https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on single levels from 1940 to present".
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.
ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields.
The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate covering the period from January 1940 to present. It is produced by the Copernicus Climate Change Service (C3S) at ECMWF and provides hourly estimates of a large number of atmospheric, land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes an ensemble component at half the resolution to provide information on synoptic uncertainty of its products. ERA5.1 is a dedicated product with the same horizontal and vertical resolution that was produced for the years 2000 to 2006 inclusive to significantly improve a discontinuity in global-mean temperature in the stratosphere and uppermost troposphere that ERA5 suffers from during that period. Users that are interested in this part of the atmosphere in this era are advised to access ERA5.1 rather than ERA5. ERA5 and ERA5.1 use a state-of-the-art numerical weather prediction model to assimilate a variety of observations, including satellite and ground-based measurements, and produces a comprehensive and consistent view of the Earth's atmosphere. These products are widely used by researchers and practitioners in various fields, including climate science, weather forecasting, energy production and machine learning among others, to understand and analyse past and current weather and climate conditions.
After many years of research and technical preparation, the production of a new ECMWF climate reanalysis to replace ERA-Interim is in progress. ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, which started with the FGGE reanalyses produced in the 1980s, followed by ERA-15, ERA-40 and most recently ERA-Interim. ERA5 will cover the period January 1950 to near real time. ERA5 is produced using high-resolution forecasts (HRES) at 31 kilometer resolution (one fourth the spatial resolution of the operational model) and a 62 kilometer resolution ten member 4D-Var ensemble of data assimilation (EDA) in CY41r2 of ECMWF's Integrated Forecast System (IFS) with 137 hybrid sigma-pressure (model) levels in the vertical, up to a top level of 0.01 hPa. Atmospheric data on these levels are interpolated to 37 pressure levels (the same levels as in ERA-Interim). Surface or single level data are also available, containing 2D parameters such as precipitation, 2 meter temperature, top of atmosphere radiation and vertical integrals over the entire atmosphere. The IFS is coupled to a soil model, the parameters of which are also designated as surface parameters, and an ocean wave model. Generally, the data is available at an hourly frequency and consists of analyses and short (12 hour) forecasts, initialized twice daily from analyses at 06 and 18 UTC. Most analyses parameters are also available from the forecasts. There are a number of forecast parameters (for example, mean rates and accumulations) that are not available from the analyses. Improvements to ERA5, compared to ERA-Interim, include use of HadISST.2, reprocessed ECMWF climate data records (CDR), and implementation of RTTOV11 radiative transfer. Variational bias corrections have not only been applied to satellite radiances, but also ozone retrievals, aircraft observations, surface pressure, and radiosonde profiles.
ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. The full dataset is available from 1940 onwards at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview. This version only contains hourly measures of solar radiation, temperature and wind speeds, as well as monthly measures for sea surface temperature for 1950-2020.
Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product.
ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread.
Downloaded Using: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
These datasets contains ERA-5 data for the entirety for CONUS for the following temporal resolutions and fields:
The following fields are available at an hourly resolution.
1. solar_radiation - Surface solar radiation downwards
2. temperature - 2m temperature
3. wind_speeds - 100m u-component of wind and 100m v-component of wind
Note:- Within each field xxxx.nc denotes the hourly data for xxxx year. The data span from 1950-2020.
###Monthly Resolution Data###
1. sst - Available at two resolutions.
preliminary_sst --%3E Data from 1950-1978.
sst --%3E Data from 1979-2020.
Additionally the sst field contains Sea Surface Temperature across the globe.
ERA5-Land (European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis) is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'. The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields.
ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset. ERA5 replaces its predecessor, the ERA-Interim reanalysis. ERA5 MONTHLY provides aggregated values for each month for seven ERA5 climate reanalysis parameters: 2m air temperature, 2m dewpoint temperature, total precipitation, mean sea level pressure, surface pressure, 10m u-component of wind and 10m v-component of wind. Additionally, monthly minimum and maximum air temperature at 2m has been calculated based on the hourly 2m air temperature data. Monthly total precipitation values are given as monthly sums. All other parameters are provided as monthly averages. ERA5 data is available from 1940 to three months from real-time, the version in the EE Data Catalog is available from 1979. More information and more ERA5 atmospheric parameters can be found at the Copernicus Climate Data Store. Provider's Note: Monthly aggregates have been calculated based on the ERA5 hourly values of each parameter.
Please note: Please use ds633.0 to access RDA maintained ERA-5 data, see ERA5 Reanalysis (0.25 Degree Latitude-Longitude Grid) [https://rda.ucar.edu/datasets/ds633.0], RDA dataset ds633.0. This dataset is no longer being updated, and web access has been removed.
After many years of research and technical preparation, the production of a new ECMWF climate reanalysis to replace ERA-Interim is in progress. ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, which started with the FGGE reanalyses produced in the 1980s, followed by ERA-15, ERA-40 and most recently ERA-Interim. ERA5 will cover the period January 1950 to near real time, though the first segment of data to be released will span the period 2010-2016.
ERA5 is produced using high-resolution forecasts (HRES) at 31 kilometer resolution (one fourth the spatial resolution of the operational model) and a 62 kilometer resolution ten member 4D-Var ensemble of data assimilation (EDA) in CY41r2 of ECMWF's Integrated Forecast System (IFS) with 137 hybrid sigma-pressure (model) levels in the vertical, up to a top level of 0.01 hPa. Atmospheric data on these levels are interpolated to 37 pressure levels (the same levels as in ERA-Interim). Surface or single level data are also available, containing 2D parameters such as precipitation, 2 meter temperature, top of atmosphere radiation and vertical integrals over the entire atmosphere. The IFS is coupled to a soil model, the parameters of which are also designated as surface parameters, and an ocean wave model. Generally, the data is available at an hourly frequency and consists of analyses and short (18 hour) forecasts, initialized twice daily from analyses at 06 and 18 UTC. Most analyses parameters are also available from the forecasts. There are a number of forecast parameters, e.g. mean rates and accumulations, that are not available from the analyses.
Improvements to ERA5, compared to ERA-Interim, include use of HadISST.2, reprocessed ECMWF climate data records (CDR), and implementation of RTTOV11 radiative transfer. Variational bias corrections have not only been applied to satellite radiances, but also ozone retrievals, aircraft observations, surface pressure, and radiosonde profiles.
NCAR's Data Support Section (DSS) is performing and supplying a grid transformed version of ERA5, in which variables originally represented as spectral coefficients or archived on a reduced Gaussian grid are transformed to a regular 1280 longitude by 640 latitude N320 Gaussian grid. In addition, DSS is also computing horizontal winds (u-component, v-component) from spectral vorticity and divergence where these are available. Finally, the data is reprocessed into single parameter time series.
Please note: As of November 2017, DSS is also producing a CF 1.6 compliant netCDF-4/HDF5 version of ERA5 for CISL RDA at NCAR. The netCDF-4/HDF5 version is the de facto RDA ERA5 online data format. The GRIB1 data format is only available via NCAR's High Performance Storage System (HPSS). We encourage users to evaluate the netCDF-4/HDF5 version for their work, and to use the currently existing GRIB1 files as a reference and basis of comparison. To ease this transition, there is a one-to-one correspondence between the netCDF-4/HDF5 and GRIB1 files, with as much GRIB1 metadata as possible incorporated into the attributes of the netCDF-4/HDF5 counterpart.
https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf
This dataset contains ERA5 surface level forecast parameter data. ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.
Model and surface level analysis data to complement this dataset are also available. Data from a 10 member ensemble, run at lower spatial and temporal resolution, were also produced to provide an uncertainty estimate for the output from the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation producing data in this dataset.
The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects.
An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.
ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, and the first reanalysis produced as an operational service. It utilizes the best available observation data from satellites and in-situ stations, which are assimilated and processed using ECMWF's Integrated Forecast System (IFS) Cycle 41r2. The dataset provides all essential atmospheric meteorological parameters like, but not limited to, air temperature, pressure and wind at different altitudes, along with surface parameters like rainfall, soil moisture content and sea parameters like sea-surface temperature and wave height. ERA5 provides data at a considerably higher spatial and temporal resolution than its legacy counterpart ERA-Interim. ERA5 consists of high resolution version with 31 km horizontal resolution, and a reduced resolution ensemble version with 10 members. It is currently available since 2008, but will be continuously extended backwards, first until 1979 and then to 1950. Learn more about ERA5 in Jon Olauson's paper ERA5: The new champion of wind power modelling?.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The W5E5 dataset was compiled to support the bias adjustment of climate input data for the impact assessments carried out in phase 3b of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3b). Version 1.0 of the W5E5 dataset covers the entire globe at 0.5° horizontal and daily temporal resolution from 1979 to 2016. Data sources of W5E5 are version 1.0 of WATCH Forcing Data methodology applied to ERA5 data (WFDE5; Weedon et al., 2014; Cucchi et al., 2020), ERA5 reanalysis data (Hersbach et al., 2019), and precipitation data from version 2.3 of the Global Precipitation Climatology Project (GPCP; Adler et al., 2003). Variables (with short names and units in brackets) included in the W5E5 dataset are Near Surface Relative Humidity (hurs, %), Near Surface Specific Humidity (huss, kg kg-1), Precipitation (pr, kg m-2 s-1), Snowfall Flux (prsn, kg m-2 s-1), Surface Air Pressure (ps, Pa), Sea Level Pressure (psl, Pa), Surface Downwelling Longwave Radiation (rlds, W m-2), Surface Downwelling Shortwave Radiation (rsds, W m-2), Near Surface Wind Speed (sfcWind, m s-1), Near-Surface Air Temperature (tas, K), Daily Maximum Near Surface Air Temperature (tasmax, K), Daily Minimum Near Surface Air Temperature (tasmin, K), Surface Altitude (orog, m), and WFDE5-ERA5 Mask (mask, 1). W5E5 is a merged dataset. It combines WFDE5 data over land with ERA5 data over the ocean. The mask used for the merge is included in the dataset. The mask is equal to 1 over land and equal to 0 over the ocean. Over land, orog is the surface altitude used for elevation corrections in WFDE5. For all other variables already included in WFDE5 (huss, prsn, ps, rlds, rsds, sfcWind, tas), W5E5 data over land are equal to the daily mean values of the corresponding hourly WFDE5 data. W5E5 hurs over land is the daily mean of hourly hurs computed from hourly WFDE5 huss, ps, and tas using the equations of Buck (1981) as described in Weedon et al. (2010). W5E5 pr over land is the daily mean of the sum of hourly WFDE5 rainfall and snowfall. Note that W5E5 pr and prsn over land are based on WFDE5 rainfall and snowfall bias-adjusted using GPCC monthly precipitation totals. W5E5 psl over land is the daily mean of hourly psl computed from hourly WFDE5 orog, ps, and tas according to psl = ps * exp((g * orog) / (r * tas)), where g is gravity, and r is the specific gas constant of dry air. Lastly, W5E5 tasmax and tasmin over land are the daily maximum and minimum, respectively, of hourly WFDE5 tas. Over the ocean, W5E5 data are based on temporally (from hourly to daily resolution) and spatially (from 0.25° to 0.5° horizontal resolution) aggregated ERA5 data. The spatial aggregation using first-order conservative remapping was always done after the temporal aggregation. For tasmax and tasmin, hourly tas values were aggregated to daily maximum and minimum values, respectively. For all other variables, hourly values were aggregated to daily mean values. Variables unavailable in ERA5 (huss, hurs, sfcWind, orog) were first derived from available variables at hourly temporal and 0.25° horizontal resolution and then aggregated like all other variables. huss and hurs were derived from Near Surface Dewpoint Temperature, ps, and tas using the equations of Buck (1981) as described in Buck (2010). sfcWind was derived from Eastward Near-Surface Wind (uas) and Northward Near-Surface Wind (vas) according to sfcWind = sqrt(uas * uas + vas * vas). orog is equal to surface geopotential divided by gravity. Lastly, pr and prsn were bias-adjusted such that monthly W5E5 precipitation totals match GPCP version 2.3 values over the ocean. Monthly rescaling factors used for this purpose were computed following the scale-selective rescaling procedure described by Balsamo et al. (2010).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is used to showcase in Jupyter notebooks the usage of the Pythie postprocessing software available on GitHub.
We use the ERA5 reanalysis over a large area in Europe from 1997 to 2016 as gridded observations. These reanalysis have been downloaded from the Copernicus Data Store in GRIB format and converted to the NetCDF file format.
The reforecasts files have been download from ECMWF and converted to NetCDF files.
The observation data of the WMO-compliant DWD meteorological station of Soltau from 1997 to 2016. The station is located at the point 52°57'37.5"N, 9°47'35.0"E. The data have been downloaded from the DWD Climate Data Center.
Gridded reforecast data source
Source www.ecmwf.int
Creative Commons Attribution 4.0 International (CC BY 4.0) Copyright © 2021 European Centre for Medium-Range Weather Forecasts (ECMWF).
Copernicus ERA5 gridded reanalysis data source
Source https://cds.climate.copernicus.eu/
Copyright © 2021 European Union.
Generated using Copernicus Climate Change Service information 2021.
Hersbach et al. (2018): ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on < 21-04-2021 >), doi:10.24381/cds.adbb2d47.
Observation data source
Source: Deutscher Wetterdienst, DWD CDC portal
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This experiment comprises data that have been used in Hagemann et al. (submitted). It comprises daily data of surface runoff and subsurface runoff from HydroPy and simulated daily discharges (river runoff) of the HD model. The discharge data close the water cycle at the land-ocean interface so that the discharges can be used as lateral freshwater input for ocean models applied in the European region.
a) HD5-ERA5 ERA5 is the fifth generation of atmospheric reanalysis (Hersbach et al., 2020) produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). It provides hourly data on many atmospheric, land-surface, and sea-state parameters at about 31 km resolution. The global hydrology model HydroPy (Stacke and Hagemann, 2021) was driven by daily ERA5 forcing data from 1979-2018 to generate daily input fields of surface and subsurface runoff at the ERA5 resolution. It uses precipitation and 2m temperature directly from the ERA5 dataset. Furthermore, potential evapotranspiration (PET) was calculated from ERA5 data in a pre-processing step and used as an additional forcing for HydroPy. Here, we applied the Penman-Monteith equation to calculate a reference evapotranspiration following (Allen et al., 1998) that was improved by replacing the constant value for albedo with a distributed field from the LSP2 dataset (Hagemann, 2002). In order to initialize the storages in the HydroPy model and to avoid any drift during the actual simulation period, we conducted a 50-years spin-up simulation by repeatedly using year 1979 of the ERA5 dataset as forcing. To generate river runoff, the Hydrological discharge (HD) model (Hagemann et al., 2020; Hagemann and Ho-Hagemann, 2021) was used that was operated at 5 arc minutes horizontal resolution. The HD model was set up over the European domain covering the land areas between -11°W to 69°E and 27°N to 72°N. First, the forcing data of surface and sub-surface runoff simulated by HydroPy were interpolated to the HD model grid. Then, daily discharges were simulated with the HD model.
b) HD5-EOBS The E-OBS dataset (Cornes et al., 2018) comprises several daily gridded surface variables at 0.1° and 0.25° resolution over Europe covering the area 25°N-71.5°N x 25°W-45°E. The dataset has been derived from station data collated by the ECA&D (European Climate Assessment & Dataset) initiative (Klein Tank et al., 2002; Klok and Klein Tank, 2009). In the present study, we use the best-guess fields of precipitation and 2m temperature of vs. 22 (EOBS22) at 0.1° resolution for the years 1950-2018. HydroPy was driven by daily EOBS22 data of temperature and precipitation at 0.1° resolution from 1950-2019. The potential evapotranspiration (PET) was calculated following the approach proposed by (Thornthwaite, 1948) including an average day length at a given location. As for HD5-ERA5, the forcing data of surface and sub-surface runoff simulated by HydroPy were first interpolated to the HD model grid. Then, daily discharges were simulated with the HD model.
Main reference: Hagemann, S., Stacke, T. (2022) Complementing ERA5 and E-OBS with high-resolution river discharge over Europe. Oceanologia 65: 230-248, doi:10.1016/j.oceano.2022.07.003
Maximum air temperature calculated at a height of 2 metres above the surface. Unit: K. The Maximum air temperature variable is part of the Agrometeorological indicators dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) through the Copernicus Climate Change Service (C3S). The Agrometeorological indicators dataset provides daily surface meteorological data for the period from 1979 to present as input for agriculture and agro-ecological studies. This dataset is based on the hourly ECMWF ERA5 data at surface level and is referred to as AgERA5. References: https://doi.org/10.24381/cds.6c68c9bb
The Copernicus Climate Change Service (C3S) aims to combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate in Europe and worldwide. ECMWF operates the Copernicus Climate Change Service on behalf of the European Union and will bring together expertise from across Europe to deliver the service.
Data publication: 2021-01-30
Data revision: 2021-10-05
Contact points:
Metadata Contact: ECMWF - European Centre for Medium-Range Weather Forecasts
Resource Contact: ECMWF Support Portal
Data lineage:
Agrometeorological data were aggregated to daily time steps at the local time zone and corrected towards a finer topography at a 0.1° spatial resolution. The correction to the 0.1° grid was realized by applying grid and variable-specific regression equations to the ERA5 dataset interpolated at 0.1° grid. The equations were trained on ECMWF's operational high-resolution atmospheric model (HRES) at a 0.1° resolution. This way the data is tuned to the finer topography, finer land use pattern and finer land-sea delineation of the ECMWF HRES model.
Resource constraints:
License Permission
This License is free of charge, worldwide, non-exclusive, royalty free and perpetual. Access to Copernicus Products is given for any purpose in so far as it is lawful, whereas use may include, but is not limited to: reproduction; distribution; communication to the public; adaptation, modification and combination with other data and information; or any combination of the foregoing.
Where the Licensee communicates or distributes Copernicus Products to the public, the Licensee shall inform the recipients of the source by using the following or any similar notice:
and/or
More information on Copernicus License in PDF version at: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
Online resources:
These are ERA5 reanalysis data cutouts that can be used for PyPSA-Eur. They cover latitudes between 32°N and 72°N (except for 2007 which covers 31°N and 73°N due to some internal errors when converting) and longitudes between 13°W and 35°E. They were generated for and used in https://github.com/aleks-g/intersecting-near-opt-spaces to investigate weather-resilient European power systems. They can however also be used in the general context of PyPSA-Eur (https://pypsa-eur.readthedocs.io/en/latest/index.html). These cutouts contain the following variables in an hourly resolution in a spatial resolution of 0.25° for both longitude and latitude: - height - wnd100m - roughness - influx_toa - influx_direct - influx_diffuse - albedo - temperature - soil temperature - runoff These data were created using Atlite (https://atlite.readthedocs.io/en/latest/) which uses the Copernicus API to download and convert reanalysis data into variables that are relevant for energy system models. The reanalysis weather data were generated from the Copernicus Climate Change Service (C3S) Climate Data Store. The data are licensed under the Copernicus license (https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Temperature is the most concerned factor in the human-environment ecological processes. Apparent temperature is the equivalent temperature perceived by human body, and it is the most accurate indicator to reflect human's environmental temperature perception. High quality apparent temperature data is urgently needed for the further research on human-environment ecological processes. At the same time, as global heat waves continue to increase in frequency, duration and intensity, understanding the impact of heat waves on human health needs human perception-based heat wave data. Using ERA5 hourly data on single levels of 2 m temperature, wind speed, dewpoint temperature and solar radiation, this study developed a global apparent temperature and heat wave (GATHW) toolbox based on the Climate Data Store (CDS) online platform. This toolbox allows three methods to calculate daily apparent temperature and heat wave at three spatial resolutions of 0.25°, 0.5° and 1°, respectively. It can realize online calculation, display and real-time download of apparent temperature and heat wave data, and is update in near real-time. The global daily apparent temperature and annual heat wave dataset from 2006 to 2020 calculated by the toolbox can be obtained from the National Qinghai Tibet Plateau Scientific Data Centre of China (https://www.doi.org/10.5281/zenodo.4764325). After evaluation, this dataset can well reflect the typical extreme temperatures and heat wave events, and is more accurate, with higher resolution and faster update frequency than similar data products, which can provide data support for the study of human-environmental ecological processes and extreme climate events.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1842206%2F057ecc16d2aae27eb32391e59599415e%2Fjp2.jpg?generation=1730030359772976&alt=media" alt="">
Hourly and Daily Weather Dataset of Forbes Top 100 Best Cities To Live, Work And Visit from https://open-meteo.com/ from January 01, 2020 to Apr 06, 2025.
Image generated with Bing Image Generator
Relative humidity at 09h (local time) at a height of 2 metres above the surface. This variable describes the amount of water vapour present in air expressed as a percentage of the amount needed for saturation at the same temperature. Unit: %. The Relative humidity variable is part of the Agrometeorological indicators dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) through the Copernicus Climate Change Service (C3S). The Agrometeorological indicators dataset provides daily surface meteorological data for the period from 1979 to present as input for agriculture and agro-ecological studies. This dataset is based on the hourly ECMWF ERA5 data at surface level and is referred to as AgERA5. References: https://doi.org/10.24381/cds.6c68c9bb
The Copernicus Climate Change Service (C3S) aims to combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate in Europe and worldwide. ECMWF operates the Copernicus Climate Change Service on behalf of the European Union and will bring together expertise from across Europe to deliver the service.
Data publication: 2021-01-30
Data revision: 2021-10-05
Contact points:
Metadata Contact: ECMWF - European Centre for Medium-Range Weather Forecasts
Resource Contact: ECMWF Support Portal
Data lineage:
Agrometeorological data were aggregated to daily time steps at the local time zone and corrected towards a finer topography at a 0.1° spatial resolution. The correction to the 0.1° grid was realized by applying grid and variable-specific regression equations to the ERA5 dataset interpolated at 0.1° grid. The equations were trained on ECMWF's operational high-resolution atmospheric model (HRES) at a 0.1° resolution. This way the data is tuned to the finer topography, finer land use pattern and finer land-sea delineation of the ECMWF HRES model.
Resource constraints:
License Permission
This License is free of charge, worldwide, non-exclusive, royalty free and perpetual. Access to Copernicus Products is given for any purpose in so far as it is lawful, whereas use may include, but is not limited to: reproduction; distribution; communication to the public; adaptation, modification and combination with other data and information; or any combination of the foregoing.
Where the Licensee communicates or distributes Copernicus Products to the public, the Licensee shall inform the recipients of the source by using the following or any similar notice:
and/or
More information on Copernicus License in PDF version at: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
Online resources:
Mean wind speed at a height of 10 metres above the surface over the period 00h-24h local time. Unit: m s-1. The Wind Speed variable is part of the Agrometeorological indicators dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) through the Copernicus Climate Change Service (C3S). The Agrometeorological indicators dataset provides daily surface meteorological data for the period from 1979 to present as input for agriculture and agro-ecological studies. This dataset is based on the hourly ECMWF ERA5 data at surface level and is referred to as AgERA5. References: https://doi.org/10.24381/cds.6c68c9bb
The Copernicus Climate Change Service (C3S) aims to combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate in Europe and worldwide. ECMWF operates the Copernicus Climate Change Service on behalf of the European Union and will bring together expertise from across Europe to deliver the service.
Data publication: 2021-01-30
Data revision: 2021-10-05
Contact points:
Metadata Contact: ECMWF - European Centre for Medium-Range Weather Forecasts
Resource Contact: ECMWF Support Portal
Data lineage:
Agrometeorological data were aggregated to daily time steps at the local time zone and corrected towards a finer topography at a 0.1° spatial resolution. The correction to the 0.1° grid was realized by applying grid and variable-specific regression equations to the ERA5 dataset interpolated at 0.1° grid. The equations were trained on ECMWF's operational high-resolution atmospheric model (HRES) at a 0.1° resolution. This way the data is tuned to the finer topography, finer land use pattern and finer land-sea delineation of the ECMWF HRES model.
Resource constraints:
License Permission
This License is free of charge, worldwide, non-exclusive, royalty free and perpetual. Access to Copernicus Products is given for any purpose in so far as it is lawful, whereas use may include, but is not limited to: reproduction; distribution; communication to the public; adaptation, modification and combination with other data and information; or any combination of the foregoing.
Where the Licensee communicates or distributes Copernicus Products to the public, the Licensee shall inform the recipients of the source by using the following or any similar notice:
and/or
More information on Copernicus License in PDF version at: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
Online resources:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SPHERA (High Resolution REAnalysis over Italy) is a convection-permitting regional reanalysis developed by ARPAE-Emilia Romagna and publicly available. The SPHERA domain covers Italy and the surrounding seas with a horizontal resolution of 2.2km. The temporal coverage corresponds to the period 1995-2020 and the dataset is available at hourly frequency. SPHERA reanalysis was developed using the Numerical Weather Prediction model COSMO (www.cosmo-model.org) nested in the global reanalysis ERA5 produced by ECMWF. Moreover, upper-air and surface observations were assimilated at the convection-permitting scale by the COSMO nudging scheme.
This record reports the hourly surface air temperature at 2-meter height for the period 2013-2020. The full extension of the dataset over 1995-2020 is available over three different records due to space constraints:
Update (2024-06-28): inconsistencies were noted in a subset of grib messages contained the first version of the repository (slightly different spatial domain size and missing messages at 00-hour timesteps) which have been corrected in the current version v2.
Other fields currently available on Zenodo are the surface relative humidity at 2-meter height (also over three different records due to space constraints):
and hourly accumulated total precipitation: https://doi.org/10.5281/zenodo.10441407
Details on the SPHERA dataset production, as well as data verification against surface observations are reported in peer-reviewed publications. See References.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on single levels from 1940 to present".