https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:
The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)
*The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.
ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset. ERA5 replaces its predecessor, the ERA-Interim reanalysis. ERA5 MONTHLY provides aggregated values for each month for seven ERA5 climate reanalysis parameters: 2m air temperature, 2m dewpoint temperature, total precipitation, mean sea level pressure, surface pressure, 10m u-component of wind and 10m v-component of wind. Additionally, monthly minimum and maximum air temperature at 2m has been calculated based on the hourly 2m air temperature data. Monthly total precipitation values are given as monthly sums. All other parameters are provided as monthly averages. ERA5 data is available from 1940 to three months from real-time, the version in the EE Data Catalog is available from 1979. More information and more ERA5 atmospheric parameters can be found at the Copernicus Climate Data Store. Provider's Note: Monthly aggregates have been calculated based on the ERA5 hourly values of each parameter.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.
ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields.
The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate covering the period from January 1940 to present. It is produced by the Copernicus Climate Change Service (C3S) at ECMWF and provides hourly estimates of a large number of atmospheric, land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes an ensemble component at half the resolution to provide information on synoptic uncertainty of its products. ERA5.1 is a dedicated product with the same horizontal and vertical resolution that was produced for the years 2000 to 2006 inclusive to significantly improve a discontinuity in global-mean temperature in the stratosphere and uppermost troposphere that ERA5 suffers from during that period. Users that are interested in this part of the atmosphere in this era are advised to access ERA5.1 rather than ERA5. ERA5 and ERA5.1 use a state-of-the-art numerical weather prediction model to assimilate a variety of observations, including satellite and ground-based measurements, and produces a comprehensive and consistent view of the Earth's atmosphere. These products are widely used by researchers and practitioners in various fields, including climate science, weather forecasting, energy production and machine learning among others, to understand and analyse past and current weather and climate conditions.
Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Total precipitation: Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step. The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate proportion of ERA5-Land / aggregated CHELSA 3. interpolate proportion with a Gaussian filter to 30 arc seconds 4. multiply the interpolated proportions with CHELSA Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA. Data available is the daily sum of precipitation. Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief) Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122
After many years of research and technical preparation, the production of a new ECMWF climate reanalysis to replace ERA-Interim is in progress. ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, which started with the FGGE reanalyses produced in the 1980s, followed by ERA-15, ERA-40 and most recently ERA-Interim. ERA5 will cover the period January 1950 to near real time. ERA5 is produced using high-resolution forecasts (HRES) at 31 kilometer resolution (one fourth the spatial resolution of the operational model) and a 62 kilometer resolution ten member 4D-Var ensemble of data assimilation (EDA) in CY41r2 of ECMWF's Integrated Forecast System (IFS) with 137 hybrid sigma-pressure (model) levels in the vertical, up to a top level of 0.01 hPa. Atmospheric data on these levels are interpolated to 37 pressure levels (the same levels as in ERA-Interim). Surface or single level data are also available, containing 2D parameters such as precipitation, 2 meter temperature, top of atmosphere radiation and vertical integrals over the entire atmosphere. The IFS is coupled to a soil model, the parameters of which are also designated as surface parameters, and an ocean wave model. Generally, the data is available at an hourly frequency and consists of analyses and short (12 hour) forecasts, initialized twice daily from analyses at 06 and 18 UTC. Most analyses parameters are also available from the forecasts. There are a number of forecast parameters (for example, mean rates and accumulations) that are not available from the analyses. Improvements to ERA5, compared to ERA-Interim, include use of HadISST.2, reprocessed ECMWF climate data records (CDR), and implementation of RTTOV11 radiative transfer. Variational bias corrections have not only been applied to satellite radiances, but also ozone retrievals, aircraft observations, surface pressure, and radiosonde profiles.
Please note: Please use ds633.0 to access RDA maintained ERA-5 data, see ERA5 Reanalysis (0.25 Degree Latitude-Longitude Grid) [https://rda.ucar.edu/datasets/ds633.0], RDA dataset ds633.0. This dataset is no longer being updated, and web access has been removed.
After many years of research and technical preparation, the production of a new ECMWF climate reanalysis to replace ERA-Interim is in progress. ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, which started with the FGGE reanalyses produced in the 1980s, followed by ERA-15, ERA-40 and most recently ERA-Interim. ERA5 will cover the period January 1950 to near real time, though the first segment of data to be released will span the period 2010-2016.
ERA5 is produced using high-resolution forecasts (HRES) at 31 kilometer resolution (one fourth the spatial resolution of the operational model) and a 62 kilometer resolution ten member 4D-Var ensemble of data assimilation (EDA) in CY41r2 of ECMWF's Integrated Forecast System (IFS) with 137 hybrid sigma-pressure (model) levels in the vertical, up to a top level of 0.01 hPa. Atmospheric data on these levels are interpolated to 37 pressure levels (the same levels as in ERA-Interim). Surface or single level data are also available, containing 2D parameters such as precipitation, 2 meter temperature, top of atmosphere radiation and vertical integrals over the entire atmosphere. The IFS is coupled to a soil model, the parameters of which are also designated as surface parameters, and an ocean wave model. Generally, the data is available at an hourly frequency and consists of analyses and short (18 hour) forecasts, initialized twice daily from analyses at 06 and 18 UTC. Most analyses parameters are also available from the forecasts. There are a number of forecast parameters, e.g. mean rates and accumulations, that are not available from the analyses.
Improvements to ERA5, compared to ERA-Interim, include use of HadISST.2, reprocessed ECMWF climate data records (CDR), and implementation of RTTOV11 radiative transfer. Variational bias corrections have not only been applied to satellite radiances, but also ozone retrievals, aircraft observations, surface pressure, and radiosonde profiles.
NCAR's Data Support Section (DSS) is performing and supplying a grid transformed version of ERA5, in which variables originally represented as spectral coefficients or archived on a reduced Gaussian grid are transformed to a regular 1280 longitude by 640 latitude N320 Gaussian grid. In addition, DSS is also computing horizontal winds (u-component, v-component) from spectral vorticity and divergence where these are available. Finally, the data is reprocessed into single parameter time series.
Please note: As of November 2017, DSS is also producing a CF 1.6 compliant netCDF-4/HDF5 version of ERA5 for CISL RDA at NCAR. The netCDF-4/HDF5 version is the de facto RDA ERA5 online data format. The GRIB1 data format is only available via NCAR's High Performance Storage System (HPSS). We encourage users to evaluate the netCDF-4/HDF5 version for their work, and to use the currently existing GRIB1 files as a reference and basis of comparison. To ease this transition, there is a one-to-one correspondence between the netCDF-4/HDF5 and GRIB1 files, with as much GRIB1 metadata as possible incorporated into the attributes of the netCDF-4/HDF5 counterpart.
Maximum air temperature calculated at a height of 2 metres above the surface. Unit: K. The Maximum air temperature variable is part of the Agrometeorological indicators dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) through the Copernicus Climate Change Service (C3S). The Agrometeorological indicators dataset provides daily surface meteorological data for the period from 1979 to present as input for agriculture and agro-ecological studies. This dataset is based on the hourly ECMWF ERA5 data at surface level and is referred to as AgERA5. References: https://doi.org/10.24381/cds.6c68c9bb
The Copernicus Climate Change Service (C3S) aims to combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate in Europe and worldwide. ECMWF operates the Copernicus Climate Change Service on behalf of the European Union and will bring together expertise from across Europe to deliver the service.
Data publication: 2021-01-30
Data revision: 2021-10-05
Contact points:
Metadata Contact: ECMWF - European Centre for Medium-Range Weather Forecasts
Resource Contact: ECMWF Support Portal
Data lineage:
Agrometeorological data were aggregated to daily time steps at the local time zone and corrected towards a finer topography at a 0.1° spatial resolution. The correction to the 0.1° grid was realized by applying grid and variable-specific regression equations to the ERA5 dataset interpolated at 0.1° grid. The equations were trained on ECMWF's operational high-resolution atmospheric model (HRES) at a 0.1° resolution. This way the data is tuned to the finer topography, finer land use pattern and finer land-sea delineation of the ECMWF HRES model.
Resource constraints:
License Permission
This License is free of charge, worldwide, non-exclusive, royalty free and perpetual. Access to Copernicus Products is given for any purpose in so far as it is lawful, whereas use may include, but is not limited to: reproduction; distribution; communication to the public; adaptation, modification and combination with other data and information; or any combination of the foregoing.
Where the Licensee communicates or distributes Copernicus Products to the public, the Licensee shall inform the recipients of the source by using the following or any similar notice:
and/or
More information on Copernicus License in PDF version at: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
Online resources:
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The W5E5 dataset was compiled to support the bias adjustment of climate input data for the impact assessments carried out in phase 3b of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3b).
Version 2.0 of the W5E5 dataset covers the entire globe at 0.5° horizontal and daily temporal resolution from 1979 to 2019. Data sources of W5E5 are version 2.0 of WATCH Forcing Data methodology applied to ERA5 data (WFDE5; Weedon et al., 2014; Cucchi et al., 2020), ERA5 reanalysis data (Hersbach et al., 2020), and precipitation data from version 2.3 of the Global Precipitation Climatology Project (GPCP; Adler et al., 2003).
Variables (with short names and units in brackets) included in the W5E5 dataset are Near Surface Relative Humidity (hurs, %), Near Surface Specific Humidity (huss, kg kg-1), Precipitation (pr, kg m-2 s-1), Snowfall Flux (prsn, kg m-2 s-1), Surface Air Pressure (ps, Pa), Sea Level Pressure (psl, Pa), Surface Downwelling Longwave Radiation (rlds, W m-2), Surface Downwelling Shortwave Radiation (rsds, W m-2), Near Surface Wind Speed (sfcWind, m s-1), Near-Surface Air Temperature (tas, K), Daily Maximum Near Surface Air Temperature (tasmax, K), Daily Minimum Near Surface Air Temperature (tasmin, K), Surface Altitude (orog, m), and WFDE5-ERA5 Mask (mask, 1).
ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, and the first reanalysis produced as an operational service. It utilizes the best available observation data from satellites and in-situ stations, which are assimilated and processed using ECMWF's Integrated Forecast System (IFS) Cycle 41r2. The dataset provides all essential atmospheric meteorological parameters like, but not limited to, air temperature, pressure and wind at different altitudes, along with surface parameters like rainfall, soil moisture content and sea parameters like sea-surface temperature and wave height. ERA5 provides data at a considerably higher spatial and temporal resolution than its legacy counterpart ERA-Interim. ERA5 consists of high resolution version with 31 km horizontal resolution, and a reduced resolution ensemble version with 10 members. It is currently available since 2008, but will be continuously extended backwards, first until 1979 and then to 1950. Learn more about ERA5 in Jon Olauson's paper ERA5: The new champion of wind power modelling?.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
[ Derived from parent entry - See data hierarchy tab ]
This experiment comprises data that have been used in Hagemann et al. (submitted). It comprises daily data of surface runoff and subsurface runoff from HydroPy and simulated daily discharges (river runoff) of the HD model. The discharge data close the water cycle at the land-ocean interface so that the discharges can be used as lateral freshwater input for ocean models applied in the European region.
a) HD5-ERA5 ERA5 is the fifth generation of atmospheric reanalysis (Hersbach et al., 2020) produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). It provides hourly data on many atmospheric, land-surface, and sea-state parameters at about 31 km resolution. The global hydrology model HydroPy (Stacke and Hagemann, 2021) was driven by daily ERA5 forcing data from 1979-2018 to generate daily input fields of surface and subsurface runoff at the ERA5 resolution. It uses precipitation and 2m temperature directly from the ERA5 dataset. Furthermore, potential evapotranspiration (PET) was calculated from ERA5 data in a pre-processing step and used as an additional forcing for HydroPy. Here, we applied the Penman-Monteith equation to calculate a reference evapotranspiration following (Allen et al., 1998) that was improved by replacing the constant value for albedo with a distributed field from the LSP2 dataset (Hagemann, 2002). In order to initialize the storages in the HydroPy model and to avoid any drift during the actual simulation period, we conducted a 50-years spin-up simulation by repeatedly using year 1979 of the ERA5 dataset as forcing. To generate river runoff, the Hydrological discharge (HD) model (Hagemann et al., 2020; Hagemann and Ho-Hagemann, 2021) was used that was operated at 5 arc minutes horizontal resolution. The HD model was set up over the European domain covering the land areas between -11°W to 69°E and 27°N to 72°N. First, the forcing data of surface and sub-surface runoff simulated by HydroPy were interpolated to the HD model grid. Then, daily discharges were simulated with the HD model.
b) HD5-EOBS The E-OBS dataset (Cornes et al., 2018) comprises several daily gridded surface variables at 0.1° and 0.25° resolution over Europe covering the area 25°N-71.5°N x 25°W-45°E. The dataset has been derived from station data collated by the ECA&D (European Climate Assessment & Dataset) initiative (Klein Tank et al., 2002; Klok and Klein Tank, 2009). In the present study, we use the best-guess fields of precipitation and 2m temperature of vs. 22 (EOBS22) at 0.1° resolution for the years 1950-2018. HydroPy was driven by daily EOBS22 data of temperature and precipitation at 0.1° resolution from 1950-2019. The potential evapotranspiration (PET) was calculated following the approach proposed by (Thornthwaite, 1948) including an average day length at a given location. As for HD5-ERA5, the forcing data of surface and sub-surface runoff simulated by HydroPy were first interpolated to the HD model grid. Then, daily discharges were simulated with the HD model.
Main reference: Hagemann, S., Stacke, T. (2022) Complementing ERA5 and E-OBS with high-resolution river discharge over Europe. Oceanologia 65: 230-248, doi:10.1016/j.oceano.2022.07.003
Mean wind speed at a height of 10 metres above the surface over the period 00h-24h local time. Unit: m s-1. The Wind Speed variable is part of the Agrometeorological indicators dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) through the Copernicus Climate Change Service (C3S). The Agrometeorological indicators dataset provides daily surface meteorological data for the period from 1979 to present as input for agriculture and agro-ecological studies. This dataset is based on the hourly ECMWF ERA5 data at surface level and is referred to as AgERA5. References: https://doi.org/10.24381/cds.6c68c9bb
The Copernicus Climate Change Service (C3S) aims to combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate in Europe and worldwide. ECMWF operates the Copernicus Climate Change Service on behalf of the European Union and will bring together expertise from across Europe to deliver the service.
Data publication: 2021-01-30
Data revision: 2021-10-05
Contact points:
Metadata Contact: ECMWF - European Centre for Medium-Range Weather Forecasts
Resource Contact: ECMWF Support Portal
Data lineage:
Agrometeorological data were aggregated to daily time steps at the local time zone and corrected towards a finer topography at a 0.1° spatial resolution. The correction to the 0.1° grid was realized by applying grid and variable-specific regression equations to the ERA5 dataset interpolated at 0.1° grid. The equations were trained on ECMWF's operational high-resolution atmospheric model (HRES) at a 0.1° resolution. This way the data is tuned to the finer topography, finer land use pattern and finer land-sea delineation of the ECMWF HRES model.
Resource constraints:
License Permission
This License is free of charge, worldwide, non-exclusive, royalty free and perpetual. Access to Copernicus Products is given for any purpose in so far as it is lawful, whereas use may include, but is not limited to: reproduction; distribution; communication to the public; adaptation, modification and combination with other data and information; or any combination of the foregoing.
Where the Licensee communicates or distributes Copernicus Products to the public, the Licensee shall inform the recipients of the source by using the following or any similar notice:
and/or
More information on Copernicus License in PDF version at: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
Online resources:
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Reference evapotranspiration per day with a spatial resolution of 0.1 degree. Unit: mm day-1. The dataset contains daily values for global land areas, excluding Antarctica, since 1979. The dataset has been prepared according to the FAO Penman - Monteith method as described in FAO Irrigation and Drainage Paper 56.
The input variables are part of the Agrometeorological indicators dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) through the Copernicus Climate Change Service (C3S).
The Agrometeorological indicators dataset provides daily surface meteorological data for the period from 1979 to present as input for agriculture and agro-ecological studies. This dataset is based on the hourly ECMWF ERA5 data at surface level and is referred to as AgERA5. References: https://doi.org/10.24381/cds.6c68c9bb
The Copernicus Climate Change Service (C3S) aims to combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate in Europe and worldwide. ECMWF operates the Copernicus Climate Change Service on behalf of the European Union and will bring together expertise from across Europe to deliver the service.
Data publication: 2021-10-30
Contact points:
Metadata Contact: AQUASTAT
Resource Contact: AQUASTAT
Data lineage:
Copernicus Agrometeorological data were aggregated to daily time steps at the local time zone and corrected towards a finer topography at a 0.1° spatial resolution. The correction to the 0.1° grid was realized by applying grid and variable-specific regression equations to the ERA5 dataset interpolated at 0.1° grid. The equations were trained on ECMWF's operational high-resolution atmospheric model (HRES) at a 0.1° resolution. This way the data is tuned to the finer topography, finer land use pattern and finer land-sea delineation of the ECMWF HRES model.
Resource constraints:
The dataset contains modified Copernicus Climate Change Service information [1979-to date];
Neither the European Commission nor ECMWF is responsible for any use that may be made of the Copernicus information or data it contains.
More information on Copernicus License in PDF version at https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
Online resources:
Download Reference Evapotranspiration - AgERA5 derived (Daily - ~10km)
Relative humidity at 09h (local time) at a height of 2 metres above the surface. This variable describes the amount of water vapour present in air expressed as a percentage of the amount needed for saturation at the same temperature. Unit: %. The Relative humidity variable is part of the Agrometeorological indicators dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) through the Copernicus Climate Change Service (C3S). The Agrometeorological indicators dataset provides daily surface meteorological data for the period from 1979 to present as input for agriculture and agro-ecological studies. This dataset is based on the hourly ECMWF ERA5 data at surface level and is referred to as AgERA5. References: https://doi.org/10.24381/cds.6c68c9bb
The Copernicus Climate Change Service (C3S) aims to combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate in Europe and worldwide. ECMWF operates the Copernicus Climate Change Service on behalf of the European Union and will bring together expertise from across Europe to deliver the service.
Data publication: 2021-01-30
Data revision: 2021-10-05
Contact points:
Metadata Contact: ECMWF - European Centre for Medium-Range Weather Forecasts
Resource Contact: ECMWF Support Portal
Data lineage:
Agrometeorological data were aggregated to daily time steps at the local time zone and corrected towards a finer topography at a 0.1° spatial resolution. The correction to the 0.1° grid was realized by applying grid and variable-specific regression equations to the ERA5 dataset interpolated at 0.1° grid. The equations were trained on ECMWF's operational high-resolution atmospheric model (HRES) at a 0.1° resolution. This way the data is tuned to the finer topography, finer land use pattern and finer land-sea delineation of the ECMWF HRES model.
Resource constraints:
License Permission
This License is free of charge, worldwide, non-exclusive, royalty free and perpetual. Access to Copernicus Products is given for any purpose in so far as it is lawful, whereas use may include, but is not limited to: reproduction; distribution; communication to the public; adaptation, modification and combination with other data and information; or any combination of the foregoing.
Where the Licensee communicates or distributes Copernicus Products to the public, the Licensee shall inform the recipients of the source by using the following or any similar notice:
and/or
More information on Copernicus License in PDF version at: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
Online resources:
Relative humidity at 12h (local time) at a height of 2 metres above the surface. This variable describes the amount of water vapour present in air expressed as a percentage of the amount needed for saturation at the same temperature. Unit: %. The Relative humidity variable is part of the Agrometeorological indicators dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) through the Copernicus Climate Change Service (C3S). The Agrometeorological indicators dataset provides daily surface meteorological data for the period from 1979 to present as input for agriculture and agro-ecological studies. This dataset is based on the hourly ECMWF ERA5 data at surface level and is referred to as AgERA5. References: https://doi.org/10.24381/cds.6c68c9bb
The Copernicus Climate Change Service (C3S) aims to combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate in Europe and worldwide. ECMWF operates the Copernicus Climate Change Service on behalf of the European Union and will bring together expertise from across Europe to deliver the service.
Data publication: 2021-01-30
Data revision: 2021-10-05
Contact points:
Metadata Contact: ECMWF - European Centre for Medium-Range Weather Forecasts
Resource Contact: ECMWF Support Portal
Data lineage:
Agrometeorological data were aggregated to daily time steps at the local time zone and corrected towards a finer topography at a 0.1° spatial resolution. The correction to the 0.1° grid was realized by applying grid and variable-specific regression equations to the ERA5 dataset interpolated at 0.1° grid. The equations were trained on ECMWF's operational high-resolution atmospheric model (HRES) at a 0.1° resolution. This way the data is tuned to the finer topography, finer land use pattern and finer land-sea delineation of the ECMWF HRES model.
Resource constraints:
License Permission
This License is free of charge, worldwide, non-exclusive, royalty free and perpetual. Access to Copernicus Products is given for any purpose in so far as it is lawful, whereas use may include, but is not limited to: reproduction; distribution; communication to the public; adaptation, modification and combination with other data and information; or any combination of the foregoing.
Where the Licensee communicates or distributes Copernicus Products to the public, the Licensee shall inform the recipients of the source by using the following or any similar notice:
and/or
More information on Copernicus License in PDF version at: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
Online resources:
Relative humidity at 15h (local time) at a height of 2 metres above the surface. This variable describes the amount of water vapour present in air expressed as a percentage of the amount needed for saturation at the same temperature. Unit: %. The Relative humidity variable is part of the Agrometeorological indicators dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) through the Copernicus Climate Change Service (C3S). The Agrometeorological indicators dataset provides daily surface meteorological data for the period from 1979 to present as input for agriculture and agro-ecological studies. This dataset is based on the hourly ECMWF ERA5 data at surface level and is referred to as AgERA5. References: https://doi.org/10.24381/cds.6c68c9bb
The Copernicus Climate Change Service (C3S) aims to combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate in Europe and worldwide. ECMWF operates the Copernicus Climate Change Service on behalf of the European Union and will bring together expertise from across Europe to deliver the service.
Data publication: 2021-01-30
Data revision: 2021-10-05
Contact points:
Metadata Contact: ECMWF - European Centre for Medium-Range Weather Forecasts
Resource Contact: ECMWF Support Portal
Data lineage:
Agrometeorological data were aggregated to daily time steps at the local time zone and corrected towards a finer topography at a 0.1° spatial resolution. The correction to the 0.1° grid was realized by applying grid and variable-specific regression equations to the ERA5 dataset interpolated at 0.1° grid. The equations were trained on ECMWF's operational high-resolution atmospheric model (HRES) at a 0.1° resolution. This way the data is tuned to the finer topography, finer land use pattern and finer land-sea delineation of the ECMWF HRES model.
Resource constraints:
License Permission
This License is free of charge, worldwide, non-exclusive, royalty free and perpetual. Access to Copernicus Products is given for any purpose in so far as it is lawful, whereas use may include, but is not limited to: reproduction; distribution; communication to the public; adaptation, modification and combination with other data and information; or any combination of the foregoing.
Where the Licensee communicates or distributes Copernicus Products to the public, the Licensee shall inform the recipients of the source by using the following or any similar notice:
and/or
More information on Copernicus License in PDF version at: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
Online resources:
For RDA ERA5 monthly mean data prior to 1979, please see ds633.5: ERA5 monthly mean back extension 1950-1978 (Preliminary version) [https://rda.ucar.edu/datasets/ds633.5/] After many years of research and technical preparation, the production of a new ECMWF climate reanalysis to replace ERA-Interim is in progress. ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, which started with the FGGE reanalyses produced in the 1980s, followed by ERA-15, ERA-40 and most recently ERA-Interim. ERA5 will cover the period January 1950 to near real time.
ERA5 is produced using high-resolution forecasts (HRES) at 31 kilometer resolution (one fourth the spatial resolution of the operational model) and a 62 kilometer resolution ten member 4D-Var ensemble of data assimilation (EDA) in CY41r2 of ECMWF's Integrated Forecast System (IFS) with 137 hybrid sigma-pressure (model) levels in the vertical, up to a top level of 0.01 hPa. Atmospheric data on these levels are interpolated to 37 pressure levels (the same levels as in ERA-Interim). Surface or single level data are also available, containing 2D parameters such as precipitation, 2 meter temperature, top of atmosphere radiation and vertical integrals over the entire atmosphere. The IFS is coupled to a soil model, the parameters of which are also designated as surface parameters, and an ocean wave model. Generally, the data is available at an hourly frequency and consists of analyses and short (12 hour) forecasts, initialized twice daily from analyses at 06 and 18 UTC. Most analyses parameters are also available from the forecasts. There are a number of forecast parameters, e.g. mean rates and accumulations, that are not available from the analyses.
Improvements to ERA5, compared to ERA-Interim, include use of HadISST.2, reprocessed ECMWF climate data records (CDR), and implementation of RTTOV11 radiative transfer. Variational bias corrections have not only been applied to satellite radiances, but also ozone retrievals, aircraft observations, surface pressure, and radiosonde profiles.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
This dataset provides daily surface meteorological data for the period from 1979 to present as input for agriculture and agro-ecological studies. This dataset is based on the hourly ECMWF ERA5 data at surface level and is referred to as AgERA5. Acquisition and pre-processing of the original ERA5 data is a complex and specialized job. By providing the AgERA5 dataset, users are freed from this work and can directly start with meaningful input for their analyses and modelling. To this end, the variables provided in this dataset match the input needs of most agriculture and agro-ecological models. Data were aggregated to daily time steps at the local time zone and corrected towards a finer topography at a 0.1° spatial resolution. The correction to the 0.1° grid was realized by applying grid and variable-specific regression equations to the ERA5 dataset interpolated at 0.1° grid. The equations were trained on ECMWF's operational high-resolution atmospheric model (HRES) at a 0.1° resolution. This way the data is tuned to the finer topography, finer land use pattern and finer land-sea delineation of the ECMWF HRES model. The data was produced on behalf of the Copernicus Climate Change Service.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Humidex (Masterton and Richardson 1979) is an index developed by the Meteorological Service of Canada to describe how hot and humid the weather feels to the average person. In Canada, it is recommended that outdoor activities be moderated when the humidex exceeds 30, and that all unnecessary activities cease when it passes 40 (Mekis et al., 2015). With the increase in temperature projected by climate models over the coming decades over Canada, increases are also expected in the number of days with high-value Humidex across the country, which will have important consequences for human health. This dataset consists of a multi-model ensemble of statistically downscaled climate model projections for three humidex threshold indices (annual number of days when humidex exceeds 30, 35 and 40, noted HXmax30, HXmax35 and HXmax40 respectively) on a 0.1-degree latitude-longitude grid over Canada. The three indices (HXmax30, HXmax35 and HXmax40) are available for download at annual time step and 30-year averages from 1950 to 2100, for each of the 19 individual models and for the 10th, 50th, and 90th ensemble percentiles. The multi-model ensemble is using output from 19 Coupled Model Intercomparison Project Phase 6 (CMIP6) global climate models (GCM) that are available at the Earth System Grid Federation (ESGF) Data Nodes, for three emission scenarios called “Shared Socioeconomic Pathways” (SSPs) (Riahi et al. 2017): SSP126, SSP245 and SSP585. The GCM outputs were statistically downscaled and bias corrected using the N-dimensional probability density function transform multivariate quantile mapping method (Cannon, 2018) against ERA5-Land data (Muñoz, 2019), using a method described in Diaconescu et al. (2022). This method is based on the observation that the time when Humidex reaches its daily maximum coincide statistically with the time when temperature reaches its daily maximum and relative humidity reaches its daily minimum. In order to eliminate model biases and the errors in the adjustment method, the daily maximum temperature and daily minimum relative humidity from GCMs are statistically downscaled and bias corrected against the hourly temperature and relative humidity at the time of daily maximum humidex from ERA5-Land. The bias-corrected values are used to compute the daily maximum humidex and next the three threshold annual indices. These ensembles of indices are intended to enable users to better identify and reduce the susceptibility of vulnerable populations to illness and mortality due to increase in the frequency and intensity of extreme heat events due to climate change. References: Cannon, A. J. (2018). 'Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables', Climate Dynamics, 50(1-2), 31-49. Available at https://doi.org/10.1007/s00382-017-3580-6 Diaconescu, E. P. et al. (2022) ' A short note on the use of daily climate data to calculate Humidex heat-stress indices', International Journal of Climatology, 1– 13. https://doi.org/10.1002/joc.7833 Masterton, J. M., and Richardson, F. (1979) 'Humidex: a method of quantifying human discomfort due to excessive heat and humidity', Environment Canada, Atmospheric Environment, 45. Mekis, É., et al. (2015) 'Observed trends in severe weather conditions based on humidex, wind chill, and heavy rainfall events in Canada for 1953–2012', Atmosphere-Ocean, 53, 383-397. Available at https://doi.org/10.1080/07055900.2015.1086970, (Accessed: 19 April 2022). Muñoz Sabater, J., 2019: ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on < 25-Jun-2021 >), https://doi.org/10.24381/cds.e2161bac Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Crespo Cuaresma, J., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Aleluia Da Silva, L., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., & Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An Overview. Global Environmental Change, 42, 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.009
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The database includes monthly and daily precipitation totals for Polish, Czech and German measuring stations in the Sudetes from 1961 to 2020. The source of the data was the Institute of Meteorology and Water Management - National Research Institute (https://danepubliczne.imgw.pl/), the Czech Hydrometeorological Agency (https://www.chmi.cz/historicka-data/pocasi/denni-data) and the German Weather Service (https://opendata.dwd.de/climate_environment/CDC/observations_germany/). The daily data set additionally includes atmospheric circulation types assigned to a specific day, along with their classification components (advection direction, lower and upper vorticity and air mass humidity). A relevant atmospheric circulation type for a given day was calculated on the basis of data from ERA5 Reanalysis prepared by European Centre for Medium-Range with the spatial resolution 0.25° x 0.25°: the u and v wind components from 700 hPa isobaric level, geopotential from 850 hPa and 500 hPa isobaric level (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-pressure-levels?tab=download) and total column water vapor (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download).
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:
The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)
*The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.