https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.
ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields.
The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
developed by C3S at ECMWF
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:
The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)
*The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.
Overview: era5.copernicus: precipitation daily sums from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent cumulative daily precipitation in mm x 10.
Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Surface temperature: Temperature of the surface of the Earth. The skin temperature is the theoretical temperature that is required to satisfy the surface energy balance. It represents the temperature of the uppermost surface layer, which has no heat capacity and so can respond instantaneously to changes in surface fluxes. The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the spatial resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA Data available is the daily average, minimum and maximum of surface temperature. Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief) Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.
Processing steps: The original hourly ERA5-Land air temperature 2 m above ground and dewpoint temperature 2 m data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds. 4. add the interpolated differences to CHELSA
Subsequently, the temperature time series have been aggregated on a daily basis. From these, daily relative humidity has been calculated for the time period 01/2000 - 07/2021.
Relative humidity (rh2m) has been calculated from air temperature 2 m above ground (Ta) and dewpoint temperature 2 m above ground (Td) using the formula for saturated water pressure from Wright (1997):
maximum water pressure = 611.21 * exp(17.502 * Ta / (240.97 + Ta))
actual water pressure = 611.21 * exp(17.502 * Td / (240.97 + Td))
relative humidity = actual water pressure / maximum water pressure
The resulting relative humidity has been aggregated to decadal averages. Each month is divided into three decades: the first decade of a month covers days 1-10, the second decade covers days 11-20, and the third decade covers days 21-last day of the month.
Resultant values have been converted to represent percent * 10, thus covering a theoretical range of [0, 1000].
File naming scheme (YYYY = year; MM = month; dD = number of decade): ERA5_land_rh2m_avg_decadal_YYYY_MM_dD.tif
Projection + EPSG code: Latitude-Longitude/WGS84 (EPSG: 4326)
Spatial extent: north: 82:00:30N south: 18N west: 32:00:30W east: 70E
Spatial resolution: 30 arc seconds (approx. 1000 m)
Temporal resolution: Decadal
Pixel values: Percent * 10 (scaled to Integer; example: value 738 = 73.8 %)
Software used: GDAL 3.2.2 and GRASS GIS 8.0.0
Original ERA5-Land dataset license: https://apps.ecmwf.int/datasets/licences/copernicus/
CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122
Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
Reference: Wright, J.M. (1997): Federal meteorological handbook no. 3 (FCM-H3-1997). Office of Federal Coordinator for Meteorological Services and Supporting Research. Washington, DC
Data is also available in EU LAEA (EPSG: 3035) projection: https://zenodo.org/record/7427010
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes information about uncertainties for all variables at reduced spatial and temporal resolutions.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset is comprised of ECMWF ERA5-Land data covering 2014 to October 2022. This data is on a 0.1 degree grid and has fewer variables than the standard ERA5-reanalysis, but at a higher resolution. All the data has been downloaded as NetCDF files from the Copernicus Data Store and converted to Zarr using Xarray, then uploaded here. Each file is one day, and holds 24 timesteps.
Overview: era5.copernicus: air temperature daily averages from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent minimum, mean, and maximum daily air temperature 2m above ground in degrees Celsius x 10.
This collection holds models and associated data for simulating river temperatures in the Colorado Rive basin using ERA5-Land climate reanalysis inputs. The results and findings for the Colorado River in Grand Canyon and a sections of the Green River is reported in Water Resources Research article "Evaluation of the ERA5-Land reanalysis dataset for process-based river temperature modeling over data sparse and topographically complex regions".
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.
Surface temperature: Temperature of the surface of the Earth. The skin temperature is the theoretical temperature that is required to satisfy the surface energy balance. It represents the temperature of the uppermost surface layer, which has no heat capacity and so can respond instantaneously to changes in surface fluxes.
Processing steps: The original hourly ERA5-Land data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA
The spatially enhanced daily ERA5-Land data has been aggregated on a weekly basis (starting from Saturday) for the time period 2016 - 2020. Data available is the weekly average of daily averages, the weekly minimum of daily minima and the weekly maximum of daily maxima of surface temperature.
File naming: Average of daily average: era5_land_ts_avg_weekly_YYYY_MM_DD.tif Max of daily max: era5_land_ts_max_weekly_YYYY_MM_DD.tif Min of daily min: era5_land_ts_min_weekly_YYYY_MM_DD.tif
The date in the file name determines the start day of the week (Saturday).
Pixel values: °C * 10 Example: Value 302 = 30.2 °C
The QML or SLD style files can be used for visualization of the temperature layers.
Coordinate reference system: ETRS89 / LAEA Europe (EPSG:3035) (EPSG:3035)
Spatial extent: north: 82N south: 18S west: -32W east: 61E
Spatial resolution: 1 km
Temporal resolution: weekly
Time period: 01/01/2016 - 12/31/2020
Format: GeoTIFF
Representation type: Grid
Software used: GRASS 8.0
Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122
Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
Contact: mundialis GmbH & Co. KG, info@mundialis.de
Acknowledgements: This study was partially funded by EU grant 874850 MOOD. The contents of this publication are the sole responsibility of the authors and don't necessarily reflect the views of the European Commission.
This resource provides MATLAB scripts and functions to setup ERA5-Land climate reanalysis to be used as inputs to river temperature models developed in HydroCouple. This model was applied to the Colorado River in Grand Canyon and in a section of the Green River to provide weather inputs to the dynamic river temperature models described in "Evaluation of the ERA5-Land reanalysis dataset for process-based river temperature modeling over data sparse and topographically complex regions" (doi: TBD)
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
ERA5-Land daily: Surface temperature, daily time series for Europe at 30 arc seconds (ca. 1000 meter) resolution (2000 - 2020)
Source data:ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.
Surface temperature:Temperature of the surface of the Earth. The skin temperature is the theoretical temperature that is required to satisfy the surface energy balance. It represents the temperature of the uppermost surface layer, which has no heat capacity and so can respond instantaneously to changes in surface fluxes.
Processing steps:The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land.The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA
Data available is the daily average, minimum and maximum of surface temperature.
File naming:Daily average: era5_land_daily_ts_YYYYMMDD_avg_30sec.tifDaily min: era5_land_daily_ts_YYYYMMDD_min_30sec.tifDaily max: era5_land_daily_ts_YYYYMMDD_max_30sec.tif
The date within the filename is Year, Month and Day of timestamp.
Pixel values:°C * 10 Example: Value 302 = 30.2 °C
Projection + EPSG code:Latitude-Longitude/WGS84 (EPSG: 4326)
Spatial extent:north: 82:00:30Nsouth: 18:00:00Nwest: 32:00:30Weast: 70:00:00E
Temporal extent:01.01.2000 - 31.12.2020NOTE: Due to file size, only 2020 data are available here. Data for other years are available on request.
Spatial resolution:30 arc seconds (approx. 1000 m)
Temporal resolution:daily
Format: GeoTIFF
Representation type: Grid
Software used:GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)
Original ERA5-Land dataset license:https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122.
Processed by:mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
Contact:mundialis GmbH & Co. KG, info@mundialis.de
ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5.
ERA5-Land total precipitation monthly time series for Mauritania at 30 arc seconds (ca. 1000 meter) resolution (2019 - 2023) Source data: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Total precipitation: Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step. Processing steps: The original hourly ERA5-Land data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate proportion of ERA5-Land / aggregated CHELSA 3. interpolate proportion with a Gaussian filter to 30 arc seconds 4. multiply the interpolated proportions with CHELSA Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA. The spatially enhanced daily ERA5-Land data has been aggregated to monthly resolution, by calculating the sum of the precipitation per pixel over each month. File naming: ERA5_land_monthly_prectot_sum_30sec_YYYY_MM_01T00_00_00_int.tif e.g.:ERA5_land_monthly_prectot_sum_30sec_2023_12_01T00_00_00_int.tif The date within the filename is year and month of aggregated timestamp. Pixel values: mm * 10 Scaled to Integer, example: value 218 = 21.8 mm Projection + EPSG code: Latitude-Longitude/WGS84 (EPSG: 4326) Spatial extent: north: 28:18N south: 14:42N west: 17:05W east: 4:49W Temporal extent: January 2019 - December 2023 Spatial resolution: 30 arc seconds (approx. 1000 m) Temporal resolution: monthly Lineage: Dataset has been processed from original Copernicus Climate Data Store (ERA5-Land) data sources. As auxiliary data CHELSA climate data has been used. Software used: GRASS GIS 8.3.2 Format: GeoTIFF Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122 Representation type: Grid Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/) Contact: mundialis GmbH & Co. KG, info@mundialis.de Acknowledgements: This study was partially funded by EU grant 874850 MOOD. The contents of this publication are the sole responsibility of the authors and don't necessarily reflect the views of the European Commission.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Overview:
ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.
Processing steps:
The original hourly ERA5-Land air temperature 2 m above ground and dewpoint temperature 2 m data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically:
1. spatially aggregate CHELSA to the resolution of ERA5-Land
2. calculate difference of ERA5-Land - aggregated CHELSA
3. interpolate differences with a Gaussian filter to 30 arc seconds
4. add the interpolated differences to CHELSA
Subsequently, the temperature time series have been aggregated on a daily basis. From these, daily relative humidity has been calculated for the time period 01/2000 - 07/2021.
Relative humidity (rh2m) has been calculated from air temperature 2 m above ground (Ta) and dewpoint temperature 2 m above ground (Td) using the formula for saturated water pressure from Wright (1997):
maximum water pressure = 611.21 * exp(17.502 * Ta / (240.97 + Ta))
actual water pressure = 611.21 * exp(17.502 * Td / (240.97 + Td))
relative humidity = actual water pressure / maximum water pressure
Data provided is the daily averages of relative humidity. This set provides data for the years 2000 - 2004. For other time periods, please see further linked data sets.
Resultant values have been converted to represent percent * 10, thus covering a theoretical range of [0, 1000].
File naming scheme (YYYY = year; MM = month; DD = day):
ERA5_land_rh2m_avg_daily_YYYYMMDD.tif
Projection + EPSG code:
Latitude-Longitude/WGS84 (EPSG: 4326)
Spatial extent:
north: 82:00:30N
south: 18N
west: 32:00:30W
east: 70E
Spatial resolution:
30 arc seconds (approx. 1000 m)
Temporal resolution:
Daily
Pixel values:
Percent * 10 (scaled to Integer; example: value 738 = 73.8 %)
Software used:
GDAL 3.2.2 and GRASS GIS 8.0.0
Original ERA5-Land dataset license:
https://apps.ecmwf.int/datasets/licences/copernicus/
CHELSA climatologies (V1.2):
Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4
Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122
Processed by:
mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
Reference: Wright, J.M. (1997): Federal meteorological handbook no. 3 (FCM-H3-1997). Office of Federal Coordinator for Meteorological Services and Supporting Research. Washington, DC
Data is also available in EU LAEA (EPSG: 3035) projection: https://zenodo.org/record/7434396
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
If you use this dataset please cite the accompanying paper (Lea et al., 2024)
Maps of key (bio-)climatic variables derived from all currently available ERA5-Land reanalysis data (Muñoz Sabater et al., 2019). These have been calculated for:
All possible World Meteorological Organisation (WMO) 30 year climate baseline periods, including: 1951 to 1980; 1961 to 1990; 1971 to 2000; 1981 to 2010; and 1991 to 2020 (this dataset).
Annual timescales from 1951-2022 (see here).
Annual timescale data are calculated using monthly statistics using calendar months that account for leap years. WMO baseline maps are calculated by taking the mean of all annual timescale ERALClim maps that fall within the time periods stated above (inclusive). Image bands are named to map onto equivalent BioClim variables (Fick and Hijmans, 2017).
Global data are provided here in GeoTIFF format as multiband images (where each band represents a different year/variable depending on the data downloaded) at a spatial scale of 0.1 degrees within a WGS84 grid (EPSG:4326). If users require data from point locations and/or subset regions for a specific time range or for a custom range of variables, these can be easily accessed using the Google Earth Engine Climate Tool (GEEClimT). Access to this tool requires a Google Earth Engine account, and is free to use for academic research and education purposes, and users who access data through the tool should cite Lea et al., 2024.
Descriptions of each band within the dataset are listed below:
bio1 - Mean 2 m air temperature derived from hourly data (units: degrees C).
bio2 - Annual mean of monthly mean diurnal 2 m air temperature ranges (units: degrees C).
bio3 - Isothermality (100 * bio2 / bio7) (no units).
bio4 - Standard deviation of monthly mean 2 m air temperatures (units: degrees C).
bio5 - Mean of maximum 2 m air temperature for the warmest month (units: degrees C).
bio6 - Mean of minimum 2 m air temperature for the coldest month (units: degrees C).
bio7 - Annual range of 2 m air temperature (bio5 - bio6) (units: degrees C).
bio8 - Mean 2 m air temperature of wettest 3 month period (units: degrees C).
bio9 - Mean 2 m air temperature of driest 3 month period (units: degrees C).
bio10 - Mean 2 m air temperature of warmest 3 month period (units: degrees C).
bio11 - Mean 2 m air temperature of coldest 3 month period (units: degrees C).
bio12 - Total annual precipitation (units: mm).
bio13 - Total precipitation of wettest month (units: mm).
bio14 - Total precipitation of driest month (units: mm).
bio15 - Precipitation Seasonality (Coefficient of Variation, based on monthly total precipitation data) (no units).
bio16 - Total precipitation in wettest 3 month period (units: mm).
bio17 - Total precipitation in driest 3 month period (units: mm).
bio18 - Total precipitation in warmest 3 month period (units: mm).
bio19 - Total precipitation in coldest 3 month period (units: mm).
ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, and the first reanalysis produced as an operational service. It utilizes the best available observation data from satellites and in-situ stations, which are assimilated and processed using ECMWF's Integrated Forecast System (IFS) Cycle 41r2. The dataset provides all essential atmospheric meteorological parameters like, but not limited to, air temperature, pressure and wind at different altitudes, along with surface parameters like rainfall, soil moisture content and sea parameters like sea-surface temperature and wave height. ERA5 provides data at a considerably higher spatial and temporal resolution than its legacy counterpart ERA-Interim. ERA5 consists of high resolution version with 31 km horizontal resolution, and a reduced resolution ensemble version with 10 members. It is currently available since 2008, but will be continuously extended backwards, first until 1979 and then to 1950. Learn more about ERA5 in Jon Olauson's paper ERA5: The new champion of wind power modelling?.
Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Air temperature (2 m): Temperature of air at 2m above the surface of land, sea or in-land waters. 2m temperature is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions. The spatially enhanced daily ERA5-Land data has been aggregated on a weekly basis starting from Saturday for the time period 2016 - 2020. Data available is the weekly average of daily averages, the weekly minimum of daily minima and the weekly maximum of daily maxima of air temperature (2 m). File naming: Average of daily average: era5_land_t2m_avg_weekly_YYYY_MM_DD.tif Max of daily max: era5_land_t2m_max_weekly_YYYY_MM_DD.tif Min of daily min: era5_land_t2m_min_weekly_YYYY_MM_DD.tif The date in the file name determines the start day of the week (Saturday). Values are °C * 10. Example: Value 44 = 4.4 °C The QML or SLD style files can be used for visualization of the temperature layers.
This repository contains the data used in: Gadal, C., Delorme, P., Narteau, C. et al. Local Wind Regime Induced by Giant Linear Dunes: Comparison of ERA5-Land Reanalysis with Surface Measurements. Boundary-Layer Meteorol 185, 309–332 (2022). https://doi.org/10.1007/s10546-022-00733-6 where wind data measured at 4 different places in and across the Namib Sand Sea are compared to the data from the ERA5/ERA5Land climate reanalyses. The use this data, one should first look at the GitHub repository https://github.com/Cgadal/GiantDunes and at the corresponding documentation https://cgadal.github.io/GiantDunes/. The description sometimes refers to scripts used in https://github.com/Cgadal/GiantDunes/tree/master/Processing. The two folders 'raw_data' and 'processed_data' contain the input raw_data, and the output data after processing used to make the paper figures, respectively. In each of them, '.npy' files contain Python dictionaries with different variables in them. They can be loaded using the Python library numpy as data = np.load('file.npy', allow_pickle=True).item(); and the different keys (variables) can be printed with data.keys() or data[station].keys() if data.keys() return the different stations. Unless specified otherwise below, note that all variables are given in the International System of Units (SI), and wind direction is given anticlockwise, with the 0 being a wind blowing from the West to the East. raw_data: DEM: contains the Digital Elevation Models of the two stations from the SRTM30, downloaded from here: https://dwtkns.com/srtm30m/ ERA5: hourly data from the ER5 climate reanalysis, on surface (_BLH) and pressure levels (_levels). Downloaded from https://cds.climate.copernicus.eu/ ERA5Land: hourly data from the ER5Land climate reanalysis Downloaded from https://cds.climate.copernicus.eu/ KML_points: kml points of the measurement station. It can be opened directly in GoogleEarth. measured_wind_data: contains the measured in situ data. The windspeed is measured using Vector Instruments A100-LK cup anemometers, the wind direction using Vector Instruments W200-P wind vane and the time using Campbell Instruments CR10X and CR1000X dataloggers. processed_data: 'Data_preprocessed.npy': preprocessed_data, output of 1_data_preprocessing_plot.py 'Data_DEM.npy': properties of the processed DEM, the output of 2_DEM_analysis_plot.py 'Data_calib_roughness.npy': data from the calibration of the hydrodynamic roughnesses, the output of 3_roughness_calibration_plot.py 'Data_final.npy': file containing all computed quantities 'time_series_hydro_coeffs.npy': file containing the time series of the calculated hydrodynamic coefficients by '5_norun_hydro_coeff_time_series.npy'. Depending on the loaded data file, main dictionary keys can be: 'lat': latitude, in degree 'lon': longitude, in degree 'time': time vector, in datetime objects (https://docs.python.org/3/library/datetime.html) 'DEM': elevation data array in [m], with dimensions matching 'lat' and 'lon' vectors 'z_mes', 'z_insitu', 'z_ERA5LAND': height of the corresponding velocity 'direction': measured wind direction, in [degrees] 'velocity': measured wind velocity, in [m/s] 'orientaion': dune pattern orientation, [deg] 'wavelength': dune pattern wavelength, [km] 'z0_insitu': chosen hydrodynamic roughness for the considered station. 'U_insitu', 'Orientation_insitu': hourly averaged measured wind velocities and direction 'U_era', 'Orientation_era': hourly 10m wind data from the ERA5Land data set 'Boundary layer height', 'blh': boundary layer height from the hourly ERA5 dataset 'Pressure levels', 'levels': Pressure levels from the pressure levels ERA5 dataset 'Temperature', 't': Temperature from the pressure levels ERA5 dataset 'Specific humidity', 'q': Specific humidity from the pressure levels ERA5 dataset 'Geopotential', 'z': Geopotential from the pressure levels ERA5 dataset 'Virtual_potential_temperature': Virtual potential temperature calculated from the pressure levels ERA5 dataset 'Potential_temperature': Potential temperature calculated from the pressure levels ERA5 dataset 'Density': Density calculated from the pressure levels ERA5 dataset 'height': Vertical coordinates calculated from the pressure levels ERA5 dataset 'theta_ground': Averaged virtual potential temperature within the ABL. 'delta_theta': Virtual potential temperature at the ABL. 'gradient_free_atm': Virtual potential temperature gradient in the FA. 'Froude': time series of the Froude number U/((delta_theta/theta_ground)*g*BLH) 'kH': time series of the number 'kH' 'kLB': time series of the internal Froude number kU/N Other keys are not relevant and are stored for verification purposes. For more details, please contact Cyril Gadal (see authors), and look at the following GitHub repository: https://github.com/Cgadal/GiantDunes, where all the codes are present.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.
ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields.
The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.