri, Robert L. Bowden, Kimberley Garland-Campbell, Katherine Jordan, Guihua Bai, Guorong Zhang from USDA Agricultural Research Service and Kansas State University. This study was conducted to identify quantitative trait loci (QTL) associated with field resistance to stripe rust, also known as yellow rust (YR), in hard winter wheat. Stripe rust infection type and severity were rated in recombinant inbred lines (RILs, n=204) derived from a cross between hard red winter wheat cultivars ‘Overley’ and ‘Overland’ in replicated field trials in the Great Plains and Pacific Northwest. RILs (n=184) were genotyped with reduced representation sequencing to produce SNP markers from alignment to the ‘Chinese Spring’ reference sequence, IWGSC v2.1, and from alignment to the reference sequence for ‘Jagger’, which is a parent of Overley. Genetic linkage maps were developed independently from each set of SNP markers. QTL analysis identified genomic regions on chromosome arms 2AS, 2BS, 2BL, and 2DL that were associated with stripe rust resistance using multi-environment best linear unbiased predictors for stripe rust infection type and severity. Results for the two linkage maps were very similar. PCR-based SNP marker assays associated with the QTL regions were developed to efficiently identify these genomic regions in breeding populations.Field response to YR was evaluated in seven trials: Rossville, KS (2018 and 2019), Hays, KS (2019), Pullman, WA (2019 and 2020) and Central Ferry, WA (2019 and 2020). An augmented experimental design was used at Rossville, KS with highly replicated checks and two full replications of RILs (n=187 in 2018; n=204 in 2019). The field experiment at Hays was arranged in a partially replicated augmented design with one or two replications of each RIL (n=194). The parental checks (Overley and Overland) were represented in three blocks for each of the two field replications at Hays, and RILs were distributed among blocks; not all RILs were present in each replication. RILs were arranged in an augmented design with two replications at Pullman (n=204 RILs) and Central Ferry (n=155 RILs in 2019; n=204 in 2020). At Pullman and Central Ferry.The trials at Rossville, KS were inoculated using an inoculum consisting of equal parts of four isolates that were all virulent to Yr9. Two isolates were collected in Kansas in 2010 and had virulence to Yr17 but not QYr.tamu-2B. The other two isolates were from Kansas in 2012 and had virulence to QYr.tamu-2B, but not Yr17. Susceptible spreader rows (KS89180B, carrying Yr9) were inoculated several times during the tillering stage in the evenings with an ultra-low volume sprayer using a suspension of 2 mL of fresh urediniospores in 1 L of Soltrol 170 isoparaffin oil. Trials at Pullman, WA and Central Ferry, WA were evaluated under natural inoculum supplemented by a mixture of isolates collected in the previous field season. The trial at Hays, KS was evaluated under natural infection.Data collection at Rossville, KS began once the susceptible check (KS89180B) had an infection severity coverage of ~10% and continued until senescence. In Rossville, disease ratings (IT and SEV) were collected on 16, 22, and 28th of May 2019. Most ratings in Rossville were taken some time after heading from Zadoks stages 55 to 70. In Pullman, disease ratings were collected on July 1 and 12. In Central Ferry, disease ratings were taken on 12th and 18th of June 2019. The second rating date was used for subsequent statistical analysis. In Hays, disease ratings were taken on June 1, 2019, when the plants were in early booting or heading stages (Zadoks 31-41). Stripe rust evaluations were measured using two disease rating scales: IT (0-9; from no infection to highly susceptible, Line and Qayoum, 1992) and SEV based on visual estimation of the percent flag leaf area affected by the pathogen including associated chlorosis and necrosis (0-100%).DNA was extracted from seedlings, and genotyping-by-sequencing was conducted as described previously (Guttieri, 2020) on a subset of 189 lines (187 RILS and 2 parents) of which 23 RILs were F6-derived and 164 RILs were F9-derived. Single nucleotide polymorphisms (SNPs) were identified in parallel using reference-based calling in the TASSEL pipeline (Bradbury et al., 2007) using both the IWGSC v2.1 reference genome (Zhu et al., 2021) and the Jagger reference sequence (Wheat Genomes Project (http://www.10wheatgenomes.com/10-wheat-genomes-project-and-the-wheat-initiative/). The TASSEL pipeline was executed with the following parameters: minimum read count = 1, minimum quality score = 0, minimum locus coverage = 0.19, and minimum minor allele frequency = 0.005, minimum heterozygous proportion = 0, and removal of minor SNP states. The resulting SNP datasets from each reference sequence were filtered in TASSEL by taxa (RILs) and sites (SNPs). The RILs were filtered to include those RILs for which at least 20% sites were present. The sites were filtered to include sites for which > 60% of RILs were called, minor allele frequency (MAF) > 0.25, maximum allele frequency < 0.75, maximum heterozygous proportion = 0.25, and removal of minor SNP states. The ABH plugin in TASSEL was applied to this reduced dataset to identify parental genotypes.Resources in this dataset:Resource Title: Multilocation Stripe Rust Data File Name: MultiLocRawData_Yr.xslxResource Title: OvOv_CS_TasselSNPCalls File Name: KSM17-OvOv-parentsmerge1.hmp.txt Resource Description: Output of TASSEL GBS SNP calling pipeline using Chinese Spring v2 refseq. Starting point for map construction pipeline.Resource Title: OvOv GBS SNP Calls Jagger RefSeq File Name: KSM17-OvOv-Jaggerpmerge1.hmp.txt Resource Description: TASSEL output from reference-based SNP calling using the Jagger reference sequenceResource Title: QTL-Associated KASP Markers with IT and SEV BLUPs File Name: KASP_Data_IT_SEV.xlsx Resource Description: Multilocation best linear unbiased predictors (BLUPs) for stripe rust infection type and severity of recombinant inbred lines. KASP assay results for QTL-associated SNPs, coded Overley = 2, Overland = 0, Het = 1, Missing = "."

  20. Urban and Rural Population in US Legislative Districts (2020 Census)

    • data-bgky.hub.arcgis.com
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Urban and Rural Population in US Legislative Districts (2020 Census) [Dataset]. https://data-bgky.hub.arcgis.com/maps/497d1bb78d98438386fd6721b6c2c3aa
    Explore at:
    Dataset updated
    Jun 8, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map's colors indicate which population is larger in each area: urban (green) or rural (yellow). The map's layers contain total population counts by sex, age, and race groups for Nation, State Legislative Districts Upper, State Legislative Districts Lower, Congressional District in the United States and Puerto Rico.The U.S. Census designates each census block as part of an urban area or as rural. Larger geographies in this map such as block group, tract, county and state can therefore have a mix of urban and rural population. This map illustrates the 100% urban areas in dark green, and 100% rural areas in dark yellow. Areas with mixed urban/rural population have softer shades of green or yellow, to give a visual indication of where change may be happening. From the Census:"The Census Bureau’s urban-rural classification is a delineation of geographic areas, identifying both individual urban areas and the rural area of the nation. The Census Bureau’s urban areas represent densely developed territory, and encompass residential, commercial, and other non-residential urban land uses. The Census Bureau delineates urban areas after each decennial census by applying specified criteria to decennial census and other data. Rural encompasses all population, housing, and territory not included within an urban area.For the 2020 Census, an urban area will comprise a densely settled core of census blocks that meet minimum housing unit density and/or population density requirements. This includes adjacent territory containing non-residential urban land uses. To qualify as an urban area, the territory identified according to criteria must encompass at least 2,000 housing units or have a population of at least 5,000." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
University of South Florida GIS (2024). Population Density in the US 2020 Census [Dataset]. https://hub.arcgis.com/maps/58e4ee07a0e24e28949903511506a8e4

Population Density in the US 2020 Census

Explore at:
Dataset updated
Jun 20, 2024
Dataset authored and provided by
University of South Florida GIS
Area covered
Description

This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

Search
Clear search
Close search
Google apps
Main menu