The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the continental U.S. This "leaf-on" imagery andtypically ranges from 30 centimeters to 100 centimeters in resolution and is available from the naip-analytic Amazon S3 bucket as 4-band (RGB + NIR) imagery in MRF format, on naip-source Amazon S3 bucket as 4-band (RGB + NIR) in uncompressed Raw GeoTiff format and naip-visualization as 3-band (RGB) Cloud Optimized GeoTiff format. More details on NAIP
This 3D basemap presents OpenStreetMap (OSM) data and other data sources and is hosted by Esri using the OpenStreetMap style.Esri created the Places and Labels, Trees, and OpenStreetMap layers from the Daylight map distribution of OSM data, which is supported by Facebook and supplemented with additional data from Microsoft. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new scene available to the OSM, GIS, and Developer communities.The Buildings layer (beta) presents open buildings data that has been processed and hosted by Esri. Esri created this buildings scene layer using data from the Overture Maps Foundation (OMF) which is supported by Meta, Microsoft, Amazon, TomTom, Esri and other members. Overture includes data from many sources, including OpenStreetMap (OSM). The 3D buildings layer will be updated each month with the latest version of Overture data, which includes the latest updates from OSM, Esri Community Maps, and other sources.Overture Maps is a collaborative project to create reliable, easy-to-use, and interoperable open map data. Member companies work to bring together the best available open datasets, and the resulting data can be downloaded from Microsoft Azure or Amazon S3. Esri is a member of the OMF project and is excited to make this 3D web scene available to the ArcGIS user community.
Sentinel-2 Level-1C imagery with on-the-fly renderings for visualization. This imagery layer pulls directly from theSentinel-2 on AWScollection and is updated daily with new imagery.Sentinel-2 imagery can be applied across a number of industries, scientific disciplines, and management practices. Some applications include, but are not limited to, land cover and environmental monitoring, climate change, deforestation, disaster and emergency management, national security, plant health and precision agriculture, forest monitoring, watershed analysis and runoff predictions, land-use planning, tracking urban expansion, highlighting burned areas and estimating fire severity. Geographic Coverage GlobalContinental land masses from65.4° South to 72.1° North, with these special guidelines:All coastal waters up to 20 km from the shoreAll islands greater than 100 km2All EU islandsAll closed seas (e.g. Caspian Sea)The Mediterranean Sea Temporal Coverage This layer includes a rolling collection of Sentinel-2 imagery acquired within the past 14 months. This layer is updated daily with new imagery. The revisit time for each point on Earth is every 5 days. The number of images available will vary depending on location. Product Level This service provides Level-1C Top of Atmosphere imagery.Alternatively,Sentinel-2 Level-2A is also available. Image Selection/Filtering The most recent and cloud free images are displayed by default. Any image available within the past 14 months can be displayed via custom filtering. Filtering can be done based on attributes such as Acquisition Date, Estimated Cloud Cover, and Tile ID. Tile_ID is computed as [year][month][day]T[hours][minutes][seconds]_[UTMcode][latitudeband][square]_[sequence].More… Visual Rendering Default rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA). The DRA version of each layer enables visualization of the full dynamic range of the images. Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions. Various pre-defined Raster Functions can be selected or custom functions created. Available renderings include: Agriculture with DRA,Bathymetric with DRA,Color-Infrared with DRA,Natural Color with DRA,Short-wave Infrared with DRA,Geology with DRA,NDMI Colorized,Normalized Difference Built-Up Index (NDBI),NDWI Raw,NDWI - with VRE Raw,NDVI – with VRE Raw (NDRE),NDVI - VRE only Raw,NDVI Raw,Normalized Burn Ratio,NDVI Colormap. Multispectral Bands BandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Additional Notes Overviews exist with a spatial resolution of 150m and are updated every quarter based on the best and latest imagery available at that time.To work with source images at all scales, the ‘Lock Raster’ functionality is available. NOTE: ‘Lock Raster’ should only be used on the layer for short periods of time, as the imagery and associated record Object IDs may change daily.This ArcGIS Server dynamic imagery layer can be used in Web Maps and ArcGIS Desktop as well as Web and Mobile applications using the REST based Image services API.Images can be exported up to a maximum of 4,000 columns x 4,000 rows per request.Data SourceSentinel-2 imagery is the result of close collaboration between the (European Space Agency) ESA, the European Commission and USGS. Data is hosted by the Amazon Web Services as part of theirRegistry of Open Data. Users can access the imagery fromSentinel-2 on AWS, or alternatively accessEarthExploreror theCopernicus Data Space Ecosystemto download the scenes.For information on Sentinel-2 imagery, seeSentinel-2.
This map contains a number of world-wide dynamic image services providing access to various Landsat scenes covering the landmass of the World for visual interpretation. Landsat 8 collects new scenes for each location on Earth every 16 days, assuming limited cloud coverage. Newest and near cloud-free scenes are displayed by default on top. Most scenes collected since 1st January 2015 are included. The service also includes scenes from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).
The service contains a range of different predefined renderers for Multispectral, Panchromatic as well as Pansharpened scenes. The layers in the service can be time-enabled so that the applications can restrict the displayed scenes to a specific date range.
This ArcGIS Server dynamic service can be used in Web Maps and ArcGIS Desktop, Web and Mobile applications using the REST based image services API. Users can also export images, but the exported area is limited to maximum of 2,000 columns x 2,000 rows per request.
Data Source: The imagery in these services is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). The data for these services reside on the Landsat Public Datasets hosted on the Amazon Web Service cloud. Users can access full scenes from https://github.com/landsat-pds/landsat_ingestor/wiki/Accessing-Landsat-on-AWS, or alternatively access http://landsatlook.usgs.gov to review and download full scenes from the complete USGS archive.
For more information on Landsat 8 images, see http://landsat.usgs.gov/landsat8.php.
*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit http://landsat.usgs.gov/science_GLS.php.
For more information on each of the individual layers, see
http://www.arcgis.com/home/item.html?id=d9b466d6a9e647ce8d1dd5fe12eb434b ;
http://www.arcgis.com/home/item.html?id=6b003010cbe64d5d8fd3ce00332593bf ;
http://www.arcgis.com/home/item.html?id=a7412d0c33be4de698ad981c8ba471e6
https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy
The global 3D mapping and modeling market is expected to grow significantly in the next few years as demand increases for detailed and accurate representations of physical environments in three-dimensional space. Estimated to be valued at USD 38.62 billion in the year 2025, the market was expected to grow at a CAGR of 14.5% from 2025 to 2033 and was estimated to reach an amount of USD 90.26 billion by the end of 2033. The high growth rate is because of improvement in advanced technologies with the development of high-resolution sensors and methods of photogrammetry that make possible higher-resolution realistic and immersive 3D models.Key trends in the market are the adoption of virtual and augmented reality (VR/AR) applications, 3D mapping with smart city infrastructure, and increased architecture, engineering, and construction utilization of 3D models. Other factors are driving the growing adoption of cloud-based 3D mapping and modeling solutions. The solutions promise scalability, cost-effectiveness, and easy access to 3D data, thus appealing to business and organizations of all sizes. Recent developments include: Jun 2023: Nomoko (Switzerland), a leading provider of real-world 3D data technology, announced that it has joined the Overture Maps Foundation, a non-profit organization committed to fostering collaboration and innovation in the geospatial domain. Nomoko will collaborate with Meta, Amazon Web Services (AWS), TomTom, and Microsoft, to create interoperable, accessible 3D datasets, leveraging its real-world 3D modeling capabilities., May 2023: The Sanborn Map Company (Sanborn), an authority in 3D models, announced the development of a powerful new tool, the Digital Twin Base Map. This innovative technology sets a new standard for urban analysis, implementation of Digital Cities, navigation, and planning with a fundamental transformation from a 2D map to a 3D environment. The Digital Twin Base Map is a high-resolution 3D map providing unprecedented detail and accuracy., Feb 2023: Bluesky Geospatial launched the MetroVista, a 3D aerial mapping program in the USA. The service employs a hybrid imaging-Lidar airborne sensor to capture highly detailed 3D data, including 360-degree views of buildings and street-level features, in urban areas to create digital twins, visualizations, and simulations., Feb 2023: Esri, a leading global provider of geographic information system (GIS), location intelligence, and mapping solutions, released new ArcGIS Reality Software to capture the world in 3D. ArcGIS Reality enables site, city, and country-wide 3D mapping for digital twins. These 3D models and high-resolution maps allow organizations to analyze and interact with a digital world, accurately showing their locations and situations., Jan 2023: Strava, a subscription-based fitness platform, announced the acquisition of FATMAP, a 3D mapping platform, to integrate into its app. The acquisition adds FATMAP's mountain-focused maps to Strava's platform, combining with the data already within Strava's products, including city and suburban areas for runners and other fitness enthusiasts., Jan 2023: The 3D mapping platform FATMAP is acquired by Strava. FATMAP applies the concept of 3D visualization specifically for people who like mountain sports like skiing and hiking., Jan 2022: GeoScience Limited (the UK) announced receiving funding from Deep Digital Cornwall (DDC) to develop a new digital heat flow map. The DDC project has received grant funding from the European Regional Development Fund. This study aims to model the heat flow in the region's shallower geothermal resources to promote its utilization in low-carbon heating. GeoScience Ltd wants to create a more robust 3D model of the Cornwall subsurface temperature through additional boreholes and more sophisticated modeling techniques., Aug 2022: In order to create and explore the system's possibilities, CGTrader worked with the online retailer of dietary supplements Hello100. The system has the ability to scale up the generation of more models, and it has enhanced and improved Hello100's appearance on Amazon Marketplace.. Key drivers for this market are: The demand for 3D maps and models is growing rapidly across various industries, including architecture, engineering, and construction (AEC), manufacturing, transportation, and healthcare. Advances in hardware, software, and data acquisition techniques are making it possible to create more accurate, detailed, and realistic 3D maps and models. Digital twins, which are virtual representations of real-world assets or systems, are driving the demand for 3D mapping and modeling technologies for the creation of accurate and up-to-date digital representations.
. Potential restraints include: The acquisition and processing of 3D data can be expensive, especially for large-scale projects. There is a lack of standardization in the 3D mapping modeling industry, which can make it difficult to share and exchange data between different software and systems. There is a shortage of skilled professionals who are able to create and use 3D maps and models effectively.. Notable trends are: 3D mapping and modeling technologies are becoming essential for a wide range of applications, including urban planning, architecture, construction, environmental management, and gaming. Advancements in hardware, software, and data acquisition techniques are enabling the creation of more accurate, detailed, and realistic 3D maps and models. Digital twins, which are virtual representations of real-world assets or systems, are driving the demand for 3D mapping and modeling technologies for the creation of accurate and up-to-date digital representations..
Important Note: This item is in mature support as of February 2025 and is no longer being updated. A new version of this item is available for your use.This web application highlights some of the capabilities for accessing Sentinel-2 imagery layers, powered by ArcGIS for Server, accessing Landsat Public Datasets running on the Amazon Web Services Cloud. The layers are updated with new Sentinel-2 images on a daily basis.Created for you to visualize our planet and understand how the Earth has changed over time, the Esri Sentinel-2 Explorer app provides the power of Sentinel-2 satellites, which gather data beyond what the eye can see. Use this app to draw on Sentinel's different bands to better explore the planet's geology, vegetation, agriculture, and cities. Additionally, access the Sentinel-2 archive to visualize how the Earth's surface has changed over the last fourteen monthsQuick access to the following band combinations and indices is provided:BandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Agriculture : Highlights vigorous vegetation in bright green, stressed vegetation dull green and bare areas brown; Bands 11, 8, 2Natural Color : Bands 4, 3, 2Color Infrared : Healthy vegetation is bright red while stressed vegetation is dull red; Bands 8, 4 ,3 SWIR (Short-wave Infrared) : Highlights rock formations; Bands 12, 11, 4Geology : Highlights geologic features; Bands 12, 11, 2Bathymetric : Highlights underwater features; Bands 4, 3, 1Vegetation Index : Normalized Difference Vegetation Index(NDVI) with Colormap ; (Band 8 - Band 4)/(Band 8 + Band 4)Moisture Index : Normalized Difference Moisture Index (NDMI); (Band 8 - Band 11)/(Band 8 + Band 11)Normalized Burn Ratio : (Band 8 - Band 12)/(Band 8 + Band 12)Built-Up Index : (Band 11 - Band 8)/(Band 11 + Band 8)NDVI Raw : Normalized Difference Vegetation Index(NDVI); (Band 8 - Band 4)/(Band 8 + Band 4)NDVI - VRE only Raw : NDVI with VRE bands only; (Band 6 - Band 5)/(Band 6 + Band 5)NDVI - VRE only Colorized : NDVI with VRE bands only with Colormap; (Band 6 - Band 5)/(Band 6 + Band 5)NDVI - with VRE Raw : Also known as NDRE. NDVI with VRE band 5 and NIR band 8; (Band 8 - Band 5)/(Band 8 + Band 5)NDVI - with VRE Colorized : Also known as NDRE with Colormap; (Band 8 - Band 5)/(Band 8 + Band 5)NDWI Raw : Normalized Difference Water index with Green band and NIR band; (Band 3 - Band 8)/(Band 3 + Band 8)NDWI - with VRE Raw : Normalized Difference Water index with VRE band 5 and Green band 3; (Band 3 - Band 5)/(Band 3 + Band 5)NDWI - with VRE Colorized : NDWI index with VRE band 5 and Green band 3 with Colormap; (Band 3 - Band 5)/(Band 3 + Band 5)Custom SAVI : (Soil Adjusted Veg. Index); Offset + Scale*(1.5*(Band 8 - Band 4)/(Band 8 + Band 4 + 0.5))Custom Water Index : Offset + Scale*(Band 3 - Band 12)/(Band 3 + Band 12)Custom Burn Index : Offset + Scale*(Band 8 - Band 13)/(Band 8 + Band 13)Urban Index : Offset + Scale*(Band 8 - Band 12)/(Band 8 + Band 12)Optionally, you can also choose the "Custom Bands" or "Custom Index" option to create your own band combinationsThe Time tool enables access to a temporal time slider and a temporal profile of different indices for a selected point. The Time tool is only accessible at larger zoom scales. It provides temporal profiles for indices like NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index) and Urban Index. The Identify tool enables access to information on the images, and can also provide a spectral profile for a selected point. The Bookmark tool will direct you to pre-selected interesting locations.NOTE: Using the Time tool to access imagery in the Sentinel-2 archive requires an ArcGIS account.The application is written using Web AppBuilder for ArcGIS accessing imagery layers using ArcGIS API for JavaScript.The following Imagery Layer are being accessed : Sentinel-2 - Provides access to 10, 20, and 60m 13-band multispectral imagery and a range of functions that provide different band combinations and indices.
This layer includes Landsat GLS, Landsat 8, and Landsat 9 imagery for use in visualization and analysis. This layer is time enabled and includes a number band combinations and indices rendered on demand. The Landsat 8 and 9 imagery includes nine multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Together, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.This layer also includes imagery from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Layer Filter’ to restrict the default layer display to a specified image or group of images.To isolate a specific mission, use the Layer Filter and the dataset_id or SensorName fields.Visual RenderingThe default rendering in this layer is Agriculture (bands 6,5,2) with Dynamic Range Adjustment (DRA). Brighter green indicates more vigorous vegetation.The DRA version of each layer enables visualization of the full dynamic range of the images.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions can be created.Pre-defined functions: Natural Color with DRA, Agriculture with DRA, Geology with DRA, Color Infrared with DRA, Bathymetric with DRA, Short-wave Infrared with DRA, Normalized Difference Moisture Index Colorized, NDVI Raw, NDVI Colorized, NBR Raw15 meter Landsat Imagery Layers are also available: Panchromatic and Pansharpened.Multispectral Bands BandDescriptionWavelength (µm)Spatial Resolution (m)1Coastal aerosol0.43 - 0.45302Blue0.45 - 0.51303Green0.53 - 0.59304Red0.64 - 0.67305Near Infrared (NIR)0.85 - 0.88306SWIR 11.57 - 1.65307SWIR 22.11 - 2.29308Cirrus (in OLI this is band 9)1.36 - 1.38309QA Band (available with Collection 1)*NA30 *More about the Quality Assessment BandTIRS BandsBandDescriptionWavelength (µm)Spatial Resolution (m)10TIRS110.60 - 11.19100 * (30)11TIRS211.50 - 12.51100 * (30)*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted in Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit GLS.
Important Note: This item is in mature support as of February 2024 and is no longer being updated. A new version of this item is available for your use.This web application highlights some of the capabilities for accessing Landsat imagery layers, powered by ArcGIS for Server, accessing Landsat Public Datasets running on the Amazon Web Services Cloud. The layers are updated with new Landsat images on a daily basis.Created for you to visualize our planet and understand how the Earth has changed over time, the Esri Landsat Explorer app provides the power of Landsat satellites, which gather data beyond what the eye can see. Use this app to draw on Landsat's different bands to better explore the planet's geology, vegetation, agriculture, and cities. Additionally, access the entire Landsat archive to visualize how the Earth's surface has changed over the last forty years.Quick access to the following band combinations and indices is provided:Agriculture : Highlights agriculture in bright green; Bands 6, 5, 2Natural Color : Sharpened with 15m panchromatic band; Bands 4, 3, 2 +8Color Infrared : Healthy vegetation is bright red; Bands 5, 4 ,3 SWIR (Short Wave Infrared) : Highlights rock formations; Bands 7, 6, 4Geology : Highlights geologic features; Bands 7, 6, 2Bathymetric : Highlights underwater features; Bands 4, 3, 1Panchromatic : Panchromatic images at 15m; Band 8Vegetation Index : Normalized Difference Vegetation Index(NDVI); (Band 5 - Band 4)/(Band 5 + Band 4)Moisture Index : Normalized Difference Moisture Index (NDMI); (Band 5 - Band 6)/(Band 5 + Band 6)SAVI : Soil Adjusted Veg. Index); Offset + Scale*(1.5*(Band 5 - Band 4)/(Band 5 + Band 4 + 0.5))Water Index : Offset + Scale*(Band 3 - Band 6)/(Band 3 + Band 6)Burn Index : Offset + Scale*(Band 5 - Band 7)/(Band 5 + Band 7)Urban Index : Offset + Scale*(Band 5 - Band 6)/(Band 5 + Band 6)Optionally, you can also choose the "Custom Bands" or "Custom Index" option to create your own band combinationsThe Time tool enables access to a temporal time slider and a temporal profile of different indices for a selected point. The Time tool is only accessible at larger zoom scales. It provides temporal profiles for NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index) and Urban Index. The Identify tool enables access to information on the images, and can also provide a spectral profile for a selected point. The Stories tool will direct you to pre-selected interesting locations.The application is written using Web AppBuilder for ArcGIS accessing imagery layers using ArcGIS API for JavaScript.The following Imagery Layers are being accessed : Multispectral Landsat - Provides access to 30m 8-band multispectral imagery and a range of functions that provide different band combinations and indices.Pansharpened Landsat - Provides access to 15m 4-band (Red, Green, Blue and NIR) panchromatic-sharpened imagery.Panchromatic Landsat - Provides access to 15m panchromatic imagery. These imagery layers can be accessed through the public group Landsat Community on ArcGIS Online.
Sentinel-2, 10m Multispectral 13-band imagery, rendered on-the-fly. Available for visualization and analytics, this Imagery Layer pulls directly from the Sentinel-2 on AWS collection and is updated daily with new imagery.This imagery layer can be used for multiple purposes including but not limited to vegetation, land cover, plant health, deforestation and environmental monitoring.Geographic CoverageGlobalContinental land masses from 65.4° South to 72.1° North, with these special guidelines:All coastal waters up to 20 km from the shoreAll islands greater than 100 km2All EU islandsAll closed seas (e.g. Caspian Sea)The Mediterranean SeaNote: Areas of interest going beyond the Mission baseline (as laid out in the Mission Requirements Document) will be assessed, and may be added to the baseline if sufficient resources are identified.Temporal CoverageThe revisit time for each point on Earth is every 5 days.This layer is updated daily with new imagery.This imagery layer is designed to include imagery collected within the past 14 months. Custom Image Services can be created for access to images older than 14 months.The number of images available will vary depending on location.Image Selection/FilteringThe most recent and cloud free image, for any location, is displayed by default.Any image available, within the past 14 months, can be displayed via custom filtering.Filtering can be done based on Acquisition Date, Estimated Cloud Cover, and Tile ID.Tile_ID is computed as [year][month][day]T[hours][minutes][seconds]_[UTMcode][latitudeband][square]_[sequence]. More…NOTE: Not using filters, and loading the entire archive, may affect performance.Analysis ReadyThis imagery layer is analysis ready with TOA correction applied.Visual RenderingDefault rendering is NDVI Colormap (Normalized Difference vegetation index with colormap) computed as NIR(Band8)-Red(Band4)/NIR(Band8)+Red(Band4) . The raw version of this layer is NDVI-Raw.Green represents vigorous vegetation and brown represents sparse vegetation.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions created.Available renderings include: Agriculture with DRA, Bathymetric with DRA, Color-Infrared with DRA, Natural Color with DRA, Short-wave Infrared with DRA, Geology with DRA, NDMI Colorized, Normalized Difference Built-Up Index (NDBI), NDWI Raw, NDWI - with VRE Raw, NDVI – with VRE Raw (NDRE), NDVI - VRE only Raw, NDVI Raw, Normalized Burn RatioMultispectral BandsBandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Additional NotesOverviews exist with a spatial resolution of 150m and are updated every quarter based on the best and latest imagery available at that time.To work with source images at all scales, the ‘Lock Raster’ functionality is available.NOTE: ‘Lock Raster’ should only be used on the layer for short periods of time, as the imagery and associated record Object IDs may change daily.This ArcGIS Server dynamic imagery layer can be used in Web Maps and ArcGIS Desktop as well as Web and Mobile applications using the REST based Image services API.Images can be exported up to a maximum of 4,000 columns x 4,000 rows per request.Data SourceSentinel-2 imagery is the result of close collaboration between the (European Space Agency) ESA, the European Commission and USGS. Data is hosted by the Amazon Web Services as part of their Registry of Open Data. Users can access the imagery from Sentinel-2 on AWS , or alternatively access Sentinel2Look Viewer, EarthExplorer or the Copernicus Open Access Hub to download the scenes.For information on Sentinel-2 imagery, see Sentinel-2.
The LidarExplorer was originally created to enable identification of lidar projects having 3D visualization enabled (via Entwine) and having Amazon AWS cloud access. Now that all of the USGS Lidar products are available in the Cloud and 3D visualization is being enabled for all projects, these original requirements have been satisfied.Moving forward this application will bring together the necessary information for discovering and understanding the underlying 3DEP elevation data and provide avenues for efficiently processing the data within the cloud to avoid the need to download and process data locally. Users will be able to define their area of interest, select and filter products based on needs, create processing pipelines for transforming the data into derived products or results and execute the processing using within-cloud processing capabilities.
This dynamic imagery layer features Landsat 8 and Landsat GLS imagery for use in visualization and analysis. This layer is time enabled and includes a number of band combinations and indices rendered on demand. The imagery includes eight multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.To view this imagery layer, you'll want to add it to a map that is using the Polar projection of WGS_1984_EPSG_Alaska_Polar_Stereographic, for example the Arctic Ocean Basemap or the Arctic Imagery basemap. Other polar projections may be used within their useful limits. There is no imagery above 82°30’N due to the orbit of the satellite.Geographic CoverageArctic RegionTemporal CoverageThis layer is updated daily with new imagery.Landsat 8 revisits each point on Earth's land surface every 16 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.This layer also includes imagery from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).Product LevelThe Landsat 8 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created. Available functions on this layer include:Agriculture with DRA – Bands shortwave IR-1, near-IR, blue (6, 5, 2) with dynamic range adjustment applied on apparent reflectance. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.NDSI Colorized – Normalized difference Snow index (NDSI) with color map, computed as (b3-b6)/(b3+b6) on apparent reflectance. Dark blue represents dense snow, yellow and green areas represent clouds.Bathymetric with DRA – Bands red, green, coastal/aerosol (4, 3, 1) with dynamic range adjustment. Useful in bathymetric mapping applications.Color Infrared with DRA – Bands near-IR, red, green (5, 4, 3) with dynamic range adjustment. Healthy vegetation is bright red while stressed vegetation is dull red.Geology with DRA – Bands shortwave IR-1, near-IR, blue (7, 6, 2) with dynamic range adjustment. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.Natural Color with DRA – Natural Color bands red, green, blue (4, 3, 2) displayed with dynamic range adjustmentShort-wave Infrared with DRA – Bands shortwave IR-2, shortwave IR-1, red (7, 6, 4) with dynamic range adjustmentAgriculture – Bands shortwave IR-1, near-IR, blue (6, 5, 2) with fixed stretch applied on apparent reflectance. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.Bathymetry – Bands red, green, coastal/aerosol (4, 3, 1) with fixed stretch applied on apparent reflectance. Useful in bathymetric mapping applications.Color Infrared – Bands near-IR, red, green (5, 4, 3) with a fixed stretch. Healthy vegetation is bright red while stressed vegetation is dull red.Geology – Bands shortwave IR-1, near-IR, blue (7, 6, 2) with a fixed stretch. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.Natural Color – Natural Color bands red, green, blue (4, 3, 2) displayed with a fixed stretch.Short-wave Infrared – Bands shortwave IR-2, shortwave IR-1, red (7, 5, 4) with a fixed stretchNormalized Difference Moisture Index Colorized – Normalized Difference Moisture Index with color map, computed as (b5 - b6)/(b5 + b6). Wetlands and moist areas are blues, and dry areas in deep yellow and brownNDSI Raw – Normalized difference Snow index (NDSI) computed as (b3 - b6) / (b3 + b6)NDVI Raw – Normalized difference vegetation index (NDVI) computed as (b5 - b4) / (b5 + b4)NBR Raw – Normalized Burn Ratio (NBR) computed as (b5 - b7) / (b5 + b7)Multispectral BandsThe table below lists all available multispectral OLI bands. Natural Color with DRA consumes bands 4,3,2
Band
Description
Wavelength (µm)
Spatial Resolution (m)
1
Coastal aerosol
0.43 - 0.45
30
2
Blue
0.45 - 0.51
30
3
Green
0.53 - 0.59
30
4
Red
0.64 - 0.67
30
5
Near Infrared (NIR)
0.85 - 0.88
30
6
SWIR 1
1.57 - 1.65
30
7
SWIR 2
2.11 - 2.29
30
8
Cirrus (in OLI this is band 9)
1.36 - 1.38
30
9
QA Band (available with Collection 1)*
NA
30
*More about the Quality Assessment Band The layer also provides access to TIRS bands as follows: BandDescriptionWavelength (µm)Spatial Resolution (m)10TIRS110.60 - 11.19100 * (30)11TIRS211.50 - 12.51100 * (30)*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Unlocking Landsat in the Arctic is another way to access and explore the imagery.This layer is part of a larger collection of Landsat Imagery Layers.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program.For information on Landsat 8 images, see Landsat8.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit GLS.
This map contains a number of world-wide dynamic image services providing access to various Landsat scenes covering the landmass of the World for visual interpretation. Landsat 8 collects new scenes for each location on Earth every 16 days, assuming limited cloud coverage. Newest and near cloud-free scenes are displayed by default on top. Most scenes collected since 1st January 2015 are included. The service also includes scenes from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).The service contains a range of different predefined renderers for Multispectral, Panchromatic as well as Pansharpened scenes. The layers in the service can be time-enabled so that the applications can restrict the displayed scenes to a specific date range. This ArcGIS Server dynamic service can be used in Web Maps and ArcGIS Desktop, Web and Mobile applications using the REST based image services API. Users can also export images, but the exported area is limited to maximum of 2,000 columns x 2,000 rows per request.Data Source: The imagery in these services is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). The data for these services reside on the Landsat Public Datasets hosted on the Amazon Web Service cloud. Users can access full scenes from https://github.com/landsat-pds/landsat_ingestor/wiki/Accessing-Landsat-on-AWS, or alternatively access http://landsatlook.usgs.gov to review and download full scenes from the complete USGS archive.For more information on Landsat 8 images, see http://landsat.usgs.gov/landsat8.php.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit http://landsat.usgs.gov/science_GLS.php.For more information on each of the individual layers, see http://www.arcgis.com/home/item.html?id=d9b466d6a9e647ce8d1dd5fe12eb434b ; http://www.arcgis.com/home/item.html?id=6b003010cbe64d5d8fd3ce00332593bf ; http://www.arcgis.com/home/item.html?id=a7412d0c33be4de698ad981c8ba471e6
This layer includes Landsat 8 and 9 imagery for use in visualization and analysis. This layer is time enabled and includes a number of pansharpened renderings on demand. The layer includes 15m imagery rendered on-the-fly as Natural Color with DRA. It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is PanSharpened Natural Color images.Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted in Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.
This layer includes Landsat 8 and 9 imagery for use in visualization and analysis. This layer is time enabled and includes the panchromatic band from the Operational Land Imager (OLI). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land SurfacePolar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is Panchromatic (0.5-0.68 µm).Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted in Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.
This web application highlights some of the capabilities for accessing Landsat imagery layers, powered by ArcGIS for Server, accessing Landsat Public Datasets running on the Amazon Web Services Cloud. The layers are updated with new Landsat images on a daily basis.
Created for you to visualize our planet and understand how the Earth has changed over time, the Esri Landsat Explorer app provides the power of Landsat satellites, which gather data beyond what the eye can see. Use this app to draw on Landsat's different bands to better explore the planet's geology, vegetation, agriculture, and cities. Additionally, access the entire Landsat archive to visualize how the Earth's surface has changed over the last forty years.
Quick access to the following band combinations and indices is provided:
This map contains a number of world-wide dynamic imagery layers providing access to various Landsat imagery covering the landmass of the World for visual interpretation. Landsat 8 collects new imagery for each location on Earth every 16 days, assuming limited cloud coverage. Newest and near cloud-free images are displayed by default on top. Most imagery collected since 1st January 2015 are included. The imagery layers also include images from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).The imagery layers contain a range of different predefined renderers and indices. The layers in the service can be time-enabled so that the applications can restrict the displayed scenes to a specific date range. For information on each of the individual layers:Multispectral LandsatPanchromatic LandsatPansharpened Landsat This ArcGIS Web Map can be used in ArcGIS Desktop, Web and Mobile applications using the REST based image services API. Users can export images, but the exported area is limited to maximum of 4,000 columns x 4,000 rows per request.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program.For information on Landsat 8 images, see Landsat8.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit GLS.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Civil Air Patrol is routinely tasked by FEMA and local public safety officials with taking aerial photographs. This collection comprises about 38,000 photos taken over Florida and Georgia during September 8-20, 2017. These were originally uploaded to the web using the GeoPlatform.gov imageUploader capability, and hosted as a web map layer [1]. For this Irma collection, I exported the dataset of photo location points to a local computer, subset it to the Irma event, and created a shapefile, which is downloadable below. The photos and thumbnails were not included in this archive, but are attribute-linked to the FEMA-Civil Air Patrol image library on Amazon cloud [2].
Note: The cameras used by the Civil Air Patrol generally do not have an electronic compass with their GPS to record the viewing direction. The easiest way to determine the general angle is to look at consecutive frame counterpoints to establish the flightpath direction at nadir and adjust for the photographer's position behind the pilot looking out the window hatch on the port (left) side of the aircraft. The altitude above ground level is typically between 1000-1500 feet, so it's easy to locate features in reference orthoimages.
References [1] US federal GeoPlatform.gov Image Uploader map service (ArcGIS Server) [https://imageryuploader.geoplatform.gov/arcgis/rest/services/ImageEvents/MapServer] [2] FEMA-Civil Air Patrol image library on Amazon cloud [https://fema-cap-imagery.s3.amazonaws.com]
Sentinel-2, 10 Multispectral 13-band imagery, rendered on-the-fly. Available for visualization and analytics, this Imagery Layer pulls directly from the Sentinel-2 on AWS collection and is updated daily with new imagery.This imagery layer can be used for multiple purposes including but not limited to vegetation, deforestation, climate change, land cover and environmental monitoring.Geographic CoverageGlobalContinental land masses from 65.4° South to 72.1° North, with these special guidelines:All coastal waters up to 20 km from the shoreAll islands greater than 100 km2All EU islandsAll closed seas (e.g. Caspian Sea)The Mediterranean SeaNote: Areas of interest going beyond the Mission baseline (as laid out in the Mission Requirements Document) will be assessed, and may be added to the baseline if sufficient resources are identified.Temporal CoverageThe revisit time for each point on Earth is every 5 days.This layer is updated daily with new imagery.This imagery layer is designed to include imagery collected within the past 14 months. Custom Image Services can be created for access to images older than 14 months.The number of images available will vary depending on location.Image Selection/FilteringThe most recent and cloud free image, for any location, is displayed by default.Any image available, within the past 14 months, can be displayed via custom filtering.Filtering can be done based on Acquisition Date, Estimated Cloud Cover, and Tile ID.Tile_ID is computed as [year][month][day]T[hours][minutes][seconds]_[UTMcode][latitudeband][square]_[sequence]. More…NOTE: Not using filters, and loading the entire archive, may affect performance.Analysis ReadyThis imagery layer is analysis ready with TOA correction applied.Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).Natural Color bands red, green, blue displayed with dynamic range adjustment applied. This DRA version enables visualization of the full dynamic range of the images. The non-DRA version of this layer can be viewed by switching to the pre-defined Natural Color raster function.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions created. Available renderings include: Agriculture with DRA, Bathymetric with DRA, Color-Infrared with DRA, Short-wave Infrared with DRA, Geology with DRA, NDMI Colorized, Normalized Difference Built-Up Index (NDBI), NDWI Raw, NDWI - with VRE Raw, NDVI – with VRE Raw (NDRE), NDVI - VRE only Raw, NDVI Raw, Normalized Burn Ratio, NDVI Colormap.Multispectral BandsBandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Additional NotesOverviews exist with a spatial resolution of 150m and are updated every quarter based on the best and latest imagery available at that time.To work with source images at all scales, the ‘Lock Raster’ functionality is available.NOTE: ‘Lock Raster’ should only be used on the layer for short periods of time, as the imagery and associated record Object IDs may change daily.This ArcGIS Server dynamic imagery layer can be used in Web Maps and ArcGIS Desktop as well as Web and Mobile applications using the REST based Image services API.Images can be exported up to a maximum of 4,000 columns x 4,000 rows per request.Data SourceSentinel-2 imagery is the result of close collaboration between the (European Space Agency) ESA, the European Commission and USGS. Data is hosted by the Amazon Web Services as part of their Registry of Open Data. Users can access the imagery from Sentinel-2 on AWS , or alternatively access Sentinel2Look Viewer, EarthExplorer or the Copernicus Open Access Hub to download the scenes.For information on Sentinel-2 imagery, see Sentinel-2.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The batch compute market is experiencing robust growth, driven by the increasing need for processing large datasets in various industries. The market, estimated at $50 billion in 2025, is projected to maintain a healthy Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $150 billion by 2033. This expansion is fueled by several key factors. The rise of big data analytics and the proliferation of artificial intelligence (AI) and machine learning (ML) applications necessitate powerful, cost-effective solutions for large-scale data processing, making batch compute a critical infrastructure component. Furthermore, cloud computing's continued adoption lowers the barrier to entry for organizations of all sizes, enabling access to scalable and on-demand batch compute resources. The increasing adoption of cloud-native architectures and serverless computing further contributes to market growth. However, the market also faces challenges. Data security and privacy concerns remain a significant hurdle, requiring robust security measures to protect sensitive information processed through batch compute systems. The complexity of managing and optimizing batch workloads can also pose a challenge, demanding specialized expertise and efficient workflow management tools. Competition among major players like Amazon, Alibaba, Microsoft, Tencent, Google, Huawei, Esri, and BMC is intense, leading to price pressures and the constant need for innovation. Nevertheless, the overall outlook remains positive, with continued growth expected as more industries embrace data-driven decision-making and adopt advanced analytical techniques.
https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
BASE YEAR | 2024 |
HISTORICAL DATA | 2019 - 2024 |
REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
MARKET SIZE 2023 | 6.86(USD Billion) |
MARKET SIZE 2024 | 7.35(USD Billion) |
MARKET SIZE 2032 | 12.8(USD Billion) |
SEGMENTS COVERED | Type of Insight, Deployment Mode, End User Industry, Data Source, Regional |
COUNTRIES COVERED | North America, Europe, APAC, South America, MEA |
KEY MARKET DYNAMICS | Increased demand for data analytics, Adoption of AI and machine learning, Growing focus on sustainability, Rise in infrastructure investments, Need for predictive maintenance solutions |
MARKET FORECAST UNITS | USD Billion |
KEY COMPANIES PROFILED | Hexagon AB, Thales Group, Microsoft, IBM, Autodesk, Schneider Electric, PTC, Amazon Web Services, Oracle, Siemens, Bentley Systems, SAP, Cisco Systems, Hitachi, Esri |
MARKET FORECAST PERIOD | 2025 - 2032 |
KEY MARKET OPPORTUNITIES | Smart city development initiatives, Enhanced data analytics adoption, Cloud-based infrastructure solutions, IoT integration in infrastructure, Sustainable infrastructure investments |
COMPOUND ANNUAL GROWTH RATE (CAGR) | 7.17% (2025 - 2032) |
The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the continental U.S. This "leaf-on" imagery andtypically ranges from 30 centimeters to 100 centimeters in resolution and is available from the naip-analytic Amazon S3 bucket as 4-band (RGB + NIR) imagery in MRF format, on naip-source Amazon S3 bucket as 4-band (RGB + NIR) in uncompressed Raw GeoTiff format and naip-visualization as 3-band (RGB) Cloud Optimized GeoTiff format. More details on NAIP