85 datasets found
  1. ERA5-Land hourly data from 1950 to present

    • cds.climate.copernicus.eu
    {grib,netcdf}
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5-Land hourly data from 1950 to present [Dataset]. http://doi.org/10.24381/cds.e2161bac
    Explore at:
    {grib,netcdf}Available download formats
    Dataset updated
    Dec 2, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
    The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.

  2. ERA5 Land hourly time-series data from 1950 to present

    • cds.climate.copernicus.eu
    {csv,netcdf}
    Updated Nov 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 Land hourly time-series data from 1950 to present [Dataset]. https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-timeseries
    Explore at:
    {csv,netcdf}Available download formats
    Dataset updated
    Nov 23, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - Dec 31, 2026
    Description

    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to the Fifth Generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA5). Produced by replaying only the land component of the ECMWF ERA5 climate reanalysis, it benefits from the same physical data-assimilation framework but runs offline at higher spatial detail (9 km grid) to deliver richer land-surface information. Reanalysis merges numerical model output with global observations into a globally complete, physically consistent climate record; this “data assimilation” approach mirrors operational weather forecasting but is optimised for historical completeness rather than forecast timeliness. Reanalysis datasets extend back several decades by sacrificing forecast deadlines, allowing additional time to gather observations and retrospectively ingest improved data, thereby enhancing data quality in earlier periods. ERA5-Land uses atmospheric fields from ERA5—air temperature, humidity, pressure—as “forcing” inputs to drive its land-surface model, preventing rapid drift from reality that unconstrained simulations would suffer. Although observations do not enter the land model directly, they shape the atmospheric forcing through assimilation, giving ERA5-Land an indirect observational anchor. To reconcile ERA5’s coarser grid with ERA5-Land’s finer 9 km grid, a lapse-rate correction adjusts input temperatures, humidity, and pressures for altitude differences. Like all numerical simulations, ERA5-Land carries uncertainty that generally grows backward in time as fewer observations were available to constrain the forcing. Users can combine ERA5-Land fields with the uncertainty estimates from equivalent ERA5 variables to assess confidence bounds. The temporal resolution (hourly) and spatial detail (9 km) of ERA5-Land make it invaluable for land-surface applications such as flood and drought forecasting, agricultural monitoring, and hydrological studies. The dataset presented here is a regridded subset of the full ERA5-Land archive, stored in an Analysis-Ready, Cloud-Optimised (ARCO) format specifically designed for retrieving long time-series for individual points. When a user’s requested location does not exactly match a grid point, the nearest grid point is automatically selected. This optimised data source ensures rapid response times.

  3. ECMWF Reanalysis v5 - Land

    • ecmwf.int
    application/x-grib
    Updated Dec 31, 1969
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (1969). ECMWF Reanalysis v5 - Land [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5-land
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Dec 31, 1969
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    developed by C3S at ECMWF

  4. o

    ERA5 Land precipitation daily sum

    • data.opendatascience.eu
    Updated May 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5 Land precipitation daily sum [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=climate
    Explore at:
    Dataset updated
    May 4, 2022
    Description

    Overview: era5.copernicus: precipitation daily sums from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent cumulative daily precipitation in mm x 10.

  5. ECMWF Reanalysis v5

    • ecmwf.int
    application/x-grib
    Updated Dec 31, 1969
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (1969). ECMWF Reanalysis v5 [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Dec 31, 1969
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes information about uncertainties for all variables at reduced spatial and temporal resolutions.

  6. o

    ERA5 Land surface temperature daily average

    • data.opendatascience.eu
    Updated May 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5 Land surface temperature daily average [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=climate
    Explore at:
    Dataset updated
    May 4, 2022
    Description

    Overview: era5.copernicus: surface temperature daily averages from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent minimum, mean, and maximum daily surface temperature in degrees Celsius x 10.

  7. ERA5 Daily Aggregates - Latest Climate Reanalysis Produced by ECMWF /...

    • developers.google.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF / Copernicus Climate Change Service, ERA5 Daily Aggregates - Latest Climate Reanalysis Produced by ECMWF / Copernicus Climate Change Service [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY
    Explore at:
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Time period covered
    Jan 2, 1979 - Jul 9, 2020
    Area covered
    Earth
    Description

    ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset. ERA5 replaces its predecessor, the ERA-Interim reanalysis. ERA5 DAILY provides aggregated values for each day for seven ERA5 climate reanalysis parameters: 2m air temperature, 2m dewpoint temperature, total precipitation, mean sea level pressure, surface pressure, 10m u-component of wind and 10m v-component of wind. Additionally, daily minimum and maximum air temperature at 2m has been calculated based on the hourly 2m air temperature data. Daily total precipitation values are given as daily sums. All other parameters are provided as daily averages. ERA5 data is available from 1979 to three months from real-time. More information and more ERA5 atmospheric parameters can be found at the Copernicus Climate Data Store. Provider's Note: Daily aggregates have been calculated based on the ERA5 hourly values of each parameter.

  8. ERA5 monthly averaged data on single levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Nov 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 monthly averaged data on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.f17050d7
    Explore at:
    gribAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days (monthly means are available around the 6th of each month). In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 monthly mean data on single levels from 1940 to present".

  9. r

    ERA5-Land hourly data from 1950 to present - Soil temperature level 1, 2, 3,...

    • dados.ruraldados.pt
    -
    Updated Oct 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Copernicus Climate Change Service (2025). ERA5-Land hourly data from 1950 to present - Soil temperature level 1, 2, 3, 4 [Dataset]. https://dados.ruraldados.pt/en/datasets/era5-land-hourly-data-from-1950-to-present-soil-temperature-level-1-2-3-4/
    Explore at:
    -Available download formats
    Dataset updated
    Oct 13, 2025
    Dataset authored and provided by
    Copernicus Climate Change Service
    Description

    "ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'. The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states."

  10. ERA5 post-processed daily statistics on single levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Dec 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 post-processed daily statistics on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.4991cf48
    Explore at:
    gribAvailable download formats
    Dataset updated
    Dec 3, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:

    The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)

    *The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.

  11. m

    ERA5-Land daily: Air temperature at 2 meter above surface (2000 - 2020)

    • data.mundialis.de
    • data.opendatascience.eu
    Updated Oct 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). ERA5-Land daily: Air temperature at 2 meter above surface (2000 - 2020) [Dataset]. https://data.mundialis.de/geonetwork/srv/search?keyword=air%20temperature
    Explore at:
    Dataset updated
    Oct 30, 2020
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Air temperature (2 m): Temperature of air at 2m above the surface of land, sea or in-land waters. 2m temperature is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions. The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the spatial resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc seconds (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA Data available is the daily average, minimum and maximum of air temperature (2 m). Spatial resolution: 30 arc seconds (approx. 1000 m) Temporal resolution: Daily Pixel values: °C * 10 (scaled to Integer; example: value 238 = 23.8 %) Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief) Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

  12. a

    ERA5-Land daily data from 1950 to 2023

    • catalogue.arsinoe-project.eu
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ERA5-Land daily data from 1950 to 2023 [Dataset]. https://catalogue.arsinoe-project.eu/dataset/era5-land-daily-data-from-1950-to-2023
    Explore at:
    Dataset updated
    Jul 18, 2023
    Description

    Data for the Ussana test case region are collected using the open-meteo API (https://open-meteo.com/en/docs/climate-api). This API provides climate data at a 10 km resolution, offering detailed regional insights rather than broad continental ones. This allows for the comparison of various climate models to identify regions vulnerable to climate change impacts or to assess the effects on sectors like agriculture or public health. The data is referenced to ERA5-Land, accessible through the Historical Weather API.

  13. d

    ERA5-Land daily averaged data

    • earthdatahub.destine.eu
    zarr
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5-Land daily averaged data [Dataset]. http://doi.org/10.24381/cds.e2161bac
    Explore at:
    zarrAvailable download formats
    Dataset updated
    Nov 26, 2025
    Dataset provided by
    Earth Data Hub
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - Oct 31, 2025
    Description

    ERA5-Land provides land variables evolution over several decades at an enhanced resolution compared to ERA5. The dataset is provided in a ARCO Zarr format ideal for time series analysis

  14. h

    ERA5-Land

    • huggingface.co
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jose Manuel, ERA5-Land [Dataset]. https://huggingface.co/datasets/jmdu/ERA5-Land
    Explore at:
    Authors
    Jose Manuel
    Description

    jmdu/ERA5-Land dataset hosted on Hugging Face and contributed by the HF Datasets community

  15. g

    WFDE5 over land merged with ERA5 over the ocean (W5E5)

    • dataservices.gfz-potsdam.de
    Updated 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stefan Lange (2019). WFDE5 over land merged with ERA5 over the ocean (W5E5) [Dataset]. http://doi.org/10.5880/pik.2019.023
    Explore at:
    Dataset updated
    2019
    Dataset provided by
    GFZ Data Services
    datacite
    Authors
    Stefan Lange
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dataset funded by
    European Commission
    Description

    The W5E5 dataset was compiled to support the bias adjustment of climate input data for the impact assessments carried out in phase 3b of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3b). Version 1.0 of the W5E5 dataset covers the entire globe at 0.5° horizontal and daily temporal resolution from 1979 to 2016. Data sources of W5E5 are version 1.0 of WATCH Forcing Data methodology applied to ERA5 data (WFDE5; Weedon et al., 2014; Cucchi et al., 2020), ERA5 reanalysis data (Hersbach et al., 2019), and precipitation data from version 2.3 of the Global Precipitation Climatology Project (GPCP; Adler et al., 2003). Variables (with short names and units in brackets) included in the W5E5 dataset are Near Surface Relative Humidity (hurs, %), Near Surface Specific Humidity (huss, kg kg-1), Precipitation (pr, kg m-2 s-1), Snowfall Flux (prsn, kg m-2 s-1), Surface Air Pressure (ps, Pa), Sea Level Pressure (psl, Pa), Surface Downwelling Longwave Radiation (rlds, W m-2), Surface Downwelling Shortwave Radiation (rsds, W m-2), Near Surface Wind Speed (sfcWind, m s-1), Near-Surface Air Temperature (tas, K), Daily Maximum Near Surface Air Temperature (tasmax, K), Daily Minimum Near Surface Air Temperature (tasmin, K), Surface Altitude (orog, m), and WFDE5-ERA5 Mask (mask, 1). W5E5 is a merged dataset. It combines WFDE5 data over land with ERA5 data over the ocean. The mask used for the merge is included in the dataset. The mask is equal to 1 over land and equal to 0 over the ocean. Over land, orog is the surface altitude used for elevation corrections in WFDE5. For all other variables already included in WFDE5 (huss, prsn, ps, rlds, rsds, sfcWind, tas), W5E5 data over land are equal to the daily mean values of the corresponding hourly WFDE5 data. W5E5 hurs over land is the daily mean of hourly hurs computed from hourly WFDE5 huss, ps, and tas using the equations of Buck (1981) as described in Weedon et al. (2010). W5E5 pr over land is the daily mean of the sum of hourly WFDE5 rainfall and snowfall. Note that W5E5 pr and prsn over land are based on WFDE5 rainfall and snowfall bias-adjusted using GPCC monthly precipitation totals. W5E5 psl over land is the daily mean of hourly psl computed from hourly WFDE5 orog, ps, and tas according to psl = ps * exp((g * orog) / (r * tas)), where g is gravity, and r is the specific gas constant of dry air. Lastly, W5E5 tasmax and tasmin over land are the daily maximum and minimum, respectively, of hourly WFDE5 tas. Over the ocean, W5E5 data are based on temporally (from hourly to daily resolution) and spatially (from 0.25° to 0.5° horizontal resolution) aggregated ERA5 data. The spatial aggregation using first-order conservative remapping was always done after the temporal aggregation. For tasmax and tasmin, hourly tas values were aggregated to daily maximum and minimum values, respectively. For all other variables, hourly values were aggregated to daily mean values. Variables unavailable in ERA5 (huss, hurs, sfcWind, orog) were first derived from available variables at hourly temporal and 0.25° horizontal resolution and then aggregated like all other variables. huss and hurs were derived from Near Surface Dewpoint Temperature, ps, and tas using the equations of Buck (1981) as described in Buck (2010). sfcWind was derived from Eastward Near-Surface Wind (uas) and Northward Near-Surface Wind (vas) according to sfcWind = sqrt(uas * uas + vas * vas). orog is equal to surface geopotential divided by gravity. Lastly, pr and prsn were bias-adjusted such that monthly W5E5 precipitation totals match GPCP version 2.3 values over the ocean. Monthly rescaling factors used for this purpose were computed following the scale-selective rescaling procedure described by Balsamo et al. (2010).

  16. m

    Daily time series of spatially enhanced relative humidity for Europe at 1000...

    • data.mundialis.de
    • data.opendatascience.eu
    • +1more
    Updated Dec 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Daily time series of spatially enhanced relative humidity for Europe at 1000 m resolution (2000 - 2021) derived from ERA5-Land data [Dataset]. https://data.mundialis.de/geonetwork/srv/search?resolution=1000%20m
    Explore at:
    Dataset updated
    Dec 15, 2022
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Processing steps: The original hourly ERA5-Land air temperature 2 m above ground and dewpoint temperature 2 m data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds. 4. add the interpolated differences to CHELSA Subsequently, the temperature time series have been aggregated on a daily basis. From these, daily relative humidity has been calculated for the time period 01/2000 - 07/2021. Relative humidity (rh2m) has been calculated from air temperature 2 m above ground (Ta) and dewpoint temperature 2 m above ground (Td) using the formula for saturated water pressure from Wright (1997): maximum water pressure = 611.21 * exp(17.502 * Ta / (240.97 + Ta)) actual water pressure = 611.21 * exp(17.502 * Td / (240.97 + Td)) relative humidity = actual water pressure / maximum water pressure Data provided is the daily averages of relative humidity. Resultant values have been converted to represent percent * 10, thus covering a theoretical range of [0, 1000]. The data have been reprojected to EU LAEA. File naming scheme (YYYY = year; MM = month; DD = day): ERA5_land_rh2m_avg_daily_YYYYMMDD.tif Projection + EPSG code: EU LAEA (EPSG: 3035) Spatial extent: north: 6874000 south: -485000 west: 869000 east: 8712000 Spatial resolution: 1000 m Temporal resolution: Daily Pixel values: Percent * 10 (scaled to Integer; example: value 738 = 73.8 %) Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 Original ERA5-Land dataset license: https://apps.ecmwf.int/datasets/licences/copernicus/ CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122 Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/) Reference: Wright, J.M. (1997): Federal meteorological handbook no. 3 (FCM-H3-1997). Office of Federal Coordinator for Meteorological Services and Supporting Research. Washington, DC Acknowledgements: This study was partially funded by EU grant 874850 MOOD. The contents of this publication are the sole responsibility of the authors and don't necessarily reflect the views of the European Commission.

  17. Z

    ERA5-Land daily: Air temperature at 2 meter above surface, daily time series...

    • data.niaid.nih.gov
    Updated Mar 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metz, Markus; Haas, Julia; Neteler, Markus (2025). ERA5-Land daily: Air temperature at 2 meter above surface, daily time series for Europe at 30 arc seconds (ca. 1000 meter) resolution (2000 - 2020) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_14987468
    Explore at:
    Dataset updated
    Mar 7, 2025
    Dataset provided by
    mundialis GmbH & Co. KG
    Authors
    Metz, Markus; Haas, Julia; Neteler, Markus
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    ERA5-Land daily: Air temperature at 2 meter above surface, daily time series for Europe at 30 arc seconds (ca. 1000 meter) resolution (2000 - 2020)

    Source data:ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.

    Air temperature (2 m):Temperature of air at 2m above the surface of land, sea or in-land waters. 2m temperature is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions.

    Processing steps:The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to:- aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/).For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land.The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA

    Data available is the daily average, minimum and maximum of air temperature (2 m).

    File naming:Daily average: ERA5_land_daily_t2m_YYYYMMDD_avg_30sec.tif Daily min: ERA5_land_daily_t2m_YYYYMMDD_min_30sec.tif Daily max: ERA5_land_daily_t2m_YYYYMMDD_max_30sec.tif

    The date within the filename is Year, Month and Day of timestamp.

    Pixel value:°C * 10Example: Value 44 = 4.4 °C

    Projection + EPSG code:Latitude-Longitude/WGS84 (EPSG: 4326)

    Spatial extent:north: 82:00:30Nsouth: 18:00:00Nwest: 32:00:30Weast: 70:00:00E

    Temporal extent:01.01.2000 - 31.12.2020NOTE: Due to file size, only 2020 data are available here. Data for other years are available on request.

    Spatial resolution:30 arc seconds (approx. 1000 m)

    Temporal resolution:daily

    Format: GeoTIFF

    Representation type: Grid

    Software used:GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)

    Lineage:Dataset has been processed from original Copernicus Climate Data Store (ERA5-Land) data sources. As auxiliary data CHELSA climate data has been used.

    Original ERA5-Land dataset license:https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf

    CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

    Other resources:https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/601ea08c-0768-4af3-a8fa-7da25fb9125b

    Processed by:mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

    Contact:mundialis GmbH & Co. KG, info@mundialis.de

  18. d

    ERA5 hourly data on single levels

    • earthdatahub.destine.eu
    zarr
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 hourly data on single levels [Dataset]. http://doi.org/10.24381/cds.adbb2d47
    Explore at:
    zarrAvailable download formats
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    Earth Data Hub
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1940 - Oct 31, 2025
    Description

    Subset of ERA5 reanalysis on the surface (single-levels) for atmospheric and land surface quantities. The dataset is provided in a ARCO Zarr format ideal for time series analysis

  19. u

    ERA5 Reanalysis

    • data.ucar.edu
    • gdex.ucar.edu
    grib
    Updated Oct 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2025). ERA5 Reanalysis [Dataset]. http://doi.org/10.5065/D6X34W69
    Explore at:
    gribAvailable download formats
    Dataset updated
    Oct 22, 2025
    Dataset provided by
    NSF National Center for Atmospheric Research
    Authors
    European Centre for Medium-Range Weather Forecasts
    Area covered
    Description

    Please note: Please use ds633.0 to access RDA maintained ERA-5 data, see ERA5 Reanalysis (0.25 Degree Latitude-Longitude Grid), RDA dataset ds633.0. This dataset is no longer being updated, and web access has been removed.

    After many years of research and technical preparation, the production of a new ECMWF climate reanalysis to replace ERA-Interim is in progress. ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, which started with the FGGE reanalyses produced in the 1980s, followed by ERA-15, ERA-40 and most recently ERA-Interim. ERA5 will cover the period January 1950 to near real time, though the first segment of data to be released will span the period 2010-2016.

    ERA5 is produced using high-resolution forecasts (HRES) at 31 kilometer resolution (one fourth the spatial resolution of the operational model) and a 62 kilometer resolution ten member 4D-Var ensemble of data assimilation (EDA) in CY41r2 of ECMWF's Integrated Forecast System (IFS) with 137 hybrid sigma-pressure (model) levels in the vertical, up to a top level of 0.01 hPa. Atmospheric data on these levels are interpolated to 37 pressure levels (the same levels as in ERA-Interim). Surface or single level data are also available, containing 2D parameters such as precipitation, 2 meter temperature, top of atmosphere radiation and vertical integrals over the entire atmosphere. The IFS is coupled to a soil model, the parameters of which are also designated as surface parameters, and an ocean wave model. Generally, the data is available at an hourly frequency and consists of analyses and short (18 hour) forecasts, initialized twice daily from analyses at 06 and 18 UTC. Most analyses parameters are also available from the forecasts. There are a number of forecast parameters, e.g. mean rates and accumulations, that are not available from the analyses.

    Improvements to ERA5, compared to ERA-Interim, include use of HadISST.2,...

  20. G

    ERA5-Land Daily Aggregated – ECMWF Climate Reanalysis

    • developers.google.com
    Updated Nov 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tägliche Zusammenfassungen: Google und Copernicus Climate Data Store (2025). ERA5-Land Daily Aggregated – ECMWF Climate Reanalysis [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR?hl=de
    Explore at:
    Dataset updated
    Nov 24, 2025
    Dataset provided by
    Tägliche Zusammenfassungen: Google und Copernicus Climate Data Store
    Time period covered
    Jan 2, 1950 - Nov 25, 2025
    Area covered
    Erde
    Description

    ERA5-Land ist ein Reanalysedatensatz, der eine konsistente Sicht auf die Entwicklung von Landvariablen über mehrere Jahrzehnte hinweg in einer im Vergleich zu ERA5 verbesserten Auflösung bietet. ERA5-Land wurde durch die erneute Ausführung der Landkomponente der ECMWF ERA5-Klimareanalyse erstellt. Bei der Reanalyse werden Modelldaten mit Beobachtungen aus aller Welt kombiniert.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ECMWF (2025). ERA5-Land hourly data from 1950 to present [Dataset]. http://doi.org/10.24381/cds.e2161bac
Organization logo

ERA5-Land hourly data from 1950 to present

Explore at:
{grib,netcdf}Available download formats
Dataset updated
Dec 2, 2025
Dataset provided by
European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
Authors
ECMWF
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.

Search
Clear search
Close search
Google apps
Main menu