90 datasets found
  1. ERA5-Land hourly data from 1950 to present

    • cds.climate.copernicus.eu
    {grib,netcdf}
    Updated Sep 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5-Land hourly data from 1950 to present [Dataset]. http://doi.org/10.24381/cds.e2161bac
    Explore at:
    {grib,netcdf}Available download formats
    Dataset updated
    Sep 22, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1950 - Sep 16, 2025
    Description

    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
    The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.

  2. ECMWF Reanalysis v5 - Land

    • ecmwf.int
    application/x-grib
    Updated Dec 31, 1969
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (1969). ECMWF Reanalysis v5 - Land [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5-land
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Dec 31, 1969
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    developed by C3S at ECMWF

  3. ERA5-Land hourly data

    • earthdatahub.destine.eu
    zarr
    Updated Sep 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5-Land hourly data [Dataset]. http://doi.org/10.24381/cds.e2161bac
    Explore at:
    zarrAvailable download formats
    Dataset updated
    Sep 12, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1949 - Aug 31, 2025
    Description

    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5.

  4. o

    ERA5 Land air temperature daily average

    • data.opendatascience.eu
    Updated May 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5 Land air temperature daily average [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=climate
    Explore at:
    Dataset updated
    May 4, 2022
    Description

    Overview: era5.copernicus: air temperature daily averages from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent minimum, mean, and maximum daily air temperature 2m above ground in degrees Celsius x 10.

  5. ERA5 post-processed daily statistics on single levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Sep 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 post-processed daily statistics on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.4991cf48
    Explore at:
    gribAvailable download formats
    Dataset updated
    Sep 23, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Sep 17, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:

    The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)

    *The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.

  6. era5-land

    • aifasthub.com
    • huggingface.co
    Updated Sep 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open Climate Fix (2025). era5-land [Dataset]. https://www.aifasthub.com/datasets/openclimatefix/era5-land
    Explore at:
    Dataset updated
    Sep 18, 2025
    Dataset provided by
    Open Climate Fix Limited
    Authors
    Open Climate Fix
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset is comprised of ECMWF ERA5-Land data covering 2014 to October 2022. This data is on a 0.1 degree grid and has fewer variables than the standard ERA5-reanalysis, but at a higher resolution. All the data has been downloaded as NetCDF files from the Copernicus Data Store and converted to Zarr using Xarray, then uploaded here. Each file is one day, and holds 24 timesteps.

  7. ECMWF Reanalysis v5

    • ecmwf.int
    application/x-grib
    Updated Dec 31, 1969
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (1969). ECMWF Reanalysis v5 [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Dec 31, 1969
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes information about uncertainties for all variables at reduced spatial and temporal resolutions.

  8. o

    ERA5 Land precipitation daily sum

    • data.opendatascience.eu
    Updated May 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5 Land precipitation daily sum [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=climate
    Explore at:
    Dataset updated
    May 4, 2022
    Description

    Overview: era5.copernicus: precipitation daily sums from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent cumulative daily precipitation in mm x 10.

  9. o

    ERA5-Land daily: Surface temperature (2000 - 2020)

    • data.opendatascience.eu
    • data.mundialis.de
    • +1more
    Updated Jul 11, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5-Land daily: Surface temperature (2000 - 2020) [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=surface%20temperature
    Explore at:
    Dataset updated
    Jul 11, 2022
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Surface temperature: Temperature of the surface of the Earth. The skin temperature is the theoretical temperature that is required to satisfy the surface energy balance. It represents the temperature of the uppermost surface layer, which has no heat capacity and so can respond instantaneously to changes in surface fluxes. The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the spatial resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA Data available is the daily average, minimum and maximum of surface temperature. Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief) Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

  10. Z

    Daily time series of spatially enhanced relative humidity for Europe at 30...

    • data.niaid.nih.gov
    Updated Jul 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metz, Markus (2024). Daily time series of spatially enhanced relative humidity for Europe at 30 arc seconds resolution (Set 4: 2015 - 2019) derived from ERA5-Land data [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6344065
    Explore at:
    Dataset updated
    Jul 17, 2024
    Dataset provided by
    Jones, Peter
    Wint, William
    Neteler, Markus
    Metz, Markus
    Haas, Julia
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.

    Processing steps: The original hourly ERA5-Land air temperature 2 m above ground and dewpoint temperature 2 m data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA

    Subsequently, the temperature time series have been aggregated on a daily basis. From these, daily relative humidity has been calculated for the time period 01/2000 - 07/2021.

    Relative humidity (rh2m) has been calculated from air temperature 2 m above ground (Ta) and dewpoint temperature 2 m above ground (Td) using the formula for saturated water pressure from Wright (1997):

    maximum water pressure = 611.21 * exp(17.502 * Ta / (240.97 + Ta))

    actual water pressure = 611.21 * exp(17.502 * Td / (240.97 + Td))

    relative humidity = actual water pressure / maximum water pressure

    Data provided is the daily averages of relative humidity. This set provides data for the years 2000 - 2004. For other time periods, please see further linked data sets.

    Resultant values have been converted to represent percent * 10, thus covering a theoretical range of [0, 1000].

    File naming scheme (YYYY = year; MM = month; DD = day): ERA5_land_rh2m_avg_daily_YYYYMMDD.tif

    Projection + EPSG code: Latitude-Longitude/WGS84 (EPSG: 4326)

    Spatial extent: north: 82:00:30N south: 18N west: 32:00:30W east: 70E

    Spatial resolution: 30 arc seconds (approx. 1000 m)

    Temporal resolution: Daily

    Pixel values: Percent * 10 (scaled to Integer; example: value 738 = 73.8 %)

    Software used: GDAL 3.2.2 and GRASS GIS 8.0.0

    Original ERA5-Land dataset license: https://apps.ecmwf.int/datasets/licences/copernicus/

    CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

    Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

    Reference: Wright, J.M. (1997): Federal meteorological handbook no. 3 (FCM-H3-1997). Office of Federal Coordinator for Meteorological Services and Supporting Research. Washington, DC

    Data is also available in EU LAEA (EPSG: 3035) projection: https://zenodo.org/record/7434447

  11. Z

    ERA5-Land weekly: Total precipitation, weekly time series for Europe at 1 km...

    • data.niaid.nih.gov
    • data.mundialis.de
    • +1more
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kröber, Felix (2024). ERA5-Land weekly: Total precipitation, weekly time series for Europe at 1 km resolution (2016 - 2020) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6559047
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Kröber, Felix
    Neteler, Markus
    Metz, Markus
    Haas, Julia
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.

    Total precipitation: Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step.

    Processing steps: The original hourly ERA5-Land data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate proportion of ERA5-Land / aggregated CHELSA 3. interpolate proportion with a Gaussian filter to 30 arc seconds 4. multiply the interpolated proportions with CHELSA Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA.

    The spatially enhanced daily ERA5-Land data has been aggregated on a weekly basis starting from Saturday for the time period 2016 - 2020. Data available is the weekly average of daily sums and the weekly sum of daily sums of total precipitation.

    File naming: Average of daily sum: era5_land_prectot_avg_weekly_YYYY_MM_DD.tif Sum of daily sum: era5_land_prectot_sum_weekly_YYYY_MM_DD.tif

    The date in the file name determines the start day of the week (Saturday).

    Pixel values: mm * 10 Example: Value 218 = 21.8 mm

    Coordinate reference system: ETRS89 / LAEA Europe (EPSG:3035) (EPSG:3035)

    Spatial extent: north: 82:00:30N south: 18N west: 32:00:30W east: 70E

    Spatial resolution: 1km

    Temporal resolution: weekly

    Period: 01/01/2016 - 12/31/2020

    Lineage: Dataset has been processed from original Copernicus Climate Data Store (ERA5-Land) data sources. As auxiliary data CHELSA climate data has been used.

    Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)

    Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf

    CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

    Other resources: https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/601ea08c-0768-4af3-a8fa-7da25fb9125b

    Format: GeoTIFF

    Representation type: Grid

    Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

    Contact: mundialis GmbH & Co. KG, info@mundialis.de

  12. Z

    ERA5-Land daily: Surface temperature, daily time series for Europe at 30 arc...

    • data.niaid.nih.gov
    Updated Mar 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metz, Markus (2025). ERA5-Land daily: Surface temperature, daily time series for Europe at 30 arc seconds (ca. 1000 meter) resolution (2000 - 2020) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_14987501
    Explore at:
    Dataset updated
    Mar 7, 2025
    Dataset provided by
    Neteler, Markus
    Metz, Markus
    Haas, Julia
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    ERA5-Land daily: Surface temperature, daily time series for Europe at 30 arc seconds (ca. 1000 meter) resolution (2000 - 2020)

    Source data:ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.

    Surface temperature:Temperature of the surface of the Earth. The skin temperature is the theoretical temperature that is required to satisfy the surface energy balance. It represents the temperature of the uppermost surface layer, which has no heat capacity and so can respond instantaneously to changes in surface fluxes.

    Processing steps:The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land.The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA

    Data available is the daily average, minimum and maximum of surface temperature.

    File naming:Daily average: era5_land_daily_ts_YYYYMMDD_avg_30sec.tifDaily min: era5_land_daily_ts_YYYYMMDD_min_30sec.tifDaily max: era5_land_daily_ts_YYYYMMDD_max_30sec.tif

    The date within the filename is Year, Month and Day of timestamp.

    Pixel values:°C * 10 Example: Value 302 = 30.2 °C

    Projection + EPSG code:Latitude-Longitude/WGS84 (EPSG: 4326)

    Spatial extent:north: 82:00:30Nsouth: 18:00:00Nwest: 32:00:30Weast: 70:00:00E

    Temporal extent:01.01.2000 - 31.12.2020NOTE: Due to file size, only 2020 data are available here. Data for other years are available on request.

    Spatial resolution:30 arc seconds (approx. 1000 m)

    Temporal resolution:daily

    Format: GeoTIFF

    Representation type: Grid

    Software used:GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)

    Original ERA5-Land dataset license:https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf

    CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122.

    Processed by:mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

    Contact:mundialis GmbH & Co. KG, info@mundialis.de

  13. d

    Data and models to support analysis of ERA5-Land climate reanalysis inputs...

    • search.dataone.org
    • hydroshare.org
    Updated Dec 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bryce A Mihalevich (2023). Data and models to support analysis of ERA5-Land climate reanalysis inputs for river temperature modeling in the Colorado River basin [Dataset]. https://search.dataone.org/view/sha256%3A05d1e3b904f0f321adbc91ff502792d74e32128520023a04657fa424d39f425e
    Explore at:
    Dataset updated
    Dec 30, 2023
    Dataset provided by
    Hydroshare
    Authors
    Bryce A Mihalevich
    Time period covered
    Jan 1, 2015 - Jan 1, 2017
    Area covered
    Description

    This collection holds models and associated data for simulating river temperatures in the Colorado Rive basin using ERA5-Land climate reanalysis inputs. The results and findings for the Colorado River in Grand Canyon and a sections of the Green River is reported in Water Resources Research article "Evaluation of the ERA5-Land reanalysis dataset for process-based river temperature modeling over data sparse and topographically complex regions".

  14. d

    Matlab code to setup ERA5-Land inputs for river temperature modeling in the...

    • search.dataone.org
    • hydroshare.org
    • +2more
    Updated Dec 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bryce A Mihalevich (2023). Matlab code to setup ERA5-Land inputs for river temperature modeling in the Colorado River basin [Dataset]. https://search.dataone.org/view/sha256%3A8a055ddb7fa96b5fa4c3aaac8c241d414ad06e8e19ced7fb7d82a5d2d00558a4
    Explore at:
    Dataset updated
    Dec 30, 2023
    Dataset provided by
    Hydroshare
    Authors
    Bryce A Mihalevich
    Time period covered
    Jan 1, 2015 - Jan 1, 2017
    Area covered
    Description

    This resource provides MATLAB scripts and functions to setup ERA5-Land climate reanalysis to be used as inputs to river temperature models developed in HydroCouple. This model was applied to the Colorado River in Grand Canyon and in a section of the Green River to provide weather inputs to the dynamic river temperature models described in "Evaluation of the ERA5-Land reanalysis dataset for process-based river temperature modeling over data sparse and topographically complex regions" (doi: TBD)

  15. g

    ERA5-Land monthly: Total precipitation, monthly time series for Mauritania...

    • dev-gdk-p.ffm.gdi-de.org
    • data.opendatascience.eu
    • +4more
    Updated Jun 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mundialis GmbH & Co. KG (2024). ERA5-Land monthly: Total precipitation, monthly time series for Mauritania at 30 arc seconds (ca. 1000 meter) resolution (2019 - 2023) [Dataset]. https://dev-gdk-p.ffm.gdi-de.org/geonetwork/srv/api/records/6e9f4ea1-7111-4505-8165-a5857e486584
    Explore at:
    www:download-1.0-http--downloadAvailable download formats
    Dataset updated
    Jun 21, 2024
    Dataset authored and provided by
    mundialis GmbH & Co. KG
    License

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

    Time period covered
    Jan 1, 2019 - Dec 31, 2023
    Area covered
    Description

    ERA5-Land total precipitation monthly time series for Mauritania at 30 arc seconds (ca. 1000 meter) resolution (2019 - 2023) Source data: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Total precipitation: Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step. Processing steps: The original hourly ERA5-Land data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate proportion of ERA5-Land / aggregated CHELSA 3. interpolate proportion with a Gaussian filter to 30 arc seconds 4. multiply the interpolated proportions with CHELSA Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA. The spatially enhanced daily ERA5-Land data has been aggregated to monthly resolution, by calculating the sum of the precipitation per pixel over each month. File naming: ERA5_land_monthly_prectot_sum_30sec_YYYY_MM_01T00_00_00_int.tif e.g.:ERA5_land_monthly_prectot_sum_30sec_2023_12_01T00_00_00_int.tif The date within the filename is year and month of aggregated timestamp. Pixel values: mm * 10 Scaled to Integer, example: value 218 = 21.8 mm Projection + EPSG code: Latitude-Longitude/WGS84 (EPSG: 4326) Spatial extent: north: 28:18N south: 14:42N west: 17:05W east: 4:49W Temporal extent: January 2019 - December 2023 Spatial resolution: 30 arc seconds (approx. 1000 m) Temporal resolution: monthly Lineage: Dataset has been processed from original Copernicus Climate Data Store (ERA5-Land) data sources. As auxiliary data CHELSA climate data has been used. Software used: GRASS GIS 8.3.2 Format: GeoTIFF Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122 Representation type: Grid Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/) Contact: mundialis GmbH & Co. KG, info@mundialis.de Acknowledgements: This study was partially funded by EU grant 874850 MOOD. The contents of this publication are the sole responsibility of the authors and don't necessarily reflect the views of the European Commission.

  16. ERA5 Monthly Aggregates - Latest Climate Reanalysis Produced by ECMWF /...

    • developers.google.com
    Updated Jun 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF / Copernicus Climate Change Service (2020). ERA5 Monthly Aggregates - Latest Climate Reanalysis Produced by ECMWF / Copernicus Climate Change Service [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_MONTHLY
    Explore at:
    Dataset updated
    Jun 1, 2020
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Time period covered
    Jan 1, 1979 - Jun 1, 2020
    Area covered
    Earth
    Description

    ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset. ERA5 replaces its predecessor, the ERA-Interim reanalysis. ERA5 MONTHLY provides aggregated values for each month for seven ERA5 climate reanalysis parameters: 2m air temperature, 2m dewpoint temperature, total precipitation, mean sea level pressure, surface pressure, 10m u-component of wind and 10m v-component of wind. Additionally, monthly minimum and maximum air temperature at 2m has been calculated based on the hourly 2m air temperature data. Monthly total precipitation values are given as monthly sums. All other parameters are provided as monthly averages. ERA5 data is available from 1940 to three months from real-time, the version in the EE Data Catalog is available from 1979. More information and more ERA5 atmospheric parameters can be found at the Copernicus Climate Data Store. Provider's Note: Monthly aggregates have been calculated based on the ERA5 hourly values of each parameter.

  17. ERA5_precipitation_sum_1950_2023

    • zenodo.org
    zip
    Updated Aug 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yi Chai; Yi Chai (2024). ERA5_precipitation_sum_1950_2023 [Dataset]. http://doi.org/10.5281/zenodo.13148022
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 1, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Yi Chai; Yi Chai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ERA5-Land is a reanalysis dataset that provides a consistent view of the evolution of terrestrial variables over decades at a higher resolution than ERA5, which was generated by replaying the terrestrial component of the ERA5 climate reanalysis of ECMWF. The reanalysis uses the laws of physics to combine model data with observations from around the world to produce a globally complete and consistent dataset. The reanalysis produces data that goes back decades and provides an accurate picture of past climate. The dataset includes all 50 variables available on the CDS. The asset is a monthly summary of the ECMWF ERA5 Land hourly asset, including both mobile and non-mobile bands. The mobile bands are created by collecting data from the first hour of the second day of each day of the month and adding them together, while the non-mobile bands are created by averaging all hourly data for the month. The flow bands are labelled with the ‘_sum’ identifier, which is different from the monthly data generated by the Copernicus Climate Data Store, which also averages the flow bands. When sub-monthly fields are not required, monthly totals have been pre-calculated for many applications that require easy and quick access to the data. ERA5-Land monthly summary data are available in real time from 1950, three months before the present. More information can be found in the Copernicus Climate Data Repository. Precipitation and other flow (accumulation) bands may occasionally have negative values that are physically unreasonable. Sometimes their values may be too high. This problem is caused by the way the GRIB format saves data: it simplifies or ‘packages’ the data into smaller, less precise numbers, which can lead to errors. These errors are made worse when the data changes a lot. As a result, when we look at a whole day's worth of data to calculate daily totals, sometimes the highest rainfall recorded at one time appears to be greater than the total rainfall measured throughout the day.

  18. Z

    ERALClim - annual global climate variables derived from ERA5-Land reanalysis...

    • data.niaid.nih.gov
    Updated Feb 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Carr (2024). ERALClim - annual global climate variables derived from ERA5-Land reanalysis data [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8120645
    Explore at:
    Dataset updated
    Feb 13, 2024
    Dataset provided by
    Stephen Brough
    Richard Webster
    Robert Fitt
    Natasha Jones
    Jonathan Dick
    James Lea
    Georgia Carr
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    If you use this dataset please cite the accompanying paper (Lea et al., 2024)

    Maps of key (bio-)climatic variables derived from all currently available ERA5-Land reanalysis data (Muñoz Sabater et al., 2019). These have been calculated for:

    1. Annual timescales from 1951-2022 (this dataset); and

    2. All possible World Meteorological Organisation (WMO) 30 year climate baseline periods, including: 1951 to 1980; 1961 to 1990; 1971 to 2000; 1981 to 2010; and 1991 to 2020 (see link).

    Annual timescale data are calculated using monthly statistics using calendar months that account for leap years. WMO baseline maps are calculated by taking the mean of all annual timescale ERALClim maps that fall within the time periods stated above (inclusive). Image bands are named to map onto equivalent BioClim variables (Fick and Hijmans, 2017).

    Global data are provided here in GeoTIFF format as multiband images (where each band represents a different year/variable depending on the data downloaded) at a spatial scale of 0.1 degrees within a WGS84 grid (EPSG:4326). If users require data from point locations and/or subset regions for a specific time range or for a custom range of variables, these can be easily accessed using the Google Earth Engine Climate Tool (GEEClimT; Lea et al.). Access to this tool requires a Google Earth Engine account, and is free to use for academic research and education purposes. If you use any data extracted using this tool, please cite Lea et al., 2024.

    Descriptions of each band within the dataset are listed below:

    bio1 - Mean 2 m air temperature derived from hourly data (units: degrees C).

    bio2 - Annual mean of monthly mean diurnal 2 m air temperature ranges (units: degrees C).

    bio3 - Isothermality (100 * bio2 / bio7) (no units).

    bio4 - Standard deviation of monthly mean 2 m air temperatures (units: degrees C).

    bio5 - Mean of maximum 2 m air temperature for the warmest month (units: degrees C).

    bio6 - Mean of minimum 2 m air temperature for the coldest month (units: degrees C).

    bio7 - Annual range of 2 m air temperature (bio5 - bio6) (units: degrees C).

    bio8 - Mean 2 m air temperature of wettest 3 month period (units: degrees C).

    bio9 - Mean 2 m air temperature of driest 3 month period (units: degrees C).

    bio10 - Mean 2 m air temperature of warmest 3 month period (units: degrees C).

    bio11 - Mean 2 m air temperature of coldest 3 month period (units: degrees C).

    bio12 - Total annual precipitation (units: mm).

    bio13 - Total precipitation of wettest month (units: mm).

    bio14 - Total precipitation of driest month (units: mm).

    bio15 - Precipitation Seasonality (Coefficient of Variation, based on monthly total precipitation data) (no units).

    bio16 - Total precipitation in wettest 3 month period (units: mm).

    bio17 - Total precipitation in driest 3 month period (units: mm).

    bio18 - Total precipitation in warmest 3 month period (units: mm).

    bio19 - Total precipitation in coldest 3 month period (units: mm).

  19. G

    ERA5-Land Daily Aggregated – ECMWF Climate Reanalysis

    • developers.google.com
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tägliche Zusammenfassungen: Google und Copernicus Climate Data Store (2025). ERA5-Land Daily Aggregated – ECMWF Climate Reanalysis [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR?hl=de
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    Tägliche Zusammenfassungen: Google und Copernicus Climate Data Store
    Time period covered
    Jan 2, 1950 - Sep 15, 2025
    Area covered
    Erde
    Description

    ERA5-Land ist ein Reanalyse-Dataset, das eine konsistente Sicht auf die Entwicklung von Landvariablen über mehrere Jahrzehnte hinweg in einer im Vergleich zu ERA5 verbesserten Auflösung bietet. ERA5-Land wurde durch die erneute Ausführung der Landkomponente der ECMWF ERA5-Klimareanalyse erstellt. Bei der Reanalyse werden Modelldaten mit Beobachtungen aus aller Welt kombiniert.

  20. Hourly ERA5-land data (T2m, SD and TP) from 2015-01-01 to 2022-12-31 for...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    nc
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jean Iaquinta; Jean Iaquinta (2023). Hourly ERA5-land data (T2m, SD and TP) from 2015-01-01 to 2022-12-31 for Troms and Finnmark (Norway) [Dataset]. http://doi.org/10.5281/zenodo.8142713
    Explore at:
    ncAvailable download formats
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jean Iaquinta; Jean Iaquinta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Troms og Finnmark fylke, Norway
    Description

    This dataset contains hourly values of 2m air temperature, snow depth and total precipitation from the ERA5-land reanalysis from 2015-01-01 to 2022-12-31.

    The geographical area of interest corresponds to the Troms and Finnmark counties in Norway.

    Along with 10.5281/zenodo.8142734 this is to be used as input to forecast vegetation browning in Troms and Finnmark using machine learning.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ECMWF (2025). ERA5-Land hourly data from 1950 to present [Dataset]. http://doi.org/10.24381/cds.e2161bac
Organization logo

ERA5-Land hourly data from 1950 to present

Explore at:
{grib,netcdf}Available download formats
Dataset updated
Sep 22, 2025
Dataset provided by
European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
Authors
ECMWF
License

https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

Time period covered
Jan 1, 1950 - Sep 16, 2025
Description

ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.

Search
Clear search
Close search
Google apps
Main menu