100+ datasets found
  1. Esri Maps for Public Policy

    • climate-center-lincolninstitute.hub.arcgis.com
    • babbitt-center-lincolninstitute.hub.arcgis.com
    • +3more
    Updated Oct 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Esri Maps for Public Policy [Dataset]. https://climate-center-lincolninstitute.hub.arcgis.com/datasets/esri::esri-maps-for-public-policy
    Explore at:
    Dataset updated
    Oct 1, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    OVERVIEWThis site is dedicated to raising the level of spatial and data literacy used in public policy. We invite you to explore curated content, training, best practices, and datasets that can provide a baseline for your research, analysis, and policy recommendations. Learn about emerging policy questions and how GIS can be used to help come up with solutions to those questions.EXPLOREGo to your area of interest and explore hundreds of maps about various topics such as social equity, economic opportunity, public safety, and more. Browse and view the maps, or collect them and share via a simple URL. Sharing a collection of maps is an easy way to use maps as a tool for understanding. Help policymakers and stakeholders use data as a driving factor for policy decisions in your area.ISSUESBrowse different categories to find data layers, maps, and tools. Use this set of content as a driving force for your GIS workflows related to policy. RESOURCESTo maximize your experience with the Policy Maps, we’ve assembled education, training, best practices, and industry perspectives that help raise your data literacy, provide you with models, and connect you with the work of your peers.

  2. Esri - Water Resources

    • 3dhp-for-the-nation-nsgic.hub.arcgis.com
    Updated Jan 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National States Geographic Information Council (NSGIC) (2025). Esri - Water Resources [Dataset]. https://3dhp-for-the-nation-nsgic.hub.arcgis.com/datasets/esri-water-resources
    Explore at:
    Dataset updated
    Jan 6, 2025
    Dataset provided by
    National States Geographic Information Council
    Authors
    National States Geographic Information Council (NSGIC)
    Description

    Esri's Water Resources GIS Platform offers a comprehensive suite of tools and resources designed to modernize water resource management. It emphasizes geospatial solutions for monitoring, analyzing, and modeling water systems, helping decision-makers tackle challenges like drought resilience, flood mitigation, and environmental protection. By leveraging the capabilities of ArcGIS, users can transform raw water data into actionable insights, ensuring more efficient and effective water resource management.A central feature of the platform is Arc Hydro, a specialized data model and toolkit developed for GIS-based water resource analysis. This toolset allows users to integrate, analyze, and visualize water datasets for applications ranging from live stream gauge monitoring to pollution control. Additionally, the platform connects users to the ArcGIS Living Atlas of the World, which offers extensive water-related datasets such as rivers, wetlands, and soils, supporting in-depth analyses of hydrologic conditions. The Hydro Community further enhances collaboration, enabling stakeholders to share expertise, discuss challenges, and build innovative solutions together.Esri’s platform also provides training opportunities and professional services to empower users with technical knowledge and skills. Through instructor-led courses, documentation, and best practices, users gain expertise in using ArcGIS and Arc Hydro for their specific water management needs. The combination of tools, datasets, and community engagement makes Esri's water resources platform a powerful asset for advancing sustainable water management initiatives across public and private sectors.

  3. ArcGIS Dashboards Training Videos for COVID-19

    • coronavirus-disasterresponse.hub.arcgis.com
    • coronavirus-resources.esri.com
    Updated Apr 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). ArcGIS Dashboards Training Videos for COVID-19 [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/documents/fbc4179e362a4609a10fd479b82af386
    Explore at:
    Dataset updated
    Apr 23, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    ArcGIS Dashboards Training Videos for COVID-19With the current COVID-19 situation across the world, there’s been a proliferation of corona virus themed dashboards emerging over the last few weeks in ArcGIS Online. Many of these were created with ArcGIS Dashboards, which enables users to convey information by presenting location-based analytics using intuitive and interactive data visualizations on a single screen._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  4. Use Deep Learning to Assess Palm Tree Health

    • hub.arcgis.com
    Updated Mar 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Tutorials (2019). Use Deep Learning to Assess Palm Tree Health [Dataset]. https://hub.arcgis.com/documents/d50cea3d161542b681333f1bc265029a
    Explore at:
    Dataset updated
    Mar 14, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Tutorials
    Description

    Coconuts and coconut products are an important commodity in the Tongan economy. Plantations, such as the one in the town of Kolovai, have thousands of trees. Inventorying each of these trees by hand would require lots of time and manpower. Alternatively, tree health and location can be surveyed using remote sensing and deep learning. In this lesson, you'll use the Deep Learning tools in ArcGIS Pro to create training samples and run a deep learning model to identify the trees on the plantation. Then, you'll estimate tree health using a Visible Atmospherically Resistant Index (VARI) calculation to determine which trees may need inspection or maintenance.

    To detect palm trees and calculate vegetation health, you only need ArcGIS Pro with the Image Analyst extension. To publish the palm tree health data as a feature service, you need ArcGIS Online and the Spatial Analyst extension.

    In this lesson you will build skills in these areas:

    • Creating training schema
    • Digitizing training samples
    • Using deep learning tools in ArcGIS Pro
    • Calculating VARI
    • Extracting data to points

    Learn ArcGIS is a hands-on, problem-based learning website using real-world scenarios. Our mission is to encourage critical thinking, and to develop resources that support STEM education.

  5. Aerial Data and Processed Models of Port Arthur Coastal Neighborhood and...

    • osti.gov
    • search.dataone.org
    Updated Jan 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) (United States) (2024). Aerial Data and Processed Models of Port Arthur Coastal Neighborhood and Pleasure Island Golf Course, June 2024 [Dataset]. http://doi.org/10.15485/2406464
    Explore at:
    Dataset updated
    Jan 1, 2024
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    DOE:DE-SC0023216
    Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) (United States)
    Southeast Texas Urban Integrated Field Laboratory (SETx UIFL) – Equitable solutions for communities caught between floods and air pollution
    Area covered
    Port Arthur
    Description

    Our Co-design team is from the University of Texas, working on a Department of Energy-funded project focused on the Beaumont-Port Arthur area. As part of this project, we will be developing climate-resilient design solutions for areas of the region. More on www.caee.utexas.edu.We captured aerial photos in the Port Arthur Coastal Neighborhood Community and the Golf Course on Pleasure Island, Texas, in June 2024.Aerial photos taken were through DroneDeploy autonomous flight, and models were processed through the DroneDeploy engine as well. All aerial photos are in .JPG format and contained in zipped files for each area.The processed data package includes 3D models, geospatial data, mappings, and point clouds. Please be aware that DTM, Elevation toolbox, Point cloud, and Orthomosaic use EPSG: 6588. And 3D Model uses EPSG: 3857.For using these data:- The Adobe Suite gives you great software to open .Tif files.- You can use LASUtility (Windows), ESRI ArcGIS Pro (Windows), or Blaze3D (Windows, Linux) to open a LAS file and view the data it contains.- Open an .OBJ file with a large number of free and commercial applications. Some examples include Microsoft 3D Builder, Apple Preview, Blender, and Autodesk.- You may use ArcGIS, Merkaartor, Blender (with the Google Earth Importer plug-in), Global Mapper, and Marble to open .KML files.- The .tfw world file is a text file used to georeference the GeoTIFF raster images, like the orthomosaic and the DSM. You need suitable software like ArcView to open a .TFW file.This dataset provides researchers with sufficient geometric data and the status quo of the land surface at the locations mentioned above. This dataset could streamline researchers' decision-making processes and enhance the design as well.

  6. e

    New Zealand Esri User Conference

    • nzeuc.eagle.co.nz
    • nzeuc-eaglegis.hub.arcgis.com
    Updated May 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eagle Technology Group Ltd (2022). New Zealand Esri User Conference [Dataset]. https://nzeuc.eagle.co.nz/content/4395b4d4090e4898a54c9d2386506630
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset authored and provided by
    Eagle Technology Group Ltd
    Area covered
    New Zealand
    Description

    Learn, Reconnect, and Discover the latest advances in Geographic Information Systems (GIS) technology when the New Zealand Esri User Conference returns in-person. Join hundreds of users from around the New Zealand and the South Pacific to discover how they’re leveraging GIS capabilities to solve problems, create shared understanding, and map common ground.This year's 3-day event includes not-to-be-missed opportunities for training, networking and sharing your own stories and experiences.A 2-day option is available for those short on time, while a 4-day option includes discounted instructor-led training for migrating to ArcGIS Pro.

  7. OpenStreetMap

    • cacgeoportal.com
    • ethiopia.africageoportal.com
    • +35more
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). OpenStreetMap [Dataset]. https://www.cacgeoportal.com/maps/1c071fcf8ff2448599b0547116e2de55
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    This 3D basemap presents OpenStreetMap (OSM) data and other data sources and is hosted by Esri using the OpenStreetMap style.Esri created the Places and Labels, Trees, and OpenStreetMap layers from the Daylight map distribution of OSM data, which is supported by Facebook and supplemented with additional data from Microsoft. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new scene available to the OSM, GIS, and Developer communities.The Buildings layer (beta) presents open buildings data that has been processed and hosted by Esri. Esri created this buildings scene layer using data from the Overture Maps Foundation (OMF) which is supported by Meta, Microsoft, Amazon, TomTom, Esri and other members. Overture includes data from many sources, including OpenStreetMap (OSM). The 3D buildings layer will be updated each month with the latest version of Overture data, which includes the latest updates from OSM, Esri Community Maps, and other sources.Overture Maps is a collaborative project to create reliable, easy-to-use, and interoperable open map data. Member companies work to bring together the best available open datasets, and the resulting data can be downloaded from Microsoft Azure or Amazon S3. Esri is a member of the OMF project and is excited to make this 3D web scene available to the ArcGIS user community.

  8. Land Cover Classification (Aerial Imagery)

    • hub.arcgis.com
    • uneca.africageoportal.com
    • +5more
    Updated Sep 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Land Cover Classification (Aerial Imagery) [Dataset]. https://hub.arcgis.com/content/c1bca075efb145d9a26394b866cd05eb
    Explore at:
    Dataset updated
    Sep 19, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Land cover describes the surface of the earth. Land-cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to the earth's surface is required. Land-cover classification is a complex exercise and is difficult to capture using traditional means. Deep learning models are highly capable of learning these complex semantics and can produce superior results.There are a few public datasets for land cover, but the spatial and temporal coverage of these public datasets may not always meet the user’s requirements. It is also difficult to create datasets for a specific time, as it requires expertise and time. Use this deep learning model to automate the manual process and reduce the required time and effort significantly.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.Input8-bit, 3-band very high-resolution (10 cm) imagery.OutputClassified raster with the 8 classes as in the LA county landcover dataset.Applicable geographiesThe model is expected to work well in the United States and will produce the best results in the urban areas of California.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 84.8%. The table below summarizes the precision, recall and F1-score of the model on the validation dataset: ClassPrecisionRecallF1 ScoreTree Canopy0.8043890.8461520.824742Grass/Shrubs0.7199930.6272780.670445Bare Soil0.89270.9099580.901246Water0.9808850.9874990.984181Buildings0.9222020.9450320.933478Roads/Railroads0.8696370.8629210.866266Other Paved0.8114650.8119610.811713Tall Shrubs0.7076740.6382740.671185Training dataThis model has been trained on very high-resolution Landcover dataset (produced by LA County).LimitationsSince the model is trained on imagery of urban areas of LA County it will work best in urban areas of California or similar geography.Model is trained on limited classes and may lead to misclassification for other types of LULC classes.Sample resultsHere are a few results from the model.

  9. d

    Washington State Surface Geology Map 24K

    • datadiscoverystudio.org
    zip
    Updated Dec 31, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Washington Division of Geology and Earth Resources (2013). Washington State Surface Geology Map 24K [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/8d523ecd9b754755adc1cc3df53c73f3/html
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 31, 2013
    Authors
    Washington Division of Geology and Earth Resources
    Area covered
    Description

    The Washington State Surface Geology Map scale at a scale of 1:24,000 geodatabase was made accessible through the Washington State Department of Natural Resources, Division of Geology and Earth Resources. The data are provided in ESRI ArcGIS 10.0 file geodatabase format (see Read Me file). The projection is in Lambert Conformal Conic, NAD83 HARN datum. Data available for download include:- One ESRI ArcGIS 10.0 geodatabase, consisting of a set of 11 feature classes, 7 relationship classes, and one geodatabase table.- Metadata for each feature class, in both XML and HTML formats (for ease of reading outside of GIS software)- One shapefile depicting the outline of Washington State.- One ArcGIS map document (ending in the .mxd extension), containing specifications for data presentation in ArcMap- One ArcGIS layer file for each feature class (ending in the .lyr extension), containing specifications for data presentation in an ArcGIS viewing application- One Geologic Map Codes document (PDF) defining the symbology used in the map.- The README file These digital data and metadata are provided as is, as available, and with all faults basis. Neither Department of Natural Resources nor any of its officials and employees makes any warranty of any kind for this information, express or implied, including but not limited to any warranties of merchantability or fitness for a particular purpose, nor shall the distribution of this information constitute any warranty. This resource was provided by the Washington State Department of Natural Resources, Division of Geology and Earth Resources and made available for distribution through the National Geothermal Data System.

  10. National Hydrography Dataset Plus Version 2.1

    • hub.arcgis.com
    • resilience.climate.gov
    • +6more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://hub.arcgis.com/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  11. a

    India: Ecological Facets Landform Classes

    • hub.arcgis.com
    Updated Jan 31, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online (2022). India: Ecological Facets Landform Classes [Dataset]. https://hub.arcgis.com/maps/51077b4ac9c3480fb8b67874e22bb27d
    Explore at:
    Dataset updated
    Jan 31, 2022
    Dataset authored and provided by
    GIS Online
    Area covered
    Description

    Landforms are large recognizable features such as mountains, hills and plains; they are an important determinant of ecological character, habitat definition and terrain analysis. Landforms are important to the distribution of life in natural systems and are the basis for opportunities in built systems, and therefore landforms play a useful role in all natural science fields of study and planning disciplines.Dataset SummaryPhenomenon Mapped: LandformsUnits: MetersCell Size: 231.91560581932 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: May 2016ArcGIS Server URL: https://landscape7.arcgis.com/arcgis/In February 2017, Esri updated the World Landforms - Improved Hammond Method service with two display functions: Ecological Land Units landform classes and Ecological Facets landform classes. This layer represents Ecological Facets landform classes. You can view the Ecological Land Units landform classes by choosing Image Display, and changing the Renderer. This layer was produced using the Improved Hammond Landform Classification Algorithm produced by Esri in 2016. This algorithm published and described by Karagulle et al. 2017: Modeling global Hammond landform regions from 250-m elevation data in Transactions in GIS.The algorithm, which is based on the most recent work in this area by Morgan, J. & Lesh, A. 2005: Developing Landform Maps Using Esri’s Model Builder., Esri converted Morgan’s model into a Python script and revised it to work on global 250-meter resolution GMTED2010 elevation data. Hammond’s landform classification characterizes regions rather than identifying individual features, thus, this layer contains sixteen classes of landforms:Nearly flat plainsSmooth plains with some local reliefIrregular plains with moderate relief Irregular plains with low hillsScattered moderate hillsScattered high hillsScattered low mountainsScattered high mountainsModerate hillsHigh hills Tablelands with moderate reliefTablelands with considerable reliefTablelands with high relief Tablelands with very high relief Low mountainsHigh mountainsTo produce these classes, Esri staff first projected the 250-meter resolution GMTED elevation data to the World Equidistant Cylindrical coordinate system. Each cell in this dataset was assigned three characteristics: slope based on 3-km neighborhood, relief based on 6 km neighborhood, and profile based on 6-km neighborhood. The last step was to overlay the combination of these three characteristics with areas that are exclusively plains. Slope is the percentage of the 3-km neighborhood occupied by gentle slope. Hammond specified 8% as the threshold for gentle slope. Slope is used to define how flat or steep the terrain is. Slope was classified into one of four classes: Percent of neighborhood over 8% of slopeSlope Classes0 - 20%40021% -50%30051% - 80%200>81% 100Local Relief is the difference between the maximum and minimum elevation within in the 6-km neighborhood. Local relief is used to define terrain how rugged or the complexity of the terrain's texture. Relief was assigned one of six classes:Change in elevationRelief Class ID0 – 30 meters1031 meter – 90 meters2091 meter – 150 meters30151 meter – 300 meters40301 meter – 900 meters50>900 meters60The combination of slope and relief begin to define terrain as mountains, hills and plains. However, the difference between mountains or hills and tablelands cannot be distinguished using only these parameters. Profile is used to determine tableland areas. Profile identifies neighborhoods with upland and lowland areas, and calculates the percent area of gently sloping terrain within those upland and lowland areas. A 6-km circular neighborhood was used to calculate the profile parameter. Upland/lowland is determined by the difference between average local relief and elevation. In the 6-km neighborhood window, if the difference between maximum elevation and cell’s elevation is smaller than half of the local relief it’s an upland. If the difference between maximum elevation and cell’s elevation is larger than half of the local relief it’s a lowland. Profile was assigned one of five classes:Percent of neighborhood over 8% slope in upland or lowland areasProfile ClassLess than 50% gentle slope is in upland or lowland0More than 75% of gentle slope is in lowland150%-75% of gentle slope is in lowland250-75% of gentle slope is in upland3More than 75% of gentle slope is in upland4Early reviewers of the resulting classes noted one confusing outcome, which was that areas were classified as "plains with low mountains", or "plains with hills" were often mostly plains, and the hills or mountains were part of an adjacent set of exclusively identified hills or mountains. To address this areas that are exclusively plains were produced, and used to override these confusing areas. The hills and mountains within those areas were converted to their respective landform class.The combination of slope, relief and profile merged with the areas of plains, can be better understood using the following diagram, which uses the colors in this layer to show which classes are present and what parameter values produced them:What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.

  12. e

    Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • portal.edirepository.org
    • search.dataone.org
    application/vnd.rar
    Updated May 4, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neal-Dunne; Morgan Grove (2012). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. http://doi.org/10.6073/pasta/377da686246f06554f7e517de596cd2b
    Explore at:
    application/vnd.rar(29574980 kilobyte)Available download formats
    Dataset updated
    May 4, 2012
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.

       BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
    
    
       Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
    
    
       For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
    
    
       Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. 
    
    
       This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
    
    
       See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
    
    
       See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
    
  13. Create a basic Story Map: Disease investigations (Learn ArcGIS)

    • coronavirus-resources.esri.com
    • coronavirus-disasterresponse.hub.arcgis.com
    Updated Mar 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Create a basic Story Map: Disease investigations (Learn ArcGIS) [Dataset]. https://coronavirus-resources.esri.com/documents/176a775e3e82450ba1c57e486455838b
    Explore at:
    Dataset updated
    Mar 16, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    Create a basic Story Map: Disease investigations (Learn ArcGIS PDF Lesson). This lesson will show you how to prepare a story map explaining John Snow’s famous investigation of the 1854 cholera outbreak in London._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  14. Searching for and adding map layers in ArcGIS Online

    • teachwithgis.co.uk
    Updated Feb 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2020). Searching for and adding map layers in ArcGIS Online [Dataset]. https://teachwithgis.co.uk/datasets/searching-for-and-adding-map-layers-in-arcgis-online-1
    Explore at:
    Dataset updated
    Feb 18, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    Click here to open the ArcGIS Online Map Viewer and work through the examples shown belowTo add data to ArcGIS Online we reccomend that you log in. For full functionality use a free schools subscription, or if this is not possible you can use a free public account which will have reduced functionality.

  15. OpenStreetMap (Blueprint)

    • noveladata.com
    • data.baltimorecity.gov
    • +12more
    Updated Jan 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). OpenStreetMap (Blueprint) [Dataset]. https://www.noveladata.com/maps/45a1aeaff6c649a688163701297c592a
    Explore at:
    Dataset updated
    Jan 30, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.

  16. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +2more
    Updated Jul 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  17. e

    Esri ArcGIS Server GEOPROCESSING SERVICE Esri ArcGIS Server - Visibility DMR...

    • data.europa.eu
    • gimi9.com
    esri_gp
    Updated Nov 1, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Esri ArcGIS Server GEOPROCESSING SERVICE Esri ArcGIS Server - Visibility DMR 5G [Dataset]. https://data.europa.eu/data/datasets/cz-cuzk-gp_vis-dmr5g
    Explore at:
    esri_gpAvailable download formats
    Dataset updated
    Nov 1, 2016
    Description

    Geoprocessing service Esri ArcGIS Server - Visibility_DMR 5G is a public service intended for visibility analysis execution using the dataset Digital Terrain Model of the Czech Republic of the 5th generation (DMR 5G). Geoprocessing service enables to find out, which area is visible from chosen observer location to defined distance. When using the service is necessary to choose the observer location, pecify oberver offset above the terrain and define the distance, in which the visibility analysis is demanded. The result of the analysis is visibility field (area) represented by polygons, which delimit visible parts of the terrain.

    The geoprocessing service is published as asynchronous. The result is passed on client throught Result Map Service Visibility_DMR 5G (MapService). The result can be downloaded from server and saved to a local disc as shapefile using URL, which is generated and sended by the geoprocessing service. URL for the result download throught a web client is published in running service record, that is sent from server to the client.

  18. Land cover of Cameroon - Globcover Regional (46 classes)

    • data.amerigeoss.org
    html, http, png, wms +1
    Updated Mar 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of Cameroon - Globcover Regional (46 classes) [Dataset]. https://data.amerigeoss.org/dataset/235d6f0d-b6c7-41d3-a09b-a741dee3f555
    Explore at:
    html, http, wms, png, zipAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Cameroon
    Description

    This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download - Land cover of Cameroon - Shape file format

    GLOBCOVER on the ESA Web site

    Global Land Cover Network - GLCN

  19. Land cover of United Republic of Tanzania - Globcover Regional (46 classes)

    • data.amerigeoss.org
    html, http, png, wms +1
    Updated Mar 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of United Republic of Tanzania - Globcover Regional (46 classes) [Dataset]. https://data.amerigeoss.org/dataset/adb0b581-b530-4a06-8a86-ed562ddc63b6
    Explore at:
    http, zip, html, png, wmsAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Tanzania
    Description

    This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download - Land cover of United Republic of Tanzania - Shape file format

    GLOBCOVER on the ESA Web site

    Global Land Cover Network - GLCN

  20. n

    08 - Gatsby: Then and now - Esri GeoInquiries collection for American...

    • library.ncge.org
    • hub.arcgis.com
    Updated Jun 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). 08 - Gatsby: Then and now - Esri GeoInquiries collection for American Literature [Dataset]. https://library.ncge.org/datasets/08-gatsby-then-and-now-esri-geoinquiries-collection-for-american-literature
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset authored and provided by
    NCGE
    Description

    THE GEOINQUIRIES™ COLLECTION FOR AMERICAN LITERATURE

    http://www.esri.com/geoinquiries

    The Esri GeoInquiry™ collection for American Literature contains 15 free, standards-based activities that correspond and extend map-based concepts found in course texts frequently used in high school literature. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core ELA national curriculum standards.

    All American Literature GeoInquiries™ can be found at: http://esriurl.com/litGeoInquiries

    All GeoInquiries™ can be found at: http://www.esri.com/geoinquiries

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2019). Esri Maps for Public Policy [Dataset]. https://climate-center-lincolninstitute.hub.arcgis.com/datasets/esri::esri-maps-for-public-policy
Organization logo

Esri Maps for Public Policy

Explore at:
Dataset updated
Oct 1, 2019
Dataset authored and provided by
Esrihttp://esri.com/
Description

OVERVIEWThis site is dedicated to raising the level of spatial and data literacy used in public policy. We invite you to explore curated content, training, best practices, and datasets that can provide a baseline for your research, analysis, and policy recommendations. Learn about emerging policy questions and how GIS can be used to help come up with solutions to those questions.EXPLOREGo to your area of interest and explore hundreds of maps about various topics such as social equity, economic opportunity, public safety, and more. Browse and view the maps, or collect them and share via a simple URL. Sharing a collection of maps is an easy way to use maps as a tool for understanding. Help policymakers and stakeholders use data as a driving factor for policy decisions in your area.ISSUESBrowse different categories to find data layers, maps, and tools. Use this set of content as a driving force for your GIS workflows related to policy. RESOURCESTo maximize your experience with the Policy Maps, we’ve assembled education, training, best practices, and industry perspectives that help raise your data literacy, provide you with models, and connect you with the work of your peers.

Search
Clear search
Close search
Google apps
Main menu