100+ datasets found
  1. ERA5 hourly data on single levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 hourly data on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.adbb2d47
    Explore at:
    gribAvailable download formats
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Jul 26, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on single levels from 1940 to present".

  2. ERA5 Daily Aggregates - Latest Climate Reanalysis Produced by ECMWF /...

    • developers.google.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF / Copernicus Climate Change Service, ERA5 Daily Aggregates - Latest Climate Reanalysis Produced by ECMWF / Copernicus Climate Change Service [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY
    Explore at:
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Time period covered
    Jan 2, 1979 - Jul 9, 2020
    Area covered
    Earth
    Description

    ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset. ERA5 replaces its predecessor, the ERA-Interim reanalysis. ERA5 DAILY provides aggregated values for each day for seven ERA5 climate reanalysis parameters: 2m air temperature, 2m dewpoint temperature, total precipitation, mean sea level pressure, surface pressure, 10m u-component of wind and 10m v-component of wind. Additionally, daily minimum and maximum air temperature at 2m has been calculated based on the hourly 2m air temperature data. Daily total precipitation values are given as daily sums. All other parameters are provided as daily averages. ERA5 data is available from 1979 to three months from real-time. More information and more ERA5 atmospheric parameters can be found at the Copernicus Climate Data Store. Provider's Note: Daily aggregates have been calculated based on the ERA5 hourly values of each parameter.

  3. o

    ERA5 Land air temperature daily average

    • data.opendatascience.eu
    Updated May 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5 Land air temperature daily average [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=climate
    Explore at:
    Dataset updated
    May 4, 2022
    Description

    Overview: era5.copernicus: air temperature daily averages from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent minimum, mean, and maximum daily air temperature 2m above ground in degrees Celsius x 10.

  4. u

    ERA5 Reanalysis Monthly Means

    • data.ucar.edu
    • rda.ucar.edu
    grib
    Updated Aug 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2024). ERA5 Reanalysis Monthly Means [Dataset]. http://doi.org/10.5065/D63B5XW1
    Explore at:
    gribAvailable download formats
    Dataset updated
    Aug 4, 2024
    Dataset provided by
    Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory
    Authors
    European Centre for Medium-Range Weather Forecasts
    Time period covered
    Jan 1, 2008 - Dec 31, 2017
    Area covered
    Description

    Please note: Please use ds633.1 to access RDA maintained ERA-5 Monthly Mean data, see ERA5 Reanalysis (Monthly Mean 0.25 Degree Latitude-Longitude Grid), RDA dataset ds633.1. This dataset is no longer being updated, and web access has been removed. After many years of research and technical preparation, the production of a new ECMWF climate reanalysis to replace ERA-Interim is in progress. ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, which started with the FGGE reanalyses produced in the 1980s, followed by ERA-15, ERA-40 and most recently ERA-Interim. ERA5 will cover the period January 1950 to near real time, though the first segment of data to be released will span the period 2010-2016. ERA5 is produced using high-resolution forecasts (HRES) at 31 kilometer resolution (one fourth the spatial resolution of the operational model) and a 62 kilometer resolution ten member 4D-Var ensemble of data assimilation (EDA) in CY41r2 of ECMWF's Integrated Forecast System (IFS) with 137 hybrid sigma-pressure (model) levels in the vertical, up to a top level of 0.01 hPa. Atmospheric data on these levels are interpolated to 37 pressure levels (the same levels as in ERA-Interim). Surface or single level data are also available, containing 2D parameters such as precipitation, 2 meter temperature, top of atmosphere radiation and vertical integrals over the entire atmosphere. The IFS is coupled to a soil model, the parameters of which are also designated as surface parameters, and an ocean wave model. Generally, the data is available at an hourly frequency and consists of analyses and short (18 hour) forecasts, initialized twice daily from analyses at 06 and 18 UTC. Most analyses parameters are also available from the forecasts. There are a number of forecast parameters, e.g. mean rates and accumulations, that are not available from the analyses. Together, the hourly analysis and twice daily forecast parameters form the basis of the monthly...

  5. m

    ERA5-Land daily: Air temperature at 2 meter above surface (2000 - 2020)

    • data.mundialis.de
    • data.opendatascience.eu
    Updated Oct 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). ERA5-Land daily: Air temperature at 2 meter above surface (2000 - 2020) [Dataset]. https://data.mundialis.de/geonetwork/srv/search?keyword=air%20temperature
    Explore at:
    Dataset updated
    Oct 30, 2020
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Air temperature (2 m): Temperature of air at 2m above the surface of land, sea or in-land waters. 2m temperature is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions. The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the spatial resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc seconds (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA Data available is the daily average, minimum and maximum of air temperature (2 m). Spatial resolution: 30 arc seconds (approx. 1000 m) Temporal resolution: Daily Pixel values: °C * 10 (scaled to Integer; example: value 238 = 23.8 %) Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief) Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

  6. d

    Complete ERA5 global atmospheric reanalysis 1940 to present

    • dataone.org
    • arcticdata.io
    • +2more
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hans Hersbach; Bill Bell; Paul Berrisford; Shoji Hirahara; András Horányi; Joaquín Muñoz-Sabater; Julien Nicolas; Carole Peubey; Raluca Radu; Dinand Schepers; Adrian Simmons; Cornel Soci; Saleh Abdalla; Xavier Abellan; Gianpaolo Balsamo; Peter Bechtold; Gionata Biavati; Jean Bidlot; Massimo Bonavita; Giovanna De Chiara; Per Dahlgren; Dick Dee; Michail Diamantakis; Rossana Dragani; Johannes Flemming; Richard Forbes; Manuel Fuentes; Alan Geer; Leo Haimberger; Sean Healy; Robin J. Hogan; Elías Hólm; Marta Janisková; Sarah Keeley; Patrick Laloyaux; Philippe Lopez; Cristina Lupu; Gabor Radnoti; Patricia de Rosnay; Iryna Rozum; Freja Vamborg; Sebastien Villaume; Jean-Noël Thépaut (2024). Complete ERA5 global atmospheric reanalysis 1940 to present [Dataset]. http://doi.org/10.18739/A2639K70N
    Explore at:
    Dataset updated
    Oct 1, 2024
    Dataset provided by
    Arctic Data Center
    Authors
    Hans Hersbach; Bill Bell; Paul Berrisford; Shoji Hirahara; András Horányi; Joaquín Muñoz-Sabater; Julien Nicolas; Carole Peubey; Raluca Radu; Dinand Schepers; Adrian Simmons; Cornel Soci; Saleh Abdalla; Xavier Abellan; Gianpaolo Balsamo; Peter Bechtold; Gionata Biavati; Jean Bidlot; Massimo Bonavita; Giovanna De Chiara; Per Dahlgren; Dick Dee; Michail Diamantakis; Rossana Dragani; Johannes Flemming; Richard Forbes; Manuel Fuentes; Alan Geer; Leo Haimberger; Sean Healy; Robin J. Hogan; Elías Hólm; Marta Janisková; Sarah Keeley; Patrick Laloyaux; Philippe Lopez; Cristina Lupu; Gabor Radnoti; Patricia de Rosnay; Iryna Rozum; Freja Vamborg; Sebastien Villaume; Jean-Noël Thépaut
    Time period covered
    Jan 1, 1940
    Area covered
    Earth
    Description

    ERA5 (European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis) is the fifth generation ECMWF atmospheric reanalysis of the global climate covering the period from January 1940 to present. It is produced by the Copernicus Climate Change Service (C3S) at ECMWF and provides hourly estimates of a large number of atmospheric, land and oceanic climate variables. The data cover the Earth on a 31 kilometer (km) grid and resolve the atmosphere using 137 levels from the surface up to a height of 80 km. ERA5 includes an ensemble component at half the resolution to provide information on synoptic uncertainty of its products. ERA5.1 is a dedicated product with the same horizontal and vertical resolution that was produced for the years 2000 to 2006 inclusive to significantly improve a discontinuity in global-mean temperature in the stratosphere and uppermost troposphere that ERA5 suffers from during that period. Users that are interested in this part of the atmosphere in this era are advised to access ERA5.1 rather than ERA5. ERA5 and ERA5.1 use a state-of-the-art numerical weather prediction model to assimilate a variety of observations, including satellite and ground-based measurements, and produces a comprehensive and consistent view of the Earth's atmosphere. These products are widely used by researchers and practitioners in various fields, including climate science, weather forecasting, energy production and machine learning among others, to understand and analyse past and current weather and climate conditions.

  7. e

    ERA5-Land weekly: Surface temperature, weekly time series for Europe at 1 km...

    • data.europa.eu
    • data.mundialis.de
    • +2more
    tiff
    Updated Aug 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). ERA5-Land weekly: Surface temperature, weekly time series for Europe at 1 km resolution (2016 - 2020) [Dataset]. https://data.europa.eu/data/datasets/a98fa2dd-6787-4eeb-b51a-ab4c9ae731be~~1/embed
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Aug 25, 2024
    License

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

    Area covered
    Europe
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.

    Surface temperature: Temperature of the surface of the Earth. The skin temperature is the theoretical temperature that is required to satisfy the surface energy balance. It represents the temperature of the uppermost surface layer, which has no heat capacity and so can respond instantaneously to changes in surface fluxes.

    Processing steps: The original hourly ERA5-Land data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA

    The spatially enhanced daily ERA5-Land data has been aggregated on a weekly basis (starting from Saturday) for the time period 2016 - 2020. Data available is the weekly average of daily averages, the weekly minimum of daily minima and the weekly maximum of daily maxima of surface temperature.

    File naming: Average of daily average: era5_land_ts_avg_weekly_YYYY_MM_DD.tif Max of daily max: era5_land_ts_max_weekly_YYYY_MM_DD.tif Min of daily min: era5_land_ts_min_weekly_YYYY_MM_DD.tif

    The date in the file name determines the start day of the week (Saturday).

    Pixel values: °C * 10 Example: Value 302 = 30.2 °C

    The QML or SLD style files can be used for visualization of the temperature layers.

    Coordinate reference system: ETRS89 / LAEA Europe (EPSG:3035) (EPSG:3035)

    Spatial extent: north: 82N south: 18S west: -32W east: 61E

    Spatial resolution: 1 km

    Temporal resolution: weekly

    Time period: 01/01/2016 - 12/31/2020

    Format: GeoTIFF

    Representation type: Grid

    Software used: GRASS 8.0

    Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf

    CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

    Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

    Contact: mundialis GmbH & Co. KG, info@mundialis.de

    Acknowledgements: This study was partially funded by EU grant 874850 MOOD. The contents of this publication are the sole responsibility of the authors and don't necessarily reflect the views of the European Commission.

  8. ERA5-Land hourly data from 1950 to present

    • cds.climate.copernicus.eu
    {grib,netcdf}
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5-Land hourly data from 1950 to present [Dataset]. http://doi.org/10.24381/cds.e2161bac
    Explore at:
    {grib,netcdf}Available download formats
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1950 - Jul 26, 2025
    Description

    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
    The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.

  9. ERA5 Daily Aggregates : dernière réanalyse du climat produite par le CEPMMT...

    • developers.google.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEPMMT / Service Copernicus sur le changement climatique, ERA5 Daily Aggregates : dernière réanalyse du climat produite par le CEPMMT / le service Copernicus de surveillance du changement climatique [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY?hl=fr
    Explore at:
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Time period covered
    Jan 2, 1979 - Jul 9, 2020
    Area covered
    Earth
    Description

    ERA5 est la cinquième génération de réanalyse atmosphérique du CEPMMT sur le climat mondial. La réanalyse combine les données du modèle avec les observations du monde entier dans un ensemble de données cohérent et complet à l'échelle mondiale. ERA5 remplace son prédécesseur, l'analyse ERA-Interim. ERA5 DAILY fournit des valeurs agrégées pour chaque jour pour sept paramètres de réanalyse climatique ERA5 : …

  10. u

    ERA5.1: Corrections to ERA5 Stratospheric Temperature 2000-2006

    • data.ucar.edu
    • rda-web-prod.ucar.edu
    • +2more
    grib
    Updated Aug 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2024). ERA5.1: Corrections to ERA5 Stratospheric Temperature 2000-2006 [Dataset]. http://doi.org/10.5065/CBTN-V814
    Explore at:
    gribAvailable download formats
    Dataset updated
    Aug 4, 2024
    Dataset provided by
    Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory
    Authors
    European Centre for Medium-Range Weather Forecasts
    Time period covered
    Jan 1, 2000 - Dec 31, 2006
    Area covered
    Earth
    Description

    In ECMWF Technical Memo 859 released in January 2020, Simmons and his coauthors report that "the ERA5 analyses of lower stratospheric temperature exhibit a pronounced cold bias for the years 2000 to 2006. This is due to specifying background error covariances for the data assimilation that were inappropriate prior to availability during 2006 of GNSS radio occultation data in sufficient numbers to constrain a cold bias of the assimilating ERA5 model. A new set of analyses, termed ERA5.1, has thus been produced for the period from 2000 to 2006 using the background error covariances that were used to produce the ERA5 analyses for the years 1979 to 1999. ERA5.1 also includes the more restrictive ensemble assimilation of SBUV ozone data that was used in production of ERA5 for 1979 to 1999." "ERA5.1 provides analyses with better global-mean temperatures in the stratosphere and uppermost troposphere than provided by ERA5. ERA5.1 stands up well in comparison with ERA-Interim and other reanalyses in the lower stratosphere, although there are also lower-stratospheric temperature differences between ERA5 and other reanalyses in the 1980s and 1990s. These are due in part to differences in radiosonde temperature bias adjustment. The pronounced near-tropopause cold bias of ERA5 from 2000 to 2006 has implications for the representation of stratospheric humidity, for which ERA5.1 performs better, though by no means perfectly. ERA5.1 does not exhibit the spuriously high values of ozone that occur close to the South Pole in the polar nights of 2003 and 2004 in the ERA5 analyses. Synoptic evolution in the extratropical stratosphere is seen to be very similar in two cases involving splitting of the stratospheric polar vortex and secondary vortex formation by dynamical instability. The ERA5.1 representation of the QBO agrees slightly better with radiosonde wind data than that of ERA5. The dataset formed by merging ERA5.1 with ERA5 is generally more homogeneous over time than ERA5...

  11. u

    ERA5 Reanalysis Model Level Data

    • data.ucar.edu
    • rda.ucar.edu
    • +2more
    netcdf
    Updated Jul 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2025). ERA5 Reanalysis Model Level Data [Dataset]. http://doi.org/10.5065/XV5R-5344
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Jul 8, 2025
    Dataset provided by
    Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory
    Authors
    European Centre for Medium-Range Weather Forecasts
    Time period covered
    Jan 1, 1979 - Apr 30, 2025
    Area covered
    Description

    After many years of research and technical preparation, the production of a new ECMWF climate reanalysis to replace ERA-Interim is in progress. ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, which started with the FGGE reanalyses produced in the 1980s, followed by ERA-15, ERA-40 and most recently ERA-Interim. ERA5 will cover the period January 1950 to near real time. ERA5 is produced using high-resolution forecasts (HRES) at 31 kilometer resolution (one fourth the spatial resolution of the operational model) and a 62 kilometer resolution ten member 4D-Var ensemble of data assimilation (EDA) in CY41r2 of ECMWF's Integrated Forecast System (IFS) with 137 hybrid sigma-pressure (model) levels in the vertical, up to a top level of 0.01 hPa. Atmospheric data on these levels are interpolated to 37 pressure levels (the same levels as in ERA-Interim). Surface or single level data are also available, containing 2D parameters such as precipitation, 2 meter temperature, top of atmosphere radiation and vertical integrals over the entire atmosphere. The IFS is coupled to a soil model, the parameters of which are also designated as surface parameters, and an ocean wave model. Generally, the data is available at an hourly frequency and consists of analyses and short (12 hour) forecasts, initialized twice daily from analyses at 06 and 18 UTC. Most analyses parameters are also available from the forecasts. There are a number of forecast parameters, for example mean rates and accumulations, that are not available from the analyses. Improvements to ERA5, compared to ERA-Interim, include use of HadISST.2, reprocessed ECMWF climate data records (CDR), and implementation of RTTOV11 radiative transfer. Variational bias corrections have not only been applied to satellite radiances, but also ozone retrievals, aircraft observations, surface pressure, and radiosonde profiles. Please note: DECS is producing a CF 1.6 compliant netCDF-4/HDF5 version of ERA5...

  12. Agregados diários do ERA5: a mais recente reanálise climática produzida pelo...

    • developers.google.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF / Copernicus Climate Change Service, Agregados diários do ERA5: a mais recente reanálise climática produzida pelo ECMWF / Copernicus Climate Change Service [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY?hl=pt-br
    Explore at:
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Time period covered
    Jan 2, 1979 - Jul 9, 2020
    Area covered
    Earth
    Description

    O ERA5 é a quinta geração da reanálise atmosférica do ECMWF do clima global. A reanálise combina dados do modelo com observações de todo o mundo em um conjunto de dados globalmente completo e consistente. O ERA5 substitui o ERA-Interim, que é a reanálise anterior. O ERA5 DAILY fornece valores agregados para cada dia de sete parâmetros de reanálise climática do ERA5: …

  13. g

    World Bank - CCKP ERA5 Dataset | gimi9.com

    • gimi9.com
    Updated May 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). World Bank - CCKP ERA5 Dataset | gimi9.com [Dataset]. https://gimi9.com/dataset/worldbank_wb_cckp/
    Explore at:
    Dataset updated
    May 12, 2025
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The historical climate reanalysis data from ERA5 are offered at 0.25 x 0.25-degree resolution over the entire globe. ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate covering the period from January 1940 to the present. ERA5 uses a broad collection of observational data, including various satellite-derived products in multivariate data assimilation mode to capture global variability and change. The data are offered through the Copernicus Climate Change Service (C3S) as a public good and are updated operationally. Data are updated annually. Presented at monthly, seasonal, and annual scale Spatial resolution: 0.25o x 0.25o Historical Climatologies (20-year or 30-year periods used for climatologies and natural variability): 1986-2005, 1991-2020, 1995-2014 Decadal trends calculated for: 1951-2020, 1971-2020, 1991-2020 Recommended Use: ERA5 is considered one of the top reanalysis products. It provides consistent coverage of all variables found in climate models, making it a valuable reference. In areas with good station coverage, ERA5 closely aligns with CRU data, while in regions lacking stations, it offers reliable estimates and minimizes false trends from short satellite records. Temperature data from ERA5 is highly reliable, but for precipitation, it’s recommended to use multiple datasets due to the challenges in accurately measuring and modeling it.

  14. u

    ERA5 Reanalysis

    • data.ucar.edu
    • rda.ucar.edu
    • +1more
    grib
    Updated Aug 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2024). ERA5 Reanalysis [Dataset]. http://doi.org/10.5065/D6X34W69
    Explore at:
    gribAvailable download formats
    Dataset updated
    Aug 4, 2024
    Dataset provided by
    Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory
    Authors
    European Centre for Medium-Range Weather Forecasts
    Time period covered
    Jan 1, 2002 - Feb 1, 2019
    Area covered
    Description

    Please note: Please use ds633.0 to access RDA maintained ERA-5 data, see ERA5 Reanalysis (0.25 Degree Latitude-Longitude Grid) [https://rda.ucar.edu/datasets/ds633.0], RDA dataset ds633.0. This dataset is no longer being updated, and web access has been removed. After many years of research and technical preparation, the production of a new ECMWF climate reanalysis to replace ERA-Interim is in progress. ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, which started with the FGGE reanalyses produced in the 1980s, followed by ERA-15, ERA-40 and most recently ERA-Interim. ERA5 will cover the period January 1950 to near real time, though the first segment of data to be released will span the period 2010-2016. ERA5 is produced using high-resolution forecasts (HRES) at 31 kilometer resolution (one fourth the spatial resolution of the operational model) and a 62 kilometer resolution ten member 4D-Var ensemble of data assimilation (EDA) in CY41r2 of ECMWF's Integrated Forecast System (IFS) with 137 hybrid sigma-pressure (model) levels in the vertical, up to a top level of 0.01 hPa. Atmospheric data on these levels are interpolated to 37 pressure levels (the same levels as in ERA-Interim). Surface or single level data are also available, containing 2D parameters such as precipitation, 2 meter temperature, top of atmosphere radiation and vertical integrals over the entire atmosphere. The IFS is coupled to a soil model, the parameters of which are also designated as surface parameters, and an ocean wave model. Generally, the data is available at an hourly frequency and consists of analyses and short (18 hour) forecasts, initialized twice daily from analyses at 06 and 18 UTC. Most analyses parameters are also available from the forecasts. There are a number of forecast parameters, e.g. mean rates and accumulations, that are not available from the analyses. Improvements to ERA5, compared to ERA-Interim, include use of HadISST.2, reprocessed...

  15. ECMWF ERA5 Monthly surface air temperature anomalies (Celcius) relative to...

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Copernicus Climate Change Service; Copernicus Climate Change Service (2020). ECMWF ERA5 Monthly surface air temperature anomalies (Celcius) relative to 1981-2010 [Dataset]. http://doi.org/10.5281/zenodo.3461529
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Copernicus Climate Change Service; Copernicus Climate Change Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Monthly global-mean and European-mean surface air temperature anomalies relative to 1981-2010, from January 1979 to August 2019. Data source: ERA5. Credit: Copernicus Climate Change Service/ECMWF.

    See https://climate.copernicus.eu/surface-air-temperature-august-2019 for more information.


  16. Z

    ERA5-Land daily: Air temperature at 2 meter above surface, daily time series...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Mar 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metz, Markus (2025). ERA5-Land daily: Air temperature at 2 meter above surface, daily time series for Europe at 30 arc seconds (ca. 1000 meter) resolution (2000 - 2020) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_14987468
    Explore at:
    Dataset updated
    Mar 7, 2025
    Dataset provided by
    Metz, Markus
    Haas, Julia
    Neteler, Markus
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    ERA5-Land daily: Air temperature at 2 meter above surface, daily time series for Europe at 30 arc seconds (ca. 1000 meter) resolution (2000 - 2020)

    Source data:ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.

    Air temperature (2 m):Temperature of air at 2m above the surface of land, sea or in-land waters. 2m temperature is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions.

    Processing steps:The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to:- aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/).For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land.The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA

    Data available is the daily average, minimum and maximum of air temperature (2 m).

    File naming:Daily average: ERA5_land_daily_t2m_YYYYMMDD_avg_30sec.tif Daily min: ERA5_land_daily_t2m_YYYYMMDD_min_30sec.tif Daily max: ERA5_land_daily_t2m_YYYYMMDD_max_30sec.tif

    The date within the filename is Year, Month and Day of timestamp.

    Pixel value:°C * 10Example: Value 44 = 4.4 °C

    Projection + EPSG code:Latitude-Longitude/WGS84 (EPSG: 4326)

    Spatial extent:north: 82:00:30Nsouth: 18:00:00Nwest: 32:00:30Weast: 70:00:00E

    Temporal extent:01.01.2000 - 31.12.2020NOTE: Due to file size, only 2020 data are available here. Data for other years are available on request.

    Spatial resolution:30 arc seconds (approx. 1000 m)

    Temporal resolution:daily

    Format: GeoTIFF

    Representation type: Grid

    Software used:GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)

    Lineage:Dataset has been processed from original Copernicus Climate Data Store (ERA5-Land) data sources. As auxiliary data CHELSA climate data has been used.

    Original ERA5-Land dataset license:https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf

    CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

    Other resources:https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/601ea08c-0768-4af3-a8fa-7da25fb9125b

    Processed by:mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

    Contact:mundialis GmbH & Co. KG, info@mundialis.de

  17. f

    Maximum Air Temperature - AgERA5 (Global - Daily - ~10km)

    • data.apps.fao.org
    • data.amerigeoss.org
    Updated Mar 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Maximum Air Temperature - AgERA5 (Global - Daily - ~10km) [Dataset]. https://data.apps.fao.org/map/catalog/srv/resources/datasets/2f654276-7fa1-48d1-b2cc-27661bbb04ae
    Explore at:
    Dataset updated
    Mar 2, 2024
    Description

    Maximum air temperature calculated at a height of 2 metres above the surface. Unit: K. The Maximum air temperature variable is part of the Agrometeorological indicators dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) through the Copernicus Climate Change Service (C3S). The Agrometeorological indicators dataset provides daily surface meteorological data for the period from 1979 to present as input for agriculture and agro-ecological studies. This dataset is based on the hourly ECMWF ERA5 data at surface level and is referred to as AgERA5. References: https://doi.org/10.24381/cds.6c68c9bb The Copernicus Climate Change Service (C3S) aims to combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate in Europe and worldwide. ECMWF operates the Copernicus Climate Change Service on behalf of the European Union and will bring together expertise from across Europe to deliver the service.

  18. ERA5-derived daily temperature summary 1980-2018

    • zenodo.org
    • data.niaid.nih.gov
    nc
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Chambers; Jonathan Chambers (2020). ERA5-derived daily temperature summary 1980-2018 [Dataset]. http://doi.org/10.5281/zenodo.3403963
    Explore at:
    ncAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jonathan Chambers; Jonathan Chambers
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Hourly air temperature at surface data from the ERA5 reanalysis at 0.5˚grid resolution was summarised to produce daily mean, minimum, and maximum temperatures.

  19. Z

    ERA5-Land daily: Surface temperature, daily time series for Europe at 30 arc...

    • data.niaid.nih.gov
    Updated Mar 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metz, Markus (2025). ERA5-Land daily: Surface temperature, daily time series for Europe at 30 arc seconds (ca. 1000 meter) resolution (2000 - 2020) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_14987501
    Explore at:
    Dataset updated
    Mar 7, 2025
    Dataset provided by
    Metz, Markus
    Haas, Julia
    Neteler, Markus
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    ERA5-Land daily: Surface temperature, daily time series for Europe at 30 arc seconds (ca. 1000 meter) resolution (2000 - 2020)

    Source data:ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.

    Surface temperature:Temperature of the surface of the Earth. The skin temperature is the theoretical temperature that is required to satisfy the surface energy balance. It represents the temperature of the uppermost surface layer, which has no heat capacity and so can respond instantaneously to changes in surface fluxes.

    Processing steps:The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land.The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA

    Data available is the daily average, minimum and maximum of surface temperature.

    File naming:Daily average: era5_land_daily_ts_YYYYMMDD_avg_30sec.tifDaily min: era5_land_daily_ts_YYYYMMDD_min_30sec.tifDaily max: era5_land_daily_ts_YYYYMMDD_max_30sec.tif

    The date within the filename is Year, Month and Day of timestamp.

    Pixel values:°C * 10 Example: Value 302 = 30.2 °C

    Projection + EPSG code:Latitude-Longitude/WGS84 (EPSG: 4326)

    Spatial extent:north: 82:00:30Nsouth: 18:00:00Nwest: 32:00:30Weast: 70:00:00E

    Temporal extent:01.01.2000 - 31.12.2020NOTE: Due to file size, only 2020 data are available here. Data for other years are available on request.

    Spatial resolution:30 arc seconds (approx. 1000 m)

    Temporal resolution:daily

    Format: GeoTIFF

    Representation type: Grid

    Software used:GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)

    Original ERA5-Land dataset license:https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf

    CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122.

    Processed by:mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

    Contact:mundialis GmbH & Co. KG, info@mundialis.de

  20. o

    ECMWF ERA5 Reanalysis

    • registry.opendata.aws
    Updated Jul 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Intertrust (2018). ECMWF ERA5 Reanalysis [Dataset]. https://registry.opendata.aws/ecmwf-era5/
    Explore at:
    Dataset updated
    Jul 12, 2018
    Dataset provided by
    <a href="https://www.intertrust.com/">Intertrust</a>
    Description

    ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, and the first reanalysis produced as an operational service. It utilizes the best available observation data from satellites and in-situ stations, which are assimilated and processed using ECMWF's Integrated Forecast System (IFS) Cycle 41r2. The dataset provides all essential atmospheric meteorological parameters like, but not limited to, air temperature, pressure and wind at different altitudes, along with surface parameters like rainfall, soil moisture content and sea parameters like sea-surface temperature and wave height. ERA5 provides data at a considerably higher spatial and temporal resolution than its legacy counterpart ERA-Interim. ERA5 consists of high resolution version with 31 km horizontal resolution, and a reduced resolution ensemble version with 10 members. It is currently available since 2008, but will be continuously extended backwards, first until 1979 and then to 1950. Learn more about ERA5 in Jon Olauson's paper ERA5: The new champion of wind power modelling?.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ECMWF (2025). ERA5 hourly data on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.adbb2d47
Organization logo

ERA5 hourly data on single levels from 1940 to present

Explore at:
gribAvailable download formats
Dataset updated
Aug 1, 2025
Dataset provided by
European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
Authors
ECMWF
License

https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

Time period covered
Jan 1, 1940 - Jul 26, 2025
Description

ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on single levels from 1940 to present".

Search
Clear search
Close search
Google apps
Main menu