100+ datasets found
  1. 07 - Native American lands 1819-2015 - Esri GeoInquiries™ collection for US...

    • hub.arcgis.com
    • geoinquiries-education.hub.arcgis.com
    Updated Nov 14, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2015). 07 - Native American lands 1819-2015 - Esri GeoInquiries™ collection for US History [Dataset]. https://hub.arcgis.com/documents/93a0b504e1414b69a69b9db7178b7329
    Explore at:
    Dataset updated
    Nov 14, 2015
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Description

    Explore the spatial patterns of Native American lands in 1819 and the decrease in size of those lands through the current Native American reservations. The activity uses a web-based map and is tied to the C3 Framework.

    Learning outcomes:

    Students will be able to measure Native American land areas to evaluate Native American land area change over time.

    Students will be able to compute the percentage of Native American lands that shifted from their original position to their final location.

    Find more US History GeoInquiries here or explore all GeoInquiries at https://www.esri.com/geoinquiries

  2. d

    Race and Ethnicity - ACS 2015-2019 - Tempe Tracts

    • catalog.data.gov
    • performance.tempe.gov
    • +8more
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). Race and Ethnicity - ACS 2015-2019 - Tempe Tracts [Dataset]. https://catalog.data.gov/dataset/race-and-ethnicity-acs-2015-2019-tempe-tracts-3bc24
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Description

    Notice: The U.S. Census Bureau is delaying the release of the 2016-2020 ACS 5-year data until March 2022. For more information, please read the Census Bureau statement regarding this matter. -----------------------------------------This layer shows population broken down by race and Hispanic origin. This layer shows Census data from Esri's Living Atlas and is clipped to only show Tempe census tracts. This layer is symbolized to show the predominant race living within an area. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). Data is from US Census American Community Survey (ACS) 5-year estimates. Vintage: 2015-2019 ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.) Data downloaded from: Census Bureau's API for American Community Survey Date of Census update: December 10, 2020 National Figures: data.census.gov Additional Census data notes and data processing notes are available at the Esri Living Atlas Layer: https://tempegov.maps.arcgis.com/home/item.html?id=23ab8028f1784de4b0810104cd5d1c8f&view=list&sortOrder=desc&sortField=defaultFSOrder#overview (Esri's Living Atlas always shows latest data)

  3. c

    Land Cover Map (2015)

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Aug 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2019). Land Cover Map (2015) [Dataset]. https://data.catchmentbasedapproach.org/maps/d57931c43ec6446993b5a60ed60256e9
    Explore at:
    Dataset updated
    Aug 26, 2019
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    This web map service (WMS) is the 25m raster version of the Land Cover Map 2015 (LCM2015) for Great Britain and Northern Ireland. It shows the target habitat class with the highest percentage cover in each 25m x 25m pixel. The 21 target classes are based on the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompass the entire range of UK habitats.The 25m raster web map service is the most detailed of the LCM2015 raster products, both thematically and spatially, and it is derived from the LCM2015 vector product. For LCM2015 per-pixel classifications were conducted, using a random forest classification algorithm. The resultant classifications were then mosaicked together, with the best classifications taking priority. This produced a per-pixel classification of the UK, which was then 'imported' into the spatial framework, recording a number of attributes, including the majority class per polygon which is the Land Cover class for each polygon.Find out more about Land Cover Map 2015 at ceh.ac.uk.LCM2015 is available for download to Catchment Based Approach (CaBA) Partnerships in the desktop GIS data package. Please contact your CaBA catchment host for further information.

  4. 07 - Native American lands 1819-2015 - Esri GeoInquiries collection for US...

    • library.ncge.org
    Updated Jun 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). 07 - Native American lands 1819-2015 - Esri GeoInquiries collection for US History [Dataset]. https://library.ncge.org/documents/b6a206237b724e87a2e31a0e02b20a30
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    Area covered
    United States
    Description

    THE GEOINQUIRIES™ COLLECTION FOR U.S. History

    http://www.esri.com/geoinquiries

    The GeoInquiry™ collection for U.S. History contains 15 free, web-mapping activities that correspond and extend map-based concepts in leading history textbooks. The activities use a standard inquiry-based instructional model, require only 15 minutes for a teacher to deliver, and are device/laptop agnostic. The activities harmonize with the C3 Framework.

    All Elementary GeoInquiries™ can be found at: http://esriurl.com/historyGeoInquiries

    All GeoInquiries™ can be found at: http://www.esri.com/geoinquiries

  5. d

    Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 [Dataset]. https://catalog.data.gov/dataset/contour-dataset-of-the-potentiometric-surface-of-groundwater-level-altitudes-near-the-plan
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Arkansas, Hot Springs
    Description

    This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.

  6. Digital Geologic-GIS Map of Joshua Tree National Park, California (NPS, GRD,...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Joshua Tree National Park, California (NPS, GRD, GRI, JOTR, JOTR digital map) adapted from a U.S. Geological Survey Open-File Report map by Powell, Matti and Cossette (2015), and an ESRI USA Topo Web Map Service map (2013) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-joshua-tree-national-park-california-nps-grd-gri-jotr-jotr-dig
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    California, United States
    Description

    The Digital Geologic-GIS Map of Joshua Tree National Park, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (jotr_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (jotr_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (jotr_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (jotr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (jotr_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (jotr_geology_metadata_faq.pdf). Please read the jotr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and ESRI. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (jotr_geology_metadata.txt or jotr_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  7. d

    Data from: Swath derived bathymetric grids of Lostmans and Lower Shark...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Swath derived bathymetric grids of Lostmans and Lower Shark Rivers, Florida (2015) in Esri ASCII grid format [Dataset]. https://catalog.data.gov/dataset/swath-derived-bathymetric-grids-of-lostmans-and-lower-shark-rivers-florida-2015-in-esri-as
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Florida
    Description

    High resolution bathymetry mapping of the coastal rivers and inland lakes along the Southwest coast of Everglades National Park (ENP) is greatly needed from the perspective of resource mapping and future research and hydrologic modeling efforts. To this end, bathymetric surveys of 8 coastal rivers were completed in 2004 as part of a cooperative project between the US Geological Survey (USGS) and the South Florida Water Management District (SFWMD). Recent analyses of geo_databases from the project in 2004 shows that Lostmans River and several segments of Shark River remained to be mapped. Completed surveys for these areas will provide and invaluable and complete set of bathymetric surveys of coastal rivers along the Southwest coast of ENP. This report serves as an archive of processed interferometric swath bathymetry data that were collected during one cruise (USGS Field Activity Numbers 2015_304_FA) in Lower Shark River, Florida. Geographic information system data products include: a 5 m_cell_size interpolated bathymetry grid surface and point data files. Also included in this archive are Geographic Information System (GIS) data products: gridded map data (in Esri binary and ASCII grid format), and a color_coded bathymetry map (in PDF format). Additional files include Field Activity Collection System logs, and formal Federal Geographic Data Committee (FGDC) metadata.

  8. Canada Land Cover 2015

    • climate.esri.ca
    • climat.esri.ca
    • +1more
    Updated Mar 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Canada - Technology Strategy Group (2020). Canada Land Cover 2015 [Dataset]. https://climate.esri.ca/datasets/esrica-tsg::canada-land-cover-2015
    Explore at:
    Dataset updated
    Mar 4, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Canada - Technology Strategy Group
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Description

    IMPORTANT NOTICE This item has moved to a new organization and will enter Mature Support on April 17th, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on July 30th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here. Land cover information is necessary for a large range of environmental applications related to climate impacts and adaption, emergency response, wildlife habitat, etc. In Canada, a 2008 user survey indicated that the most practical land cover data is provided in a nationwide 30 m spatial resolution format, with an update frequency of five years. In response to this need, the Canada Centre for Remote Sensing (CCRS) has generated a 30 m land cover map of Canada for the base year 2010, as well as this 2015 land cover map. This land cover dataset is also the Canadian contribution to the 30 m spatial resolution 2015 Land Cover Map of North America, which is produced by Mexican, American and Canadian government institutions under a collaboration called the North American Land Change Monitoring System (NALCMS). This land cover dataset for Canada is produced using observation from Operational Land Imager (OLI) Landsat sensor. An accuracy assessment based on 806 randomly distributed samples shows that land cover data produced with this new approach has achieved 79.90% accuracy with no marked spatial disparities. For more information visit: Land Cover of Canada - Cartographic Product Collection

  9. World Roads - Esri

    • datacore-gn.unepgrid.ch
    ogc:wms +1
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Data & Maps, World Roads - Esri [Dataset]. https://datacore-gn.unepgrid.ch/geonetwork/srv/api/records/2f70d7d8-7069-4943-92f2-d7830282bb09
    Explore at:
    ogc:wms, www:link-1.0-http--linkAvailable download formats
    Dataset provided by
    Esrihttp://esri.com/
    Time period covered
    2015
    Area covered
    Description

    World Roads provides a base map layer for the roads and ferries of the world. They are a subset of DeLorme World Base Map 2015 (DWBM).

  10. Multispectral Landsat

    • esriaustraliahub.com.au
    • uneca.africageoportal.com
    • +6more
    Updated Mar 19, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2015). Multispectral Landsat [Dataset]. https://www.esriaustraliahub.com.au/datasets/d9b466d6a9e647ce8d1dd5fe12eb434b
    Explore at:
    Dataset updated
    Mar 19, 2015
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer includes Landsat GLS, Landsat 8, and Landsat 9 imagery for use in visualization and analysis. This layer is time enabled and includes a number band combinations and indices rendered on demand. The Landsat 8 and 9 imagery includes nine multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.This layer also includes imagery from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Layer Filter’ to restrict the default layer display to a specified image or group of images.To isolate a specific mission, use the Layer Filter and the dataset_id or SensorName fields.Visual RenderingThe default rendering in this layer is Agriculture (bands 6,5,2) with Dynamic Range Adjustment (DRA). Brighter green indicates more vigorous vegetation.The DRA version of each layer enables visualization of the full dynamic range of the images.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions can be created.Pre-defined functions: Natural Color with DRA, Agriculture with DRA, Geology with DRA, Color Infrared with DRA, Bathymetric with DRA, Short-wave Infrared with DRA, Normalized Difference Moisture Index Colorized, NDVI Raw, NDVI Colorized, NBR Raw15 meter Landsat Imagery Layers are also available: Panchromatic and Pansharpened.Multispectral Bands

    Band

    Description

    Wavelength (µm)

    Spatial Resolution (m)

    1

    Coastal aerosol

    0.43 - 0.45

    30

    2

    Blue

    0.45 - 0.51

    30

    3

    Green

    0.53 - 0.59

    30

    4

    Red

    0.64 - 0.67

    30

    5

    Near Infrared (NIR)

    0.85 - 0.88

    30

    6

    SWIR 1

    1.57 - 1.65

    30

    7

    SWIR 2

    2.11 - 2.29

    30

    8

    Cirrus (in OLI this is band 9)

    1.36 - 1.38

    30

    9

    QA Band (available with Collection 1)*

    NA

    30

    *More about the Quality Assessment BandTIRS Bands

    Band

    Description

    Wavelength (µm)

    Spatial Resolution (m)

    10

    TIRS1

    10.60 - 11.19

    100 * (30)

    11

    TIRS2

    11.50 - 12.51

    100 * (30)

    *TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted in Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit GLS.

  11. School Attendance Boundary Survey 2015-2016

    • catalog.data.gov
    • hub.arcgis.com
    • +1more
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). School Attendance Boundary Survey 2015-2016 [Dataset]. https://catalog.data.gov/dataset/school-attendance-boundary-survey-2015-2016-3b310
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    This polygon files contains 2015-2016 school-year data delineating school attendance boundaries. These data were collected and processed as part of the School Attendance Boundary Survey (SABS) project which was funded by NCES to create geography delineating school attendance boundaries. Original source information that was used to create these boundary files were collected were collected over a web-based self-reporting system, through e-mail, and mailed paper maps. The web application provided instructions and assistance to users via a user guide, a frequently asked questions document, and instructional videos. Boundaries supplied outside of the online reporting system typically fell into one of six categories: a digital geographic file, such as a shapefile or KML file; digital image files, such as jpegs and pdfs; narrative descriptions; an interactive web map; Excel or pdf address lists; and paper maps. 2015 TIGER/line features (that consist of streets, hydrography, railways, etc.) were used to digitize school attendance boundaries and was the primary source of information used to digitize analog information. This practice works well as most school attendance boundaries align with streets, railways, water bodies and similar line features included in the 2015 TIGER/line "edges" files. In those few cases in which a portion of a school attendance boundary serves both sides of a street contractor staff used Esri’s Imagery base map to estimate the property lines of parcels. The data digitized from analog maps and verbal descriptions do not conform to cadastral data (and many of the original GIS files created by school districts do not conform with cadastral or parcel data).The SABS 2015-2016 file uses the WGS 1984 Web Mercator Auxiliary Sphere coordinate system.Additional information about SABS can be found on the EDGE website.The SABS dataset is intended for research purposes only and reflects a single snapshot in time. School boundaries frequently change from year to year. To verify legal descriptions of boundaries, users must contact the school district directly.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.

  12. Global map of tree density

    • figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A. (2023). Global map of tree density [Dataset]. http://doi.org/10.6084/m9.figshare.3179986.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).

    Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.

    Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.

    Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------

    Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.

    Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.

    References:

    Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.

  13. a

    Land Cover 1992-2020

    • hub.arcgis.com
    • cacgeoportal.com
    • +1more
    Updated Mar 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Land Cover 1992-2020 [Dataset]. https://hub.arcgis.com/maps/bb0e4bcd891c4679881f80997c9b8871
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  14. b

    U.S. Stroke Hospitalization Rate: Esri, 2015-2017

    • geo.btaa.org
    Updated Jun 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2020). U.S. Stroke Hospitalization Rate: Esri, 2015-2017 [Dataset]. https://geo.btaa.org/catalog/98c1788fdb764d99b0acabe7b21285fc_0
    Explore at:
    Dataset updated
    Jun 1, 2020
    Authors
    Centers for Disease Control and Prevention
    Time period covered
    2015 - 2017
    Area covered
    United States
    Description

    Create maps of U.S. stroke hospitalization rates among Medicare fee-for-service beneficiaries aged 65 and older, by county. Data can be stratified by race/ethnicity and gender. Visit the CDC/DHDSP Atlas of Heart Disease and Stroke for additional data and maps. Atlas of Heart Disease and StrokeData SourceHospitalization data were obtained from the Centers for Medicare and Medicaid Services Medicare Provider Analysis and Review (MEDPAR) file, Part A and the Master Beneficiary Summary File (MBSF). International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) codes: 430-434, 436-438; principle (i.e., first-listed) diagnosis. Medicare fee-for-service beneficiaries 65 and older were included. Visit the Atlas of Heart Disease and Stroke Statistical Methods pages for more detailed Medicare data inclusion criteria.Data DictionaryData for counties with small populations are not displayed when a reliable rate could not be generated. These counties are represented in the data with values of '-1.' CDC/DHDSP excludes these values when classifying the data on a map, indicating those counties as 'Insufficient Data.' Data field names and descriptionsstcty_fips: state FIPS code + county FIPS codeOther fields use the following format: RRR_S_aaaa (e.g., BLK_M_65UP) RRR: 3 digits represent race/ethnicity All - Overall BLK - Black, non-Hispanic HIS - Hispanic WHT - White, non-Hispanic S: 1 digit represents sex/gender A - All F - Female M - Male������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������aaaa: 4 digits represent age. The first 2 digits are the lower bound for age and the last 2 digits are the upper bound for age. 'UP' indicates the data includes the maximum age available and 'LT' indicates ages less than the upper bound. Example: The column 'BLK_M_65UP' displays rates per 1,000 black Medicare beneficiaries aged 65 years and older.MethodologyRates are calculated using a 3-year average and are age-standardized in 10-year age groups using the 2000 U.S. Standard Population. Rates are calculated and displayed per 1,000 Medicare beneficiaries. Rates were spatially smoothed using a Local Empirical Bayes algorithm to stabilize risk by borrowing information from neighboring geographic areas, making estimates more statistically robust and stable for counties with small populations. Data for counties with small populations are coded as '-1' when a reliable rate could not be generated. County-level rates were generated when the following criteria were met over a 3-year time period within each of the filters (e.g., age, race, and gender).At least one of the following 3 criteria: At least 20 events occurred within the county and its adjacent neighbors.ORAt least 16 events occurred within the county.ORAt least 5,000 population years within the county.AND all 3 of the following criteria:At least 6 population years for each age group used for age adjustment if that age group had 1 or more event.The number of population years in an age group was greater than the number of events.At least 100 population years within the county.More Questions?Interactive Atlas of Heart Disease and StrokeData SourcesStatistical Methods

  15. Socioeconomic Status (NSES Index) by Census Tract, 2011-2015

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Jul 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2017). Socioeconomic Status (NSES Index) by Census Tract, 2011-2015 [Dataset]. https://hub.arcgis.com/datasets/2a98d90305364e71866443af2c9b5d06
    Explore at:
    Dataset updated
    Jul 21, 2017
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    A more recent web map on this same topic is available for ArcGIS Online subscribers here.This map shows the socioeconomic status of each census tract. Data come from the US Census Bureau's 2011-2015 American Community Survey. Neighborhood Socioeconomic Status, over and above individual socioeconomic status, is a predictor of many health outcomes. The Neighborhood Socioeconomic Status (NSES) Index is on a scale from 0 to 100 with 50 being the national average around 2010. The Index incorporates the following indicators (fields in this layer's attribute table):Median Household Income (from Table B19013)Percent of individuals with income below the Federal Poverty Line (from Table S1701)The educational attainment of adults (age 25+) (from Table B15003)Unemployment Rate (from Table S2301)Percent of households with children under the age of 18 that are "female-headed" (no male present) (from Table B11005)NSES = log(median household income) + (-1.129 * (log(percent of female-headed households))) + (-1.104 * (log(unemployment rate))) + (-1.974 * (log(percent below poverty))) + .451*((high school grads)+(2*(bachelor's degree holders)))To learn more about how the NSES Index was developed, please explore this journal articleMiles, Jeremy and Weden, Margaret; Lavery, Diana; Escarce, José; Kathleen Cagney; Shih, Regina. 2016. “Constructing a Time-Invariant Measure of the Socio-Economic Status of U.S. Census Tracts.” Journal of Urban Health, vol. 93, issue no.1, pp. 213-232. or this PPT presentation presented at the University of Texas at San Antonio's Applied Demography Conference in 2014.

  16. Maryland LiDAR Prince Georges County 2015 - Aspect

    • hub.arcgis.com
    • data.imap.maryland.gov
    • +1more
    Updated Jan 1, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2014). Maryland LiDAR Prince Georges County 2015 - Aspect [Dataset]. https://hub.arcgis.com/datasets/4c9eadec1f364b2d9edf26c9fd97f6d3
    Explore at:
    Dataset updated
    Jan 1, 2014
    Dataset provided by
    Authors
    ArcGIS Online for Maryland
    Area covered
    Description

    Geographic Extent: SANDY_Restoration_VA_MD_DC_QL2 Area of Interest covers approximately 2,002 square miles. Lot #5 contains the full project area Dataset Description: The SANDY_Restoration_VA_MD_DC_QL2 project called for the Planning, Acquisition, processing and derivative products of LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1. The data was developed based on a horizontal projection/datum of UTM Zone 18 North, NAD83, meters and vertical datum of NAVD1988 (GEOID12A), meters. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.2 Files formatted to 2283 individual 1500m x 1500m tiles, and corresponding Intensity Images and Bare Earth DEMs tiled to the same 1500m x 1500m schema, and Breaklines in ESRI Shapefile format. The data was then converted to a horizontal projection/datum of NAD83 Maryland State Plane Coordinate System, Feet. LiDAR was delivered in Classified LAS 1.2 Files formatted to 1927 individual 4000' x 6000' tiles, and corresponding Intensity Images and Bare Earth DEMs tiled to the same 4000' x 6000' schema, and Breaklines in ESRI Shapefile format. Ground Conditions: LiDAR was collected in Winter 2014, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 59 QA control points and 95 Land Cover control points that were used to calibrate the LiDAR to known ground locations established throughout the SANDY_Restoration_VA_MD_DC_QL2 project area.This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://lidar.geodata.md.gov/imap/rest/services/PrinceGeorges/MD_princegeorges_2015_aspect_m/ImageServer

  17. H

    GIS in Water Resources Term Project 2015

    • beta.hydroshare.org
    • hydroshare.org
    • +1more
    zip
    Updated Dec 5, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Meier (2015). GIS in Water Resources Term Project 2015 [Dataset]. https://beta.hydroshare.org/resource/a6e2807f0e354798a4d7b16d296d58ea/
    Explore at:
    zip(5.3 MB)Available download formats
    Dataset updated
    Dec 5, 2015
    Dataset provided by
    HydroShare
    Authors
    Matthew Meier
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Bear Lake provides a unique location to use bathymetric data to analyze the relationship between changing water surface elevations and the accessible spawning habitat for fish species. The spawning habitat for the prey species of Bear Lake consists of cobble which is present in the littoral zone of the lake. The littoral zone is classified as the area of the water column that has light penetration, sufficient for macrophytes to photosynthesis, to reach the sediment floor of the lake. The analysis was performed using ESRI’s ArcMap and Python coding to calculate, automate, and illustrate this relationship; and to provide a possible methodology for water and wildlife management to apply to their unique situations to make informed decisions in the future. This method is advantageous when analyzing present or future conditions because of its versatility to create hypothetical scenarios.

  18. Global Land Cover 1992-2020

    • cacgeoportal.com
    • climate.esri.ca
    • +3more
    Updated Apr 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Global Land Cover 1992-2020 [Dataset]. https://www.cacgeoportal.com/datasets/1453082255024699af55c960bc3dc1fe
    Explore at:
    Dataset updated
    Apr 2, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meter Source Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary Sphere Extent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer? This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro. In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend. To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth. Different Classifications Available to Map Five processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display. Using Time By default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year. In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change. Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009. This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover. Land Cover Processing To provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015. Source data The datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.php CitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%) 50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  19. US Fire Perimeters 2015

    • undrr-jumpstart-esriaiddev.hub.arcgis.com
    • prep-response-portal.napsgfoundation.org
    • +1more
    Updated Nov 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Aid & Development Team (2020). US Fire Perimeters 2015 [Dataset]. https://undrr-jumpstart-esriaiddev.hub.arcgis.com/datasets/us-fire-perimeters-2015
    Explore at:
    Dataset updated
    Nov 18, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Aid & Development Team
    Area covered
    Description

    US_Fire_Perimeters_2015

  20. A

    Core areas for intact habitat

    • data.amerigeoss.org
    • sdgs.amerigeoss.org
    esri rest, html
    Updated May 24, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2017). Core areas for intact habitat [Dataset]. https://data.amerigeoss.org/dataset/core-areas-for-intact-habitat
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    May 24, 2017
    Dataset provided by
    AmeriGEO ArcGIS
    Description

    This map serves as the baseline for the green infrastructure apps that visualize areas that are relatively undisturbed by development or agriculture.

    The habitat cores shown were derived using a model built by the Green Infrastructure Center Inc. and adapted by Esri.

    The Intact Habitat Near Me app uses this web map as its basis.


    This web map provides an easily accessible data base of intact core habitat areas across the continental United States, appropriate in scale to support Green Infrastructure Planning at local, regional and national scales, using the best available national data. The results are intended to be supplemented or replaced with more current or higher resolution data when available, while still supporting Green Infrastructure planning initiatives at the regional level.

    Using a methodology outlined by the Green Infrastructure Center, Inc. Esri staff created a national intact habitat cores database for the lower 48 United States.

    The methodology identified, using nationally available datasets, intact or minimally disturbed areas at least 100 acres in size and with a minimum width of 200 meters.

    The identification of intact areas relied upon the 2011 National Land Cover Database. Potential cores areas were selected from land cover categories not containing the word “developed” or those categories associated with agriculture uses (crop, hay and pasture lands). The resulting areas were tested for size and width requirements, and then converted into unique polygons.

    These polygons were then overlaid with a diverse assortment of physiographic, biologic and hydrographic layers to use in computing a “core quality index”.

    These layers included:

    Number of endemic species (Mammals, Fish, Reptiles, Amphibians, Trees) (Jenkins, Clinton N., et. al, (April 21, 2015) US protected lands mismatch biodiversity priorities, PNAS vol.112, no. 16, www.pnas.org/cgi/doi/10.1073/pnas.1418034112)

    Priority Index areas: Endemic species, small home range size and low protection status. (Jenkins, Clinton N., et. al, (April 21, 2015) US protected lands mismatch biodiversity priorities, PNAS vol.112, no. 16, www.pnas.org/cgi/doi/10.1073/pnas.1418034112)

    Unique ecological systems (based upon work by Aycrig, Jocelyn L, et. al. (2013) Representation of Ecological Systems within the Protected Areas Network of the Continental United States. PLos One 8(1):e54689). New data constructed by Esri staff, using TNC Ecological Regions as summary areas.

    Ecologically relevant landforms (Theobald DM, Harrison-Atlas D, Monahan WB, Albano CM (2015) Ecologically-Relevant Maps of Landforms and Physiographic Diversity for Climate Adaptation Planning. PLoS ONE 10(12): e0143619. doi:10.1371/journal.pone.0143619 ,http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143619

    Local Landforms (produced 3/2016) by Deniz Basaran and Charlie Frye, Esri, 30 m* resolution.

    "Improved Hammond’s Landform Classification and Method for Global 250-m Elevation Data" by Karagulle, Deniz; Frye, Charlie; Sayre, Roger; Breyer, Sean; Aniello, Peter; Vaughan, Randy; Wright, Dawn, has been successfully submitted online and is presently being given consideration for publication in Transactions in GIS.

    *we scaled the neighborhood windows from the 250-meter method described in the paper, and then applied that to 30-meter data in the U.S.

    National Elevation Dataset, USGS, 30 m resolution, http://viewer.nationalmap.gov/launch/

    NWI National Wetlands Inventory “ Classification of Wetlands and Deepwater Habitats of the United States”. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC. FWS/OBS-79/31 , U.S. Fish and Wildlife Service, Division of Habitat and Resouce Conservation (prepared 10/2015)

    NLCD 2011 National LandCover Database 2011http://www.mrlc.gov/nlcd2011.php (downloaded 1/2016) Homer, C.G., et. al. 2015,Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing, v. 81, no. 5, p. 345-354

    NHDPlusV2 https://www.epa.gov/waterdata/nhdplus-national-hydrography-dataset-plus

    Received from Charlie Frye, ESRI 3/2016. Produced by the EPA with support from the USGS.

    gSSURGO –Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed 3/2016, 30 m resolution

    GAP Level 3 Ecological System Boundaries (downloaded 4/ 2016)

    http://gapanalysis.usgs.gov/gaplandcover/data/download/

    NOAA CCAP Coastal Change Analysis Program Regional Land Cover and Change

    downloaded by state (3/2016) from: https://coast.noaa.gov/ccapftp/#/

    Description: https://coast.noaa.gov/dataregistry/search/collection/info/ccapregional

    30 m resolution, 2010 edition of data

    NHD USGS National Hydrography Dataset http://nhd.usgs.gov/data.html

    TNC Terrestrial Ecoregionshttp://maps.tnc.org/gis_data.html#TNClands (downloaded 3/2016)

    2015 LCC Network Areashttps://www.sciencebase.gov/catalog/item/55b943ade4b09a3b01b65d78

    Evaluation:

    The creation of a national core quality index is a very ambitious objective, given the extreme variability in ecosystem conditions across the United States. The additional attributes were intended to provide flexibility in accommodating regional or local environmental differences across the U.S.

    Scripts for constructing local cores and scoring them using the Green Infrastructure Center’s methodology are available on esri.com/greeninfrastructure

    Two general approaches were used in the developing core quality index values. The first (default) follows the guidance of the Green Infrastructure Center’s scoring approach developed for the southeastern US where size of the core is the primary determinant of quality. The second; Bio-Weights puts more emphasis on bio-diversity and uniqueness ecosystem type and de-emphasizes slightly the importance of core size. This is to compensate for the very large intact core habitat areas in the west and southwest which also have comparatively low biodiversity values.

    Scoring values:

    Default Weights

    0.4, # Acres0.1, # THICKNESS0.05, # TOPOGRAPHIC DIVERSITY (Standard Deviation)0.1, # Biodiversity Priority Index (SPECIES RICHNESS in GIC original version)0.05, # PERCENTAGE WETLAND COVER0.03, # Ecological Land Unit – Shannon-Weaver Index (SOIL VARIETY in GIC original version)0.02, # COMPACTNESS RATIO (AREA RELATIVE TO THE AREA OF A CIRCLE WITH THE SAME PERIMETER LENGTH)0.1, # STREAM DENSITY (LINEAR FEET/ACRE)0.05, # Ecological System Redundancy (RARE/THREATENED/ENDANGERED SPECIES ABUNDANCE (Number of occurrences) in GIC original version) 0.1, # Endemic Species Max (RARE/THREATENED/ENDANGERED SPECIES DIVERSITY (Number of unique species in a core) in GIC original version)

    Bio-Weights

    0.2, # Acres0.1, # THICKNESS0.05, # TOPOGRAPHIC DIVERSITY (Standard Deviation)0.25, # Biodiversity Priority Index (SPECIES RICHNESS in GIC original version)0.05, # PERCENTAGE WETLAND COVER0.03, # Ecological Land Unit – Shannon-Weaver Index (SOIL VARIETY in GIC original version)0.02, # COMPACTNESS RATIO (AREA RELATIVE TO THE AREA OF A CIRCLE WITH THE SAME

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri GIS Education (2015). 07 - Native American lands 1819-2015 - Esri GeoInquiries™ collection for US History [Dataset]. https://hub.arcgis.com/documents/93a0b504e1414b69a69b9db7178b7329
Organization logo

07 - Native American lands 1819-2015 - Esri GeoInquiries™ collection for US History

Explore at:
Dataset updated
Nov 14, 2015
Dataset provided by
Esrihttp://esri.com/
Authors
Esri GIS Education
Description

Explore the spatial patterns of Native American lands in 1819 and the decrease in size of those lands through the current Native American reservations. The activity uses a web-based map and is tied to the C3 Framework.

Learning outcomes:

Students will be able to measure Native American land areas to evaluate Native American land area change over time.

Students will be able to compute the percentage of Native American lands that shifted from their original position to their final location.

Find more US History GeoInquiries here or explore all GeoInquiries at https://www.esri.com/geoinquiries

Search
Clear search
Close search
Google apps
Main menu