https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on single levels from 1940 to present".
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate covering the period from January 1940 to present. It is produced by the Copernicus Climate Change Service (C3S) at ECMWF and provides hourly estimates of a large number of atmospheric, land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes an ensemble component at half the resolution to provide information on synoptic uncertainty of its products. ERA5.1 is a dedicated product with the same horizontal and vertical resolution that was produced for the years 2000 to 2006 inclusive to significantly improve a discontinuity in global-mean temperature in the stratosphere and uppermost troposphere that ERA5 suffers from during that period. Users that are interested in this part of the atmosphere in this era are advised to access ERA5.1 rather than ERA5. ERA5 and ERA5.1 use a state-of-the-art numerical weather prediction model to assimilate a variety of observations, including satellite and ground-based measurements, and produces a comprehensive and consistent view of the Earth's atmosphere. These products are widely used by researchers and practitioners in various fields, including climate science, weather forecasting, energy production and machine learning among others, to understand and analyse past and current weather and climate conditions.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.
ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields.
The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.
https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf
This dataset contains ERA5 initial release (ERA5t) model level analysis parameter data. ERA5t is the European Centre for Medium-Range Weather Forecasts (ECWMF) ERA5 reanalysis project initial release available upto 5 days behind the present data. CEDA will maintain a 6 month rolling archive of these data with overlap to the verified ERA5 data - see linked datasets on this record. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.
Surface level analysis and forecast data to complement this dataset are also available. Data from a 10 member ensemble, run at lower spatial and temporal resolution, were also produced to provide an uncertainty estimate for the output from the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation producing data in this dataset.
https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf
This dataset contains ERA5.1 surface level analysis parameter data for the period 2000-2006 from 10 member ensemble runs. ERA5.1 is the European Centre for Medium-Range Weather Forecasts (ECWMF) ERA5 reanalysis project re-run for 2000-2006 to improve upon the cold bias in the lower stratosphere seen in ERA5 (see technical memorandum 859 in the linked documentation section for further details). Ensemble means and spreads are calculated from these 10 member ensemble, run at a reduced resolution compared with the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation, for which these data have been produced to provide an uncertainty estimate. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.
Note, ensemble standard deviation is often referred to as ensemble spread and is calculated as the standard deviation of the 10-members in the ensemble (i.e., including the control). It is not the sample standard deviation, and thus were calculated by dividing by 10 rather than 9 (N-1). See linked datasets for ensemble mean and ensemble spread data.
The main ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects. An initial release of ERA5 data, ERA5t, are also available upto 5 days behind the present. A limited selection of data from these runs are also available via CEDA, whilst full access is available via the Copernicus Data Store.
https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf
This dataset contains ERA5 surface level analysis parameter data from 10 ensemble runs. ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. The ensemble members were used to derive means and spread data (see linked datasets). Ensemble means and spreads were calculated from the ERA5t 10 member ensemble, run at a reduced resolution compared with the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation, for which these data have been produced to provide an uncertainty estimate. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.
Note, ensemble standard deviation is often referred to as ensemble spread and is calculated as the standard deviation of the 10-members in the ensemble (i.e., including the control). It is not the sample standard deviation, and thus were calculated by dividing by 10 rather than 9 (N-1). See linked datasets for ensemble member and ensemble mean data.
The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects.
An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Climate maps (raster layers .tif) of derived-ecvs with a spatial resolution of 5.5 km (1 km for Azores) obtained by statistically downscaling a set of CMIP6 simulations for different IPCC climate scenarios (historical, SSP1-2.6, SSP2-4.5, SSP5-8.5) and time horizons (reference, short time-horizon, medium time-horizon, long time-horizon). Data are representative of specific climate normals (yearly averaged values) and created by RethinkAction.
We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF.
Moreover, we acknowledge the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) to provide access to CMIP6, CERRA, ERA5 and ERA5-Land data:
Acknowledgement also to:
https://opensource.org/licenses/BSD-3-Clausehttps://opensource.org/licenses/BSD-3-Clause
Data for paper "Investigating the sign of stratocumulus adjustments to aerosols in the global storm-resolving model ICON". The code used to generate, analyze and plot these data is provided separately on Zenodo. The zip files named 2.zip_file_name are used in the 2.make_comparison_plots notebooks in the companion Zenodo software repository. The zip files named 3.zip_file_name are generated using the code contained in 1.process_data in the software repository and used for the analyses in 3.calculate_causal_effects in the software repository.
References - Code _
J. Runge et al. (2015): Identifying causal gateways and mediators in complex spatio-temporal systems. Nature Communications, 6, 8502. http://doi.org/10.1038/ncomms9502
J. Runge, Necessary and sufficient graphical conditions for optimal adjustment sets in causal graphical models with hidden variables, Advances in Neural Information Processing Systems, 2021, 34. https://proceedings.neurips.cc/paper/2021/hash/8485ae387a981d783f8764e508151cd9-Abstract.html
References - Data _
SEVIRI
Benas, N., Solodovnik, I., Stengel, M., Hüser, I., Karlsson, K.-G., Håkansson, N., Johansson, E., Eliasson, S., Schröder, M., Hollmann, R., and Meirink, J. F.: CLAAS-3: The Third Edition of the CM SAF Cloud Data Record Based on SEVIRI Observations, Earth System , Science Data Discussions, pp. 1-38, https://doi.org/10.5194/essd-2023-79, 2023.
GOES
Walther, A. and Straka, W.: Algorithm Theoretical Basis Document For Daytime Cloud Optical and Microphysical Properties (DCOMP), 2020
ERA5
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thébaut, J.-N.: ERA5 Hourly Data on Single Levels from 1959 to Present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47, 2018a.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thébaut, J.-N.: ERA5 Hourly Data on Pressure Levels from 1959 to Present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.bd0915c6, 2018b.
GPM
Huffman, G., Stocker, E., Bolvin, D., Nelkin, E., and Tan, J.: GPM IMERG Final Precipitation L3 Half Hourly 0.1 Degree x 0.1 Degree V07, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/GPM/IMERG/3B-HH/07, 2023
MODIS
Platnick, S. et al. MODIS atmosphere L3 daily product. NASA https://doi.org/10.5067/MODIS/MOD08_D3.006 , 2015.
MIDAS
Eastman, R., McCoy, I. L., Schulz, H., and Wood, R.: A Survey of Radiative and Physical Properties of North Atlantic Mesoscale Cloud Morphologies from Multiple Identification Methodologies, EGUsphere, pp. 1–33, https://doi.org/10.5194/egusphere-2023-2118, 2023.
McCoy, I. L., McCoy, D. T., Wood, R., Zuidema, P., and Bender, F. A.-M.: The Role of Mesoscale Cloud Morphology in the Shortwave Cloud Feedback, Geophysical Research Letters, 50, e2022GL101 042, https://doi.org/10.1029/2022GL101042, 2023.
ICON
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) Modelling Framework of DWD and MPI-M: Description of the Non-Hydrostatic Dynamical Core, Quarterly Journal of the Royal Meteorological Society, 141, 563–579, https://doi.org/10.1002/qj.2378, 2015
https://code.mpimet.mpg.de/projects/iconpublic/wiki/Instructions_to_obtain_the_ICON_model_code_with_a_personal_non-commercial_research_license
https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf
This dataset contains ERA5 model level analysis parameter data. ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.
Surface level analysis and forecast data to complement this dataset are also available. Data from a 10 member ensemble, run at lower spatial and temporal resolution, were also produced to provide an uncertainty estimate for the output from the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation producing data in this dataset.
The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects.
An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
This dataset provides global ocean and sea-ice reanalysis (ORAS5: Ocean Reanalysis System 5) monthly mean data prepared by the European Centre for Medium-Range Weather Forecasts (ECMWF) OCEAN5 ocean analysis-reanalysis system. This system comprises 5 ensemble members from which one member is published in this catalogue entry. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset taking into account the laws of physics. The reanalysis provides information without temporal and spatial gaps, i.e. the data are continuous in time, and the assimilation system provides information on every model grid point independently of whether observations are available nearby or not. The OCEAN5 reanalysis system uses the Nucleus for European Modelling of the Ocean (NEMO) ocean model and the NEMOVAR ocean assimilation system. NEMOVAR uses the so-called 3D-Var FGAT (First Guess at Appropriate Time) assimilation technique, which assimilates sub-surface temperature, salinity, sea-ice concentration and sea-level anomalies. The ORAS5 data is forced by either global atmospheric reanalysis (for the consolidated product) or the ECMWF/IFS operational analysis (for the operational product) and is also constrained by observational data of sea surface temperature, sea surface salinity, sea-ice concentration, global-mean-sea-level trends and climatological variations of the ocean mass. The consolidated product (referred to as "Consolidated" in the download form) uses reanalysis atmospheric forcing (ERA-40 until 1978 and ERA-Interim from 1979 to 2014) and re-processed observations. The near real-time (referred to as "Operational" in the download form) ORAS5 product is available from 2015 onwards and is updated on a monthly basis 15 days behind real time. It uses ECMWF operational atmospheric forcing and near real time observations. The consolidated data benefits from atmospheric forcing consistency. The operational data benefits from near real-time latency. ORAS5 data are also available at the Copernicus Marine Environment Monitoring Service (CMEMS) and at the Integrated Climate Data Centre (ICDC), Hamburg University. The present dataset, at the time of publication, provides more variables than the others and has regular updates with near real-time data. For the period from 2015 to the present, the operational ORAS5 data provided in the CDS is different from the dataset provided by CMEMS, because different atmospheric forcings and ocean observation data were used in the generation of the two products. The ORAS5 dataset is produced by ECMWF and funded by the Copernicus Climate Change Service (C3S).
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cmip6-wps/cmip6-wps_23f724282307e697d793a31124a30efac989841c65936f5b2b3f738b7c861bf7.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cmip6-wps/cmip6-wps_23f724282307e697d793a31124a30efac989841c65936f5b2b3f738b7c861bf7.pdf
This catalogue entry provides daily and monthly global climate projections data from a large number of experiments, models and time periods computed in the framework of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). CMIP6 data underpins the Intergovernmental Panel on Climate Change 6th Assessment Report. The use of these data is mostly aimed at:
addressing outstanding scientific questions that arose as part of the IPCC reporting process; improving the understanding of the climate system; providing estimates of future climate change and related uncertainties; providing input data for the adaptation to the climate change; examining climate predictability and exploring the ability of models to predict climate on decadal time scales; evaluating how realistic the different models are in simulating the recent past.
The term "experiments" refers to the three main categories of CMIP6 simulations:
Historical experiments which cover the period where modern climate observations exist. These experiments show how the GCMs performs for the past climate and can be used as a reference period for comparison with scenario runs for the future. The period covered is typically 1850-2014. Climate projection experiments following the combined pathways of Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathway (RCP). The SSP scenarios provide different pathways of the future climate forcing. The period covered is typically 2015-2100.
This catalogue entry provides both two- and three-dimensional data, along with an option to apply spatial and/or temporal subsetting to data requests. This is a new feature of the global climate projection dataset, which relies on compute processes run simultaneously in the ESGF nodes, where the data are originally located. The data are produced by the participating institutes of the CMIP6 project.
https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf
This dataset contains ERA5 initial release (ERA5t) surface level analysis parameter data from 10 member ensemble runs. ERA5t is the European Centre for Medium-Range Weather Forecasts (ECWMF) ERA5 reanalysis project initial release available upto 5 days behind the present data. CEDA will maintain a 6 month rolling archive of these data with overlap to the verified ERA5 data - see linked datasets on this record. Ensemble means and spreads were calculated from the ERA5t 10 member ensemble, run at a reduced resolution compared with the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation, for which these data have been produced to provide an uncertainty estimate. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record. See linked datasets for ensemble member and spread data.
Note, ensemble standard deviation is often referred to as ensemble spread and is calculated as the standard deviation of the 10-members in the ensemble (i.e., including the control). It is not the sample standard deviation, and thus were calculated by dividing by 10 rather than 9 (N-1). See linked datasets for ensemble mean and ensemble spread data.
The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects. An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed and, if required, amended before the full ERA5 release. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on single levels from 1940 to present".