70 datasets found
  1. ERA5-Land monthly averaged data from 1950 to present

    • cds.climate.copernicus.eu
    grib
    Updated Nov 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5-Land monthly averaged data from 1950 to present [Dataset]. http://doi.org/10.24381/cds.68d2bb30
    Explore at:
    gribAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land provides a consistent view of the water and energy cycles at surface level during several decades. It contains a detailed record from 1950 onwards, with a temporal resolution of 1 hour. The native spatial resolution of the ERA5-Land reanalysis dataset is 9km on a reduced Gaussian grid (TCo1279). The data in the CDS has been regridded to a regular lat-lon grid of 0.1x0.1 degrees. The data presented here is a post-processed subset of the full ERA5-Land dataset. Monthly-mean averages have been pre-calculated to facilitate many applications requiring easy and fast access to the data, when sub-monthly fields are not required.

  2. ERA5 monthly averaged data on single levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Nov 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 monthly averaged data on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.f17050d7
    Explore at:
    gribAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days (monthly means are available around the 6th of each month). In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 monthly mean data on single levels from 1940 to present".

  3. ERA5-Land hourly data from 1950 to present

    • cds.climate.copernicus.eu
    {grib,netcdf}
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5-Land hourly data from 1950 to present [Dataset]. http://doi.org/10.24381/cds.e2161bac
    Explore at:
    {grib,netcdf}Available download formats
    Dataset updated
    Dec 2, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
    The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.

  4. ECMWF Reanalysis v5 - Land

    • ecmwf.int
    application/x-grib
    Updated Dec 31, 1969
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (1969). ECMWF Reanalysis v5 - Land [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5-land
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Dec 31, 1969
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    developed by C3S at ECMWF

  5. ERA5 monthly averaged data on pressure levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Nov 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 monthly averaged data on pressure levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.6860a573
    Explore at:
    gribAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days (monthly means are available around the 6th of each month). In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. So far this has only been the case for the month September 2021, while it will also be the case for October, November and December 2021. For months prior to September 2021 the final release has always been equal to ERA5T, and the goal is to align the two again after December 2021. ERA5 is updated daily with a latency of about 5 days (monthly means are available around the 6th of each month). In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 monthly mean data on pressure levels from 1940 to present".

  6. ERA5 Monthly Aggregates - Latest Climate Reanalysis Produced by ECMWF /...

    • developers.google.com
    Updated Jun 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF / Copernicus Climate Change Service (2020). ERA5 Monthly Aggregates - Latest Climate Reanalysis Produced by ECMWF / Copernicus Climate Change Service [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_MONTHLY
    Explore at:
    Dataset updated
    Jun 1, 2020
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Time period covered
    Jan 1, 1979 - Jun 1, 2020
    Area covered
    Earth
    Description

    ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset. ERA5 replaces its predecessor, the ERA-Interim reanalysis. ERA5 MONTHLY provides aggregated values for each month for seven ERA5 climate reanalysis parameters: 2m air temperature, 2m dewpoint temperature, total precipitation, mean sea level pressure, surface pressure, 10m u-component of wind and 10m v-component of wind. Additionally, monthly minimum and maximum air temperature at 2m has been calculated based on the hourly 2m air temperature data. Monthly total precipitation values are given as monthly sums. All other parameters are provided as monthly averages. ERA5 data is available from 1940 to three months from real-time, the version in the EE Data Catalog is available from 1979. More information and more ERA5 atmospheric parameters can be found at the Copernicus Climate Data Store. Provider's Note: Monthly aggregates have been calculated based on the ERA5 hourly values of each parameter.

  7. o

    ERA5 Land precipitation daily sum

    • data.opendatascience.eu
    Updated May 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5 Land precipitation daily sum [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=climate
    Explore at:
    Dataset updated
    May 4, 2022
    Description

    Overview: era5.copernicus: precipitation daily sums from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent cumulative daily precipitation in mm x 10.

  8. Z

    ERA5-Land monthly averaged dataset for Galaxy Panoply training

    • data.niaid.nih.gov
    • zenodo.org
    Updated Mar 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anne Fouilloux (2020). ERA5-Land monthly averaged dataset for Galaxy Panoply training [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3695481
    Explore at:
    Dataset updated
    Mar 3, 2020
    Dataset provided by
    University of Oslo, Department of Geosciences
    Authors
    Anne Fouilloux
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ERA5-Land monthly averaged data January 2019

    Dataset has been retrieved on the Copernicus Climate data Store (https://cds.climate.copernicus.eu/#!/home) and is meant to be used for teaching purposes only. This dataset is used in the Galaxy training on "Visualize Climate data with Panoply in Galaxy".

    See https://training.galaxyproject.org/ (topic: climate) for more information.

    Product type: Monthly averaged reanalysis

    Variable:

    10m u-component of wind, 10m v-component of wind, 2m temperature, Leaf area index, high vegetation, Leaf area index, low vegetation, Snow cover, Snow depth

    Year:

    2019

    Month:

    January

    Time:

    00:00

    Format:

    NetCDF (experimental)

  9. m

    ERA5-Land monthly: Total precipitation, monthly time series for Mauritania...

    • data.mundialis.de
    • data.opendatascience.eu
    • +4more
    Updated Jan 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ERA5-Land monthly: Total precipitation, monthly time series for Mauritania at 30 arc seconds (ca. 1000 meter) resolution (2019 - 2023) [Dataset]. http://doi.org/10.5281/zenodo.12189668
    Explore at:
    Dataset updated
    Jan 18, 2025
    Description

    ERA5-Land total precipitation monthly time series for Mauritania at 30 arc seconds (ca. 1000 meter) resolution (2019 - 2023) Source data: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Total precipitation: Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step. Processing steps: The original hourly ERA5-Land data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate proportion of ERA5-Land / aggregated CHELSA 3. interpolate proportion with a Gaussian filter to 30 arc seconds 4. multiply the interpolated proportions with CHELSA Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA. The spatially enhanced daily ERA5-Land data has been aggregated to monthly resolution, by calculating the sum of the precipitation per pixel over each month. File naming: ERA5_land_monthly_prectot_sum_30sec_YYYY_MM_01T00_00_00_int.tif e.g.:ERA5_land_monthly_prectot_sum_30sec_2023_12_01T00_00_00_int.tif The date within the filename is year and month of aggregated timestamp. Pixel values: mm * 10 Scaled to Integer, example: value 218 = 21.8 mm Projection + EPSG code: Latitude-Longitude/WGS84 (EPSG: 4326) Spatial extent: north: 28:18N south: 14:42N west: 17:05W east: 4:49W Temporal extent: January 2019 - December 2023 Spatial resolution: 30 arc seconds (approx. 1000 m) Temporal resolution: monthly Lineage: Dataset has been processed from original Copernicus Climate Data Store (ERA5-Land) data sources. As auxiliary data CHELSA climate data has been used. Software used: GRASS GIS 8.3.2 Format: GeoTIFF Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122 Representation type: Grid Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/) Contact: mundialis GmbH & Co. KG, info@mundialis.de Acknowledgements: This study was partially funded by EU grant 874850 MOOD. The contents of this publication are the sole responsibility of the authors and don't necessarily reflect the views of the European Commission.

  10. o

    ERA5 Land air temperature daily average

    • data.opendatascience.eu
    • data.europa.eu
    Updated May 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5 Land air temperature daily average [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=climate
    Explore at:
    Dataset updated
    May 4, 2022
    Description

    Overview: era5.copernicus: air temperature daily averages from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent minimum, mean, and maximum daily air temperature 2m above ground in degrees Celsius x 10.

  11. m

    Monthly time series of spatially enhanced relative humidity for Europe at...

    • data.mundialis.de
    • data.opendatascience.eu
    • +1more
    Updated Dec 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Monthly time series of spatially enhanced relative humidity for Europe at 1000 m resolution (2000 - 2022) derived from ERA5-Land data [Dataset]. https://data.mundialis.de/geonetwork/srv/search?resolution=1000%20m
    Explore at:
    Dataset updated
    Dec 15, 2022
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Processing steps: The original hourly ERA5-Land air temperature 2 m above ground and dewpoint temperature 2 m data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds. 4. add the interpolated differences to CHELSA Subsequently, the temperature time series have been aggregated on a daily basis. From these, daily relative humidity has been calculated for the time period 01/2000 - 12/2023. Relative humidity (rh2m) has been calculated from air temperature 2 m above ground (Ta) and dewpoint temperature 2 m above ground (Td) using the formula for saturated water pressure from Wright (1997): maximum water pressure = 611.21 * exp(17.502 * Ta / (240.97 + Ta)) actual water pressure = 611.21 * exp(17.502 * Td / (240.97 + Td)) relative humidity = actual water pressure / maximum water pressure The resulting relative humidity has been aggregated to monthly averages. Resultant values have been converted to represent percent * 10, thus covering a theoretical range of [0, 1000]. The data have been reprojected to EU LAEA. File naming scheme (YYYY = year; MM = month): ERA5_land_rh2m_avg_monthly_YYYY_MM.tif Projection + EPSG code: EU LAEA (EPSG: 3035) Spatial extent: north: 6874000 south: -485000 west: 869000 east: 8712000 Spatial resolution: 1000 m Temporal resolution: Monthly Pixel values: Percent * 10 (scaled to Integer; example: value 738 = 73.8 %) Software used: GDAL 3.2.2 and GRASS GIS 8.0.0/8.3.2 Original ERA5-Land dataset license: https://apps.ecmwf.int/datasets/licences/copernicus/ CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122 Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/) Reference: Wright, J.M. (1997): Federal meteorological handbook no. 3 (FCM-H3-1997). Office of Federal Coordinator for Meteorological Services and Supporting Research. Washington, DC Data is also available in Latitude-Longitude/WGS84 (EPSG: 4326) projection: https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/b9ce7dba-4130-428d-96f0-9089d8b9f4a5 Acknowledgements: This study was partially funded by EU grant 874850 MOOD. The contents of this publication are the sole responsibility of the authors and don't necessarily reflect the views of the European Commission.

  12. d

    ERA5 monthly averaged data on single levels

    • earthdatahub.destine.eu
    zarr
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 monthly averaged data on single levels [Dataset]. http://doi.org/10.24381/cds.f17050d7
    Explore at:
    zarrAvailable download formats
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    Earth Data Hub
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1940 - Oct 1, 2025
    Description

    Subset of ERA5 reanalysis on the surface (single-levels) for atmospheric, ocean-wave and land surface quantities. The dataset is provided in a ARCO Zarr format ideal for time series analysis

  13. ECMWF Reanalysis v5

    • ecmwf.int
    application/x-grib
    Updated Dec 31, 1969
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (1969). ECMWF Reanalysis v5 [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Dec 31, 1969
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes information about uncertainties for all variables at reduced spatial and temporal resolutions.

  14. m

    ERA5-Land daily: Total precipitation (2000 - 2020)

    • data.mundialis.de
    • data.opendatascience.eu
    Updated Dec 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). ERA5-Land daily: Total precipitation (2000 - 2020) [Dataset]. https://data.mundialis.de/geonetwork/srv/search?keyword=precipitation
    Explore at:
    Dataset updated
    Dec 12, 2021
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Total precipitation: Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step. The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate proportion of ERA5-Land / aggregated CHELSA 3. interpolate proportion with a Gaussian filter to 30 arc seconds 4. multiply the interpolated proportions with CHELSA Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA. Data available is the daily sum of precipitation. Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief) Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

  15. i

    traceRadon monthly radon flux map for Europe 2006-2024 (based on ERA5-Land...

    • meta.icos-cp.eu
    Updated Jun 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ute Karstens; Ingeborg Levin (2025). traceRadon monthly radon flux map for Europe 2006-2024 (based on ERA5-Land soil moisture) [Dataset]. https://meta.icos-cp.eu/objects/T-cNwHnKExjPMC85UecFc4yt
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset provided by
    ICOS data portal
    Carbon Portal
    Authors
    Ute Karstens; Ingeborg Levin
    License

    http://meta.icos-cp.eu/ontologies/cpmeta/icosLicencehttp://meta.icos-cp.eu/ontologies/cpmeta/icosLicence

    Time period covered
    Jan 1, 2006 - Dec 31, 2024
    Area covered
    Europe
    Variables measured
    rn_flux
    Description

    Monthly radon flux map for Europe 2006-2024 based on soil uranium content (EANR, 2019, https://data.europa.eu/doi/10.2760/520053), soil properties (ESDB, Hiederer, 2013, https://doi.org/10.2788/94128), and ERA5-Land soil moisture reanalysis (Munoz Sabater, 2019, https://doi.org/10.24381/cds.68d2bb3). The radon flux model is described in Karstens et al., 2015, https://doi.org/10.5194/acp-15-12845-2015. Karstens, U., Levin, I. (2025). traceRadon monthly radon flux map for Europe 2006-2024 (based on ERA5-Land soil moisture), 2006-01-01–2024-12-31, https://hdl.handle.net/11676/T-cNwHnKExjPMC85UecFc4yt

  16. G

    ERA5-Land Aylık Toplu - ECMWF İklim Yeniden Analizi

    • developers.google.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aylık Toplamlar: Google ve Copernicus Climate Data Store (2025). ERA5-Land Aylık Toplu - ECMWF İklim Yeniden Analizi [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR?hl=tr
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset provided by
    Aylık Toplamlar: Google ve Copernicus Climate Data Store
    Time period covered
    Feb 1, 1950 - Oct 1, 2025
    Area covered
    Dünya
    Description

    ERA5-Land, ERA5'e kıyasla daha yüksek çözünürlükte, kara değişkenlerinin on yıllar boyunca gelişimine ilişkin tutarlı bir görünüm sağlayan bir yeniden analiz veri kümesidir. ERA5-Land, ECMWF ERA5 iklim yeniden analizinin kara bileşeni yeniden oynatılarak üretilmiştir. Yeniden analiz, model verilerini dünyanın dört bir yanındaki gözlemlerle birleştirir…

  17. G

    ERA5-Land Monthly Averaged by Hour of Day – ECMWF Climate Reanalysis

    • developers.google.com
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kho dữ liệu khí hậu (2025). ERA5-Land Monthly Averaged by Hour of Day – ECMWF Climate Reanalysis [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_BY_HOUR?hl=vi
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset provided by
    Kho dữ liệu khí hậu
    Time period covered
    Jan 1, 1950 - Oct 1, 2025
    Area covered
    Trái Đất
    Description

    ERA5-Land là một tập dữ liệu phân tích lại, cung cấp thông tin nhất quán về sự phát triển của các biến số trên đất liền trong nhiều thập kỷ ở độ phân giải cao hơn so với ERA5. ERA5-Land được tạo ra bằng cách phát lại thành phần đất của phân tích lại khí hậu ERA5 của ECMWF. Phân tích lại kết hợp dữ liệu mô hình với số liệu quan trắc trên toàn thế giới thành một tập dữ liệu hoàn chỉnh và nhất quán trên toàn cầu bằng cách sử dụng các quy luật vật lý. Phân tích lại tạo ra dữ liệu từ nhiều thập kỷ trước, cung cấp thông tin mô tả chính xác về khí hậu trong quá khứ. Tập dữ liệu này bao gồm tất cả 50 biến có trên CDS. Dữ liệu được trình bày ở đây là một phần của tập dữ liệu ERA5-Land đầy đủ do ECMWF xử lý hậu kỳ. Giá trị trung bình hằng tháng đã được tính toán trước để hỗ trợ nhiều ứng dụng yêu cầu quyền truy cập dễ dàng và nhanh chóng vào dữ liệu, khi không cần các trường nhỏ hơn hằng tháng. Xin lưu ý rằng quy ước về lượng tích luỹ được dùng trong ERA5-Land khác với quy ước về lượng tích luỹ được dùng trong ERA5. Lượng tích luỹ được xử lý giống như trong ERA-Interim hoặc ERA-Interim/Land, tức là chúng được tích luỹ từ đầu thời gian dự báo đến cuối bước dự báo. Việc này diễn ra hằng ngày và được đặt lại vào nửa đêm. Nhóm Dữ liệu của Earth Engine đã thêm 19 dải tần bổ sung, mỗi dải tần cho một dải tần tích luỹ, với các giá trị hằng giờ được tính là hiệu số giữa hai bước dự báo liên tiếp.

  18. g

    WFDE5 over land merged with ERA5 over the ocean (W5E5)

    • dataservices.gfz-potsdam.de
    Updated 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stefan Lange (2019). WFDE5 over land merged with ERA5 over the ocean (W5E5) [Dataset]. http://doi.org/10.5880/pik.2019.023
    Explore at:
    Dataset updated
    2019
    Dataset provided by
    GFZ Data Services
    datacite
    Authors
    Stefan Lange
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dataset funded by
    European Commission
    Description

    The W5E5 dataset was compiled to support the bias adjustment of climate input data for the impact assessments carried out in phase 3b of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3b). Version 1.0 of the W5E5 dataset covers the entire globe at 0.5° horizontal and daily temporal resolution from 1979 to 2016. Data sources of W5E5 are version 1.0 of WATCH Forcing Data methodology applied to ERA5 data (WFDE5; Weedon et al., 2014; Cucchi et al., 2020), ERA5 reanalysis data (Hersbach et al., 2019), and precipitation data from version 2.3 of the Global Precipitation Climatology Project (GPCP; Adler et al., 2003). Variables (with short names and units in brackets) included in the W5E5 dataset are Near Surface Relative Humidity (hurs, %), Near Surface Specific Humidity (huss, kg kg-1), Precipitation (pr, kg m-2 s-1), Snowfall Flux (prsn, kg m-2 s-1), Surface Air Pressure (ps, Pa), Sea Level Pressure (psl, Pa), Surface Downwelling Longwave Radiation (rlds, W m-2), Surface Downwelling Shortwave Radiation (rsds, W m-2), Near Surface Wind Speed (sfcWind, m s-1), Near-Surface Air Temperature (tas, K), Daily Maximum Near Surface Air Temperature (tasmax, K), Daily Minimum Near Surface Air Temperature (tasmin, K), Surface Altitude (orog, m), and WFDE5-ERA5 Mask (mask, 1). W5E5 is a merged dataset. It combines WFDE5 data over land with ERA5 data over the ocean. The mask used for the merge is included in the dataset. The mask is equal to 1 over land and equal to 0 over the ocean. Over land, orog is the surface altitude used for elevation corrections in WFDE5. For all other variables already included in WFDE5 (huss, prsn, ps, rlds, rsds, sfcWind, tas), W5E5 data over land are equal to the daily mean values of the corresponding hourly WFDE5 data. W5E5 hurs over land is the daily mean of hourly hurs computed from hourly WFDE5 huss, ps, and tas using the equations of Buck (1981) as described in Weedon et al. (2010). W5E5 pr over land is the daily mean of the sum of hourly WFDE5 rainfall and snowfall. Note that W5E5 pr and prsn over land are based on WFDE5 rainfall and snowfall bias-adjusted using GPCC monthly precipitation totals. W5E5 psl over land is the daily mean of hourly psl computed from hourly WFDE5 orog, ps, and tas according to psl = ps * exp((g * orog) / (r * tas)), where g is gravity, and r is the specific gas constant of dry air. Lastly, W5E5 tasmax and tasmin over land are the daily maximum and minimum, respectively, of hourly WFDE5 tas. Over the ocean, W5E5 data are based on temporally (from hourly to daily resolution) and spatially (from 0.25° to 0.5° horizontal resolution) aggregated ERA5 data. The spatial aggregation using first-order conservative remapping was always done after the temporal aggregation. For tasmax and tasmin, hourly tas values were aggregated to daily maximum and minimum values, respectively. For all other variables, hourly values were aggregated to daily mean values. Variables unavailable in ERA5 (huss, hurs, sfcWind, orog) were first derived from available variables at hourly temporal and 0.25° horizontal resolution and then aggregated like all other variables. huss and hurs were derived from Near Surface Dewpoint Temperature, ps, and tas using the equations of Buck (1981) as described in Buck (2010). sfcWind was derived from Eastward Near-Surface Wind (uas) and Northward Near-Surface Wind (vas) according to sfcWind = sqrt(uas * uas + vas * vas). orog is equal to surface geopotential divided by gravity. Lastly, pr and prsn were bias-adjusted such that monthly W5E5 precipitation totals match GPCP version 2.3 values over the ocean. Monthly rescaling factors used for this purpose were computed following the scale-selective rescaling procedure described by Balsamo et al. (2010).

  19. o

    ERA5-Land daily: Total precipitation (2000 - 2020)

    • data.opendatascience.eu
    Updated Dec 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). ERA5-Land daily: Total precipitation (2000 - 2020) [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=precipitation
    Explore at:
    Dataset updated
    Dec 21, 2021
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Total precipitation: Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step. The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate proportion of ERA5-Land / aggregated CHELSA 3. interpolate proportion with a Gaussian filter to 30 arc seconds 4. multiply the interpolated proportions with CHELSA Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA. Data available is the daily sum of precipitation. Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief) Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

  20. G

    ERA5-Land: média mensal por hora do dia – reanálise climática do ECMWF

    • developers.google.com
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Climate Data Store (2025). ERA5-Land: média mensal por hora do dia – reanálise climática do ECMWF [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_BY_HOUR?hl=pt-br
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset provided by
    Climate Data Store
    Time period covered
    Jan 1, 1950 - Oct 1, 2025
    Area covered
    Earth
    Description

    O ERA5-Land é um conjunto de dados de reanálise que fornece uma visão consistente da evolução das variáveis terrestres ao longo de várias décadas em uma resolução aprimorada em comparação com o ERA5. O ERA5-Land foi produzido ao reproduzir o componente terrestre da reanálise climática ERA5 do ECMWF. A reanálise combina dados do modelo com observações de todo o mundo…

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ECMWF (2025). ERA5-Land monthly averaged data from 1950 to present [Dataset]. http://doi.org/10.24381/cds.68d2bb30
Organization logo

ERA5-Land monthly averaged data from 1950 to present

Explore at:
gribAvailable download formats
Dataset updated
Nov 6, 2025
Dataset provided by
European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
Authors
ECMWF
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land provides a consistent view of the water and energy cycles at surface level during several decades. It contains a detailed record from 1950 onwards, with a temporal resolution of 1 hour. The native spatial resolution of the ERA5-Land reanalysis dataset is 9km on a reduced Gaussian grid (TCo1279). The data in the CDS has been regridded to a regular lat-lon grid of 0.1x0.1 degrees. The data presented here is a post-processed subset of the full ERA5-Land dataset. Monthly-mean averages have been pre-calculated to facilitate many applications requiring easy and fast access to the data, when sub-monthly fields are not required.

Search
Clear search
Close search
Google apps
Main menu