69 datasets found
  1. ERA5-Land hourly data from 1950 to present

    • cds.climate.copernicus.eu
    {grib,netcdf}
    Updated Oct 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5-Land hourly data from 1950 to present [Dataset]. http://doi.org/10.24381/cds.e2161bac
    Explore at:
    {grib,netcdf}Available download formats
    Dataset updated
    Oct 26, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - Oct 20, 2025
    Description

    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
    The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.

  2. G

    ERA5-Land Daily Aggregated - ECMWF Climate Reanalysis

    • developers.google.com
    Updated Nov 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daily Aggregates: Google and Copernicus Climate Data Store (2024). ERA5-Land Daily Aggregated - ECMWF Climate Reanalysis [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR
    Explore at:
    Dataset updated
    Nov 17, 2024
    Dataset provided by
    Daily Aggregates: Google and Copernicus Climate Data Store
    Time period covered
    Jan 2, 1950 - Oct 20, 2025
    Area covered
    Earth
    Description

    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. This dataset includes all 50 variables as available on CDS. ERA5-Land data is available from 1950 to three months from real-time. Please consult the ERA5-Land "Known Issues" section. In particular, note that three components of the total evapotranspiration have values swapped as follows: variable "Evaporation from bare soil" (mars parameter code 228101 (evabs)) has the values corresponding to the "Evaporation from vegetation transpiration" (mars parameter 228103 (evavt)), variable "Evaporation from open water surfaces excluding oceans (mars parameter code 228102 (evaow)) has the values corresponding to the "Evaporation from bare soil" (mars parameter code 228101 (evabs)), variable "Evaporation from vegetation transpiration" (mars parameter code 228103 (evavt)) has the values corresponding to the "Evaporation from open water surfaces excluding oceans" (mars parameter code 228102 (evaow)). The asset is a daily aggregate of ECMWF ERA5 Land hourly assets which includes both flow and non-flow bands. Flow bands are formed by collecting the first hour's data of the following day which holds aggregated sum of previous day and while the non-flow bands are created by averaging all hourly data of the day. The flow bands are labeled with the "_sum" identifier, which approach is different from the daily data produced by Copernicus Climate Data Store, where flow bands are averaged too. Daily aggregates have been pre-calculated to facilitate many applications requiring easy and fast access to the data. Precipitation and other flow (accumulated) bands might occasionally have negative values, which doesn't make physical sense. At other times their values might be excessively high. This problem is due to how the GRIB format saves data: it simplifies or "packs" the data into smaller, less precise numbers, which can introduce errors. These errors get worse when the data varies a lot. Because of this, when we look at the data for a whole day to compute daily totals, sometimes the highest amount of rainfall recorded at one time can seem larger than the total rainfall measured for the entire day. To learn more, Please see: "Why are there sometimes small negative precipitation accumulations"

  3. ECMWF Reanalysis v5 - Land

    • ecmwf.int
    application/x-grib
    Updated Dec 31, 1969
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (1969). ECMWF Reanalysis v5 - Land [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5-land
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Dec 31, 1969
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    developed by C3S at ECMWF

  4. o

    ERA5 Land precipitation daily sum

    • data.opendatascience.eu
    Updated May 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5 Land precipitation daily sum [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=climate
    Explore at:
    Dataset updated
    May 4, 2022
    Description

    Overview: era5.copernicus: precipitation daily sums from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent cumulative daily precipitation in mm x 10.

  5. o

    ERA5 Land surface temperature daily average

    • data.opendatascience.eu
    Updated May 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5 Land surface temperature daily average [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=climate
    Explore at:
    Dataset updated
    May 4, 2022
    Description

    Overview: era5.copernicus: surface temperature daily averages from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent minimum, mean, and maximum daily surface temperature in degrees Celsius x 10.

  6. r

    ERA5-Land hourly data from 1950 to present - Soil temperature level 1, 2, 3,...

    • dados.ruraldados.pt
    -
    Updated Oct 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Copernicus Climate Change Service (2025). ERA5-Land hourly data from 1950 to present - Soil temperature level 1, 2, 3, 4 [Dataset]. https://dados.ruraldados.pt/en/datasets/era5-land-hourly-data-from-1950-to-present-soil-temperature-level-1-2-3-4/
    Explore at:
    -Available download formats
    Dataset updated
    Oct 13, 2025
    Dataset authored and provided by
    Copernicus Climate Change Service
    Description

    "ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'. The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states."

  7. e

    ERA5 Land air temperature daily average

    • data.europa.eu
    • data.opendatascience.eu
    Updated Jul 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5 Land air temperature daily average [Dataset]. https://data.europa.eu/88u/dataset/45c626be-3b29-43ae-832e-6a9c70c5d8f6
    Explore at:
    Dataset updated
    Jul 15, 2022
    Description

    Overview: era5.copernicus: air temperature daily averages from 2000 to 2020 resampled with CHELSA to 1 km resolution

    Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies.

    Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA.

    Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.

    Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields.

    Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021).

    Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset.

    Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.

    Positional accuracy: 1 km spatial resolution

    Temporal accuracy: Daily maps for the years 2020-2020.

    Thematic accuracy: The raster values represent minimum, mean, and maximum daily air temperature 2m above ground in degrees Celsius x 10.

  8. ERA5 hourly data on pressure levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Oct 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 hourly data on pressure levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.bd0915c6
    Explore at:
    gribAvailable download formats
    Dataset updated
    Oct 27, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1940 - Oct 21, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on pressure levels from 1940 to present".

  9. d

    Complete ERA5 global atmospheric reanalysis 1940 to present

    • search.dataone.org
    • search-dev-2.test.dataone.org
    • +2more
    Updated Sep 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hans Hersbach; Bill Bell; Paul Berrisford; Shoji Hirahara; András Horányi; Joaquín Muñoz-Sabater; Julien Nicolas; Carole Peubey; Raluca Radu; Dinand Schepers; Adrian Simmons; Cornel Soci; Saleh Abdalla; Xavier Abellan; Gianpaolo Balsamo; Peter Bechtold; Gionata Biavati; Jean Bidlot; Massimo Bonavita; Giovanna De Chiara; Per Dahlgren; Dick Dee; Michail Diamantakis; Rossana Dragani; Johannes Flemming; Richard Forbes; Manuel Fuentes; Alan Geer; Leo Haimberger; Sean Healy; Robin J. Hogan; Elías Hólm; Marta Janisková; Sarah Keeley; Patrick Laloyaux; Philippe Lopez; Cristina Lupu; Gabor Radnoti; Patricia de Rosnay; Iryna Rozum; Freja Vamborg; Sebastien Villaume; Jean-Noël Thépaut (2024). Complete ERA5 global atmospheric reanalysis 1940 to present [Dataset]. http://doi.org/10.18739/A25M6286H
    Explore at:
    Dataset updated
    Sep 19, 2024
    Dataset provided by
    Arctic Data Center
    Authors
    Hans Hersbach; Bill Bell; Paul Berrisford; Shoji Hirahara; András Horányi; Joaquín Muñoz-Sabater; Julien Nicolas; Carole Peubey; Raluca Radu; Dinand Schepers; Adrian Simmons; Cornel Soci; Saleh Abdalla; Xavier Abellan; Gianpaolo Balsamo; Peter Bechtold; Gionata Biavati; Jean Bidlot; Massimo Bonavita; Giovanna De Chiara; Per Dahlgren; Dick Dee; Michail Diamantakis; Rossana Dragani; Johannes Flemming; Richard Forbes; Manuel Fuentes; Alan Geer; Leo Haimberger; Sean Healy; Robin J. Hogan; Elías Hólm; Marta Janisková; Sarah Keeley; Patrick Laloyaux; Philippe Lopez; Cristina Lupu; Gabor Radnoti; Patricia de Rosnay; Iryna Rozum; Freja Vamborg; Sebastien Villaume; Jean-Noël Thépaut
    Time period covered
    Jan 1, 1940
    Area covered
    Earth
    Description

    ERA5 (European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis) is the fifth generation ECMWF atmospheric reanalysis of the global climate covering the period from January 1940 to present. It is produced by the Copernicus Climate Change Service (C3S) at ECMWF and provides hourly estimates of a large number of atmospheric, land and oceanic climate variables. The data cover the Earth on a 31 kilometer (km) grid and resolve the atmosphere using 137 levels from the surface up to a height of 80 km. ERA5 includes an ensemble component at half the resolution to provide information on synoptic uncertainty of its products. ERA5.1 is a dedicated product with the same horizontal and vertical resolution that was produced for the years 2000 to 2006 inclusive to significantly improve a discontinuity in global-mean temperature in the stratosphere and uppermost troposphere that ERA5 suffers from during that period. Users that are interested in this part of the atmosphere in this era are advised to access ERA5.1 rather than ERA5. ERA5 and ERA5.1 use a state-of-the-art numerical weather prediction model to assimilate a variety of observations, including satellite and ground-based measurements, and produces a comprehensive and consistent view of the Earth's atmosphere. These products are widely used by researchers and practitioners in various fields, including climate science, weather forecasting, energy production and machine learning among others, to understand and analyse past and current weather and climate conditions.

  10. w

    ERA5-Land Data - Dataset - waterdata

    • wbwaterdata.org
    Updated Oct 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). ERA5-Land Data - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/era5-land-data
    Explore at:
    Dataset updated
    Oct 4, 2021
    Description

    This data set has information on temperature of water at the bottom of inland water bodies; thickness of ice on inland water bodies (lakes, reservoirs and rivers) and coastal waters; temperature of the uppermost surface of ice on inland water bodies (lakes, reservoirs, rivers) and coastal waters; the mean temperature of total water column in inland water bodies (lakes, reservoirs and rivers) and coastal waters; Amount of water in the vegetation canopy and/or in a thin layer on the soil. It represents the amount of rain intercepted by foliage, and water from dew; Volume of water in soil layer (0 - 289 cm) of the ECMWF Integrated Forecasting System; The amount of evaporation from bare soil at the top of the land surface; surface runoff

  11. m

    ERA5-Land daily: Total precipitation (2000 - 2020)

    • data.mundialis.de
    • data.opendatascience.eu
    Updated Dec 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). ERA5-Land daily: Total precipitation (2000 - 2020) [Dataset]. https://data.mundialis.de/geonetwork/srv/search?keyword=precipitation
    Explore at:
    Dataset updated
    Dec 12, 2021
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Total precipitation: Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step. The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate proportion of ERA5-Land / aggregated CHELSA 3. interpolate proportion with a Gaussian filter to 30 arc seconds 4. multiply the interpolated proportions with CHELSA Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA. Data available is the daily sum of precipitation. Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief) Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

  12. m

    ERA5-Land daily: Surface temperature (2000 - 2020)

    • data.mundialis.de
    • data.opendatascience.eu
    Updated Feb 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5-Land daily: Surface temperature (2000 - 2020) [Dataset]. https://data.mundialis.de/geonetwork/srv/search?keyword=surface%20temperature
    Explore at:
    Dataset updated
    Feb 8, 2022
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Surface temperature: Temperature of the surface of the Earth. The skin temperature is the theoretical temperature that is required to satisfy the surface energy balance. It represents the temperature of the uppermost surface layer, which has no heat capacity and so can respond instantaneously to changes in surface fluxes. The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the spatial resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA Data available is the daily average, minimum and maximum of surface temperature. Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief) Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

  13. e

    ERA5-Land weekly: Surface temperature, weekly time series for Europe at 1 km...

    • data.europa.eu
    • data.mundialis.de
    • +2more
    tiff
    Updated Aug 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). ERA5-Land weekly: Surface temperature, weekly time series for Europe at 1 km resolution (2016 - 2020) [Dataset]. https://data.europa.eu/data/datasets/a98fa2dd-6787-4eeb-b51a-ab4c9ae731be~~1/embed
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Aug 25, 2024
    License

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.

    Surface temperature: Temperature of the surface of the Earth. The skin temperature is the theoretical temperature that is required to satisfy the surface energy balance. It represents the temperature of the uppermost surface layer, which has no heat capacity and so can respond instantaneously to changes in surface fluxes.

    Processing steps: The original hourly ERA5-Land data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA

    The spatially enhanced daily ERA5-Land data has been aggregated on a weekly basis (starting from Saturday) for the time period 2016 - 2020. Data available is the weekly average of daily averages, the weekly minimum of daily minima and the weekly maximum of daily maxima of surface temperature.

    File naming: Average of daily average: era5_land_ts_avg_weekly_YYYY_MM_DD.tif Max of daily max: era5_land_ts_max_weekly_YYYY_MM_DD.tif Min of daily min: era5_land_ts_min_weekly_YYYY_MM_DD.tif

    The date in the file name determines the start day of the week (Saturday).

    Pixel values: °C * 10 Example: Value 302 = 30.2 °C

    The QML or SLD style files can be used for visualization of the temperature layers.

    Coordinate reference system: ETRS89 / LAEA Europe (EPSG:3035) (EPSG:3035)

    Spatial extent: north: 82N south: 18S west: -32W east: 61E

    Spatial resolution: 1 km

    Temporal resolution: weekly

    Time period: 01/01/2016 - 12/31/2020

    Format: GeoTIFF

    Representation type: Grid

    Software used: GRASS 8.0

    Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf

    CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

    Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

    Contact: mundialis GmbH & Co. KG, info@mundialis.de

    Acknowledgements: This study was partially funded by EU grant 874850 MOOD. The contents of this publication are the sole responsibility of the authors and don't necessarily reflect the views of the European Commission.

  14. Daily time series of spatially enhanced relative humidity for Europe at 30...

    • zenodo.org
    • data.niaid.nih.gov
    png, zip
    Updated Jul 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Markus Metz; Markus Metz; Julia Haas; Julia Haas; Markus Neteler; Markus Neteler; William Wint; William Wint; Peter Jones; Peter Jones (2024). Daily time series of spatially enhanced relative humidity for Europe at 30 arc seconds resolution (Set 3: 2010 - 2014) derived from ERA5-Land data [Dataset]. http://doi.org/10.5281/zenodo.6344012
    Explore at:
    zip, pngAvailable download formats
    Dataset updated
    Jul 17, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Markus Metz; Markus Metz; Julia Haas; Julia Haas; Markus Neteler; Markus Neteler; William Wint; William Wint; Peter Jones; Peter Jones
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    Overview:
    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.

    Processing steps:
    The original hourly ERA5-Land air temperature 2 m above ground and dewpoint temperature 2 m data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically:
    1. spatially aggregate CHELSA to the resolution of ERA5-Land
    2. calculate difference of ERA5-Land - aggregated CHELSA
    3. interpolate differences with a Gaussian filter to 30 arc seconds
    4. add the interpolated differences to CHELSA

    Subsequently, the temperature time series have been aggregated on a daily basis. From these, daily relative humidity has been calculated for the time period 01/2000 - 07/2021.

    Relative humidity (rh2m) has been calculated from air temperature 2 m above ground (Ta) and dewpoint temperature 2 m above ground (Td) using the formula for saturated water pressure from Wright (1997):

    maximum water pressure = 611.21 * exp(17.502 * Ta / (240.97 + Ta))

    actual water pressure = 611.21 * exp(17.502 * Td / (240.97 + Td))

    relative humidity = actual water pressure / maximum water pressure

    Data provided is the daily averages of relative humidity. This set provides data for the years 2000 - 2004. For other time periods, please see further linked data sets.

    Resultant values have been converted to represent percent * 10, thus covering a theoretical range of [0, 1000].

    File naming scheme (YYYY = year; MM = month; DD = day):
    ERA5_land_rh2m_avg_daily_YYYYMMDD.tif

    Projection + EPSG code:
    Latitude-Longitude/WGS84 (EPSG: 4326)

    Spatial extent:
    north: 82:00:30N
    south: 18N
    west: 32:00:30W
    east: 70E

    Spatial resolution:
    30 arc seconds (approx. 1000 m)

    Temporal resolution:
    Daily

    Pixel values:
    Percent * 10 (scaled to Integer; example: value 738 = 73.8 %)

    Software used:
    GDAL 3.2.2 and GRASS GIS 8.0.0

    Original ERA5-Land dataset license:
    https://apps.ecmwf.int/datasets/licences/copernicus/

    CHELSA climatologies (V1.2):
    Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4
    Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

    Processed by:
    mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

    Reference: Wright, J.M. (1997): Federal meteorological handbook no. 3 (FCM-H3-1997). Office of Federal Coordinator for Meteorological Services and Supporting Research. Washington, DC

    Data is also available in EU LAEA (EPSG: 3035) projection: https://zenodo.org/record/7432432

  15. o

    ERA5-Land daily: Air temperature at 2 meter above surface (2000 - 2020)

    • data.opendatascience.eu
    • data.mundialis.de
    Updated May 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). ERA5-Land daily: Air temperature at 2 meter above surface (2000 - 2020) [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=air%20temperature
    Explore at:
    Dataset updated
    May 13, 2021
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Air temperature (2 m): Temperature of air at 2m above the surface of land, sea or in-land waters. 2m temperature is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions. The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the spatial resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc seconds (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA Data available is the daily average, minimum and maximum of air temperature (2 m). Spatial resolution: 30 arc seconds (approx. 1000 m) Temporal resolution: Daily Pixel values: °C * 10 (scaled to Integer; example: value 238 = 23.8 %) Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief) Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

  16. Z

    ERA5-Land daily: Surface temperature, daily time series for Europe at 30 arc...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Mar 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metz, Markus (2025). ERA5-Land daily: Surface temperature, daily time series for Europe at 30 arc seconds (ca. 1000 meter) resolution (2000 - 2020) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_14987501
    Explore at:
    Dataset updated
    Mar 7, 2025
    Dataset provided by
    Neteler, Markus
    Metz, Markus
    Haas, Julia
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    ERA5-Land daily: Surface temperature, daily time series for Europe at 30 arc seconds (ca. 1000 meter) resolution (2000 - 2020)

    Source data:ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.

    Surface temperature:Temperature of the surface of the Earth. The skin temperature is the theoretical temperature that is required to satisfy the surface energy balance. It represents the temperature of the uppermost surface layer, which has no heat capacity and so can respond instantaneously to changes in surface fluxes.

    Processing steps:The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land.The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA

    Data available is the daily average, minimum and maximum of surface temperature.

    File naming:Daily average: era5_land_daily_ts_YYYYMMDD_avg_30sec.tifDaily min: era5_land_daily_ts_YYYYMMDD_min_30sec.tifDaily max: era5_land_daily_ts_YYYYMMDD_max_30sec.tif

    The date within the filename is Year, Month and Day of timestamp.

    Pixel values:°C * 10 Example: Value 302 = 30.2 °C

    Projection + EPSG code:Latitude-Longitude/WGS84 (EPSG: 4326)

    Spatial extent:north: 82:00:30Nsouth: 18:00:00Nwest: 32:00:30Weast: 70:00:00E

    Temporal extent:01.01.2000 - 31.12.2020NOTE: Due to file size, only 2020 data are available here. Data for other years are available on request.

    Spatial resolution:30 arc seconds (approx. 1000 m)

    Temporal resolution:daily

    Format: GeoTIFF

    Representation type: Grid

    Software used:GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)

    Original ERA5-Land dataset license:https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf

    CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122.

    Processed by:mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

    Contact:mundialis GmbH & Co. KG, info@mundialis.de

  17. h

    ERA5-Land

    • huggingface.co
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jose Manuel, ERA5-Land [Dataset]. https://huggingface.co/datasets/jmdu/ERA5-Land
    Explore at:
    Authors
    Jose Manuel
    Description

    jmdu/ERA5-Land dataset hosted on Hugging Face and contributed by the HF Datasets community

  18. m

    ERA5-Land monthly: Total precipitation, monthly time series for Mauritania...

    • data.mundialis.de
    • data.opendatascience.eu
    • +4more
    Updated Jan 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ERA5-Land monthly: Total precipitation, monthly time series for Mauritania at 30 arc seconds (ca. 1000 meter) resolution (2019 - 2023) [Dataset]. http://doi.org/10.5281/zenodo.12189668
    Explore at:
    Dataset updated
    Jan 18, 2025
    Description

    ERA5-Land total precipitation monthly time series for Mauritania at 30 arc seconds (ca. 1000 meter) resolution (2019 - 2023) Source data: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Total precipitation: Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step. Processing steps: The original hourly ERA5-Land data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate proportion of ERA5-Land / aggregated CHELSA 3. interpolate proportion with a Gaussian filter to 30 arc seconds 4. multiply the interpolated proportions with CHELSA Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA. The spatially enhanced daily ERA5-Land data has been aggregated to monthly resolution, by calculating the sum of the precipitation per pixel over each month. File naming: ERA5_land_monthly_prectot_sum_30sec_YYYY_MM_01T00_00_00_int.tif e.g.:ERA5_land_monthly_prectot_sum_30sec_2023_12_01T00_00_00_int.tif The date within the filename is year and month of aggregated timestamp. Pixel values: mm * 10 Scaled to Integer, example: value 218 = 21.8 mm Projection + EPSG code: Latitude-Longitude/WGS84 (EPSG: 4326) Spatial extent: north: 28:18N south: 14:42N west: 17:05W east: 4:49W Temporal extent: January 2019 - December 2023 Spatial resolution: 30 arc seconds (approx. 1000 m) Temporal resolution: monthly Lineage: Dataset has been processed from original Copernicus Climate Data Store (ERA5-Land) data sources. As auxiliary data CHELSA climate data has been used. Software used: GRASS GIS 8.3.2 Format: GeoTIFF Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122 Representation type: Grid Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/) Contact: mundialis GmbH & Co. KG, info@mundialis.de Acknowledgements: This study was partially funded by EU grant 874850 MOOD. The contents of this publication are the sole responsibility of the authors and don't necessarily reflect the views of the European Commission.

  19. H

    Matlab code to setup ERA5-Land inputs for river temperature modeling in the...

    • hydroshare.org
    • beta.hydroshare.org
    • +2more
    zip
    Updated Mar 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bryce A Mihalevich (2022). Matlab code to setup ERA5-Land inputs for river temperature modeling in the Colorado River basin [Dataset]. https://www.hydroshare.org/resource/9fc0f241c7a74e11af467c6938666b42
    Explore at:
    zip(57.5 MB)Available download formats
    Dataset updated
    Mar 16, 2022
    Dataset provided by
    HydroShare
    Authors
    Bryce A Mihalevich
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2015 - Jan 1, 2017
    Area covered
    Description

    This resource provides MATLAB scripts and functions to setup ERA5-Land climate reanalysis to be used as inputs to river temperature models developed in HydroCouple. This model was applied to the Colorado River in Grand Canyon and in a section of the Green River to provide weather inputs to the dynamic river temperature models described in "Evaluation of the ERA5-Land reanalysis dataset for process-based river temperature modeling over data sparse and topographically complex regions" (doi: TBD)

  20. d

    Data and models to support analysis of ERA5-Land climate reanalysis inputs...

    • search.dataone.org
    • hydroshare.org
    Updated Dec 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bryce A Mihalevich (2023). Data and models to support analysis of ERA5-Land climate reanalysis inputs for river temperature modeling in the Colorado River basin [Dataset]. https://search.dataone.org/view/sha256%3A05d1e3b904f0f321adbc91ff502792d74e32128520023a04657fa424d39f425e
    Explore at:
    Dataset updated
    Dec 30, 2023
    Dataset provided by
    Hydroshare
    Authors
    Bryce A Mihalevich
    Time period covered
    Jan 1, 2015 - Jan 1, 2017
    Area covered
    Description

    This collection holds models and associated data for simulating river temperatures in the Colorado Rive basin using ERA5-Land climate reanalysis inputs. The results and findings for the Colorado River in Grand Canyon and a sections of the Green River is reported in Water Resources Research article "Evaluation of the ERA5-Land reanalysis dataset for process-based river temperature modeling over data sparse and topographically complex regions".

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ECMWF (2025). ERA5-Land hourly data from 1950 to present [Dataset]. http://doi.org/10.24381/cds.e2161bac
Organization logo

ERA5-Land hourly data from 1950 to present

Explore at:
{grib,netcdf}Available download formats
Dataset updated
Oct 26, 2025
Dataset provided by
European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
Authors
ECMWF
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 1, 1950 - Oct 20, 2025
Description

ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.

Search
Clear search
Close search
Google apps
Main menu