Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This page contains the help documentation for the GIS Open Data Portal. Refer to https://gisdata-csj.opendata.arcgis.com/pages/help.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Learn state-of-the-art skills to build compelling, useful, and fun Web GIS apps easily, with no programming experience required.Building on the foundation of the previous three editions, Getting to Know Web GIS, fourth edition,features the latest advances in Esri’s entire Web GIS platform, from the cloud server side to the client side.Discover and apply what’s new in ArcGIS Online, ArcGIS Enterprise, Map Viewer, Esri StoryMaps, Web AppBuilder, ArcGIS Survey123, and more.Learn about recent Web GIS products such as ArcGIS Experience Builder, ArcGIS Indoors, and ArcGIS QuickCapture. Understand updates in mobile GIS such as ArcGIS Collector and AuGeo, and then build your own web apps.Further your knowledge and skills with detailed sections and chapters on ArcGIS Dashboards, ArcGIS Analytics for the Internet of Things, online spatial analysis, image services, 3D web scenes, ArcGIS API for JavaScript, and best practices in Web GIS.Each chapter is written for immediate productivity with a good balance of principles and hands-on exercises and includes:A conceptual discussion section to give you the big picture and principles,A detailed tutorial section with step-by-step instructions,A Q/A section to answer common questions,An assignment section to reinforce your comprehension, andA list of resources with more information.Ideal for classroom lab work and on-the-job training for GIS students, instructors, GIS analysts, managers, web developers, and other professionals, Getting to Know Web GIS, fourth edition, uses a holistic approach to systematically teach the breadth of the Esri Geospatial Cloud.AUDIENCEProfessional and scholarly. College/higher education. General/trade.AUTHOR BIOPinde Fu leads the ArcGIS Platform Engineering team at Esri Professional Services and teaches at universities including Harvard University Extension School. His specialties include web and mobile GIS technologies and applications in various industries. Several of his projects have won specialachievement awards. Fu is the lead author of Web GIS: Principles and Applications (Esri Press, 2010).Pub Date: Print: 7/21/2020 Digital: 6/16/2020 Format: Trade paperISBN: Print: 9781589485921 Digital: 9781589485938 Trim: 7.5 x 9 in.Price: Print: $94.99 USD Digital: $94.99 USD Pages: 490TABLE OF CONTENTSPrefaceForeword1 Get started with Web GIS2 Hosted feature layers and storytelling with GIS3 Web AppBuilder for ArcGIS and ArcGIS Experience Builder4 Mobile GIS5 Tile layers and on-premises Web GIS6 Spatial temporal data and real-time GIS7 3D web scenes8 Spatial analysis and geoprocessing9 Image service and online raster analysis10 Web GIS programming with ArcGIS API for JavaScriptPinde Fu | Interview with Esri Press | 2020-07-10 | 15:56 | Link.
[Metadata] Enterprise Zones as of March 2021. Enterprise Zones are authorized under Chapter 209E, HRS, as amended. The governor is authorized to designate up to six enterprise zones per county for a period of twenty years. Zones Updated March 2021.Source: Specific boundary definitions were provided by the Community Economic Development Program, DBEDT and the County planning departments.For additional information, please refer to complete metadata at https://files.hawaii.gov/dbedt/op/gis/data/entzones.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; Phone: (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
This dataset is a compilation of address point data for the City of Tempe. The dataset contains a point location, the official address (as defined by The Building Safety Division of Community Development) for all occupiable units and any other official addresses in the City. There are several additional attributes that may be populated for an address, but they may not be populated for every address. Contact: Lynn Flaaen-Hanna, Development Services Specialist Contact E-mail Link: Map that Lets You Explore and Export Address Data Data Source: The initial dataset was created by combining several datasets and then reviewing the information to remove duplicates and identify errors. This published dataset is the system of record for Tempe addresses going forward, with the address information being created and maintained by The Building Safety Division of Community Development.Data Source Type: ESRI ArcGIS Enterprise GeodatabasePreparation Method: N/APublish Frequency: WeeklyPublish Method: AutomaticData Dictionary
Detroit Street View (DSV) is an urban remote sensing program run by the Enterprise Geographic Information Systems (EGIS) Team within the Department of Innovation and Technology at the City of Detroit. The mission of Detroit Street View is ‘To continuously observe and document Detroit’s changing physical environment through remote sensing, resulting in freely available foundational data that empowers effective city operations, informed decision making, awareness, and innovation.’ LiDAR (as well as panoramic imagery) is collected using a vehicle-mounted mobile mapping system.
Due to variations in processing, index lines are not currently available for all existing LiDAR datasets, including all data collected before September 2020. Index lines represent the approximate path of the vehicle within the time extent of the given LiDAR file. The actual geographic extent of the LiDAR point cloud varies dependent on line-of-sight.
Compressed (LAZ format) point cloud files may be requested by emailing gis@detroitmi.gov with a description of the desired geographic area, any specific dates/file names, and an explanation of interest and/or intended use. Requests will be filled at the discretion and availability of the Enterprise GIS Team. Deliverable file size limitations may apply and requestors may be asked to provide their own online location or physical media for transfer.
LiDAR was collected using an uncalibrated Trimble MX2 mobile mapping system. The data is not quality controlled, and no accuracy assessment is provided or implied. Results are known to vary significantly. Users should exercise caution and conduct their own comprehensive suitability assessments before requesting and applying this data.
Sample Dataset: https://detroitmi.maps.arcgis.com/home/item.html?id=69853441d944442f9e79199b57f26fe3
Create your own initiative by combining existing applications with a custom site. Use this initiative to form teams around a problem and invite your community to participate.
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.
BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer.
This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Bulk exports, in file-geodatabase format, of data that is shared via the VT EGC (Enterprise GIS Consortium) Geospatial Data Exchange Protocol.
Welcome! This site is dedicated to the NOAA GIS Community and is accessible to NOAA staff only. The site provides information on a number of GIS topics like access to geospatial software, ArcGIS Online, and information about enterprise-wide geospatial initiatives. It is managed by the NOAA GIS Committee. For questions or comments, email gis.community@noaa.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Boundaries - Enterprise Zones’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/ffef84e5-b797-458e-b254-9db146e3e45c on 26 January 2022.
--- Dataset description provided by original source is as follows ---
The Illinois Enterprise Zone Program is designed to stimulate economic growth and neighborhood revitalization in economically depressed areas of the state. For more information about this program, go to http://www.commerce.state.il.us/dceo/Bureaus/Business_Development/Tax+Assistance/Enterprise-Zone.htm. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ).
--- Original source retains full ownership of the source dataset ---
The Maryland Department of Commerce (COMMERCE) identifies and maintains boundaries where business may be eligible for income tax, real property and personal property tax credits for job creation and investments. Businesses in an Enterprise Zone Focus Area may be eligible for real property tax credits, personal property tax credits and income tax credits.This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Feature Service Link:https://mdgeodata.md.gov/imap/rest/services/BusinessEconomy/MD_IncentiveZones/FeatureServer/5
ArcGIS Enterprise puts collaboration and flexibility at the center of your organization's GIS. It pairs industry-leading mapping and analytics capabilities with a dedicated Web GIS infrastructure to organize and share your work on any device, anywhere, at any time.
This dataset is a compilation of ownership rights represented as parcels owned by the State of California, Department of Water Resources. The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standard version 3.6, dated September 27, 2023.DWR makes no warranties or guarantees —either expressed or implied — as to the completeness, accuracy, or correctness of the data. DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Comments, problems, improvements or suggestions should be forwarded to gis@water.ca.gov. This version is considered current as of 5/29/2025.
Priority Areas for Increasing Access to Regional Recreation is a composite of multiple primary source datasets. As a result, there is no formal data dictionary available for this layer. For those seeking more information regarding the constituent datasets that comprise this layer, it is advised that reference be made to the primary sources. These primary sources may contain their own data dictionaries, metadata, or other relevant documentation that can provide an in-depth comprehension of the data.
Attribute name and descriptions are as follows:
Acres - Acres
Rural - Rural Area Number
Region - Region number of the rural area
RegionName - Region name of the rural area
RRE_Name - Name of the rural area
Polygon geometry with attributes displaying enterprise zones in East Baton Rouge Parish, Louisiana.Metadata
La empresa ESRI, a través del sistema ArcGIS, ofrece capacidades para aplicar análisis basados en la ubicación en sus flujos de trabajo, ya que permite obtener información utilizando herramientas contextuales para visualizar y analizar datos, así como colaborar y compartir dicha información a través de mapas, aplicaciones, paneles de mando e informes.ArcGIS es considerado un sistema de sistemas, conformado primero por un sistema de registro, donde los usuarios administran e integran datos; luego un sistema colaborativo que permite compartir, colaborar y diseminar la información en las las organizaciones; y finalmente, un sistema de conocimiento, donde a partir de los datos compartidos en los dos sistemas anteriores, es posible realizar análisis, modelos, así como exploración de patrones y tendencias.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Champaign County-City of Champaign Joint Enterprise Zone
The City has three State Enterprise Zones (SEZ): Los Angeles-Hollywood; East Los Angeles; and Harbor Gateway Communities. Each Zone provides business owners within the Zone boundaries with State incentives such as tax credits and deductions for hiring eligible employees, credits for sales and use taxes paid on qualifying machinery and electronic equipment, additional business expense deductions, and credits to lenders for loans made to Enterprise Zone businesses.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This resource was created by Esri Canada Education and Research. To browse our full collection of higher-education learning resources, please visit https://hed.esri.ca/resourcefinder/.This tutorial introduces you to using Python code in a Jupyter Notebook, an open source web application that enables you to create and share documents that contain rich text, equations and multimedia, alongside executable code and visualization of analysis outputs. The tutorial begins by stepping through the basics of setting up and being productive with Python notebooks. You will be introduced to ArcGIS Notebooks, which are Python Notebooks that are well-integrated within the ArcGIS platform. Finally, you will be guided through a series of ArcGIS Notebooks that illustrate how to create compelling notebooks for data science that integrate your own Python scripts using the ArcGIS API for Python and ArcPy in combination with thousands of open source Python libraries to enhance your analysis and visualization.To download the dataset Labs, click the Open button to the top right. This will automatically download a ZIP file containing all files and data required.You can also clone the tutorial documents and datasets for this GitHub repo: https://github.com/highered-esricanada/arcgis-notebooks-tutorial.git.Software & Solutions Used: Required: This tutorial was last tested on August 27th, 2024, using ArcGIS Pro 3.3. If you're using a different version of ArcGIS Pro, you may encounter different functionality and results.Recommended: ArcGIS Online subscription account with permissions to use advanced Notebooks and GeoEnrichmentOptional: Notebook Server for ArcGIS Enterprise 11.3+Time to Complete: 2 h (excludes processing time)File Size: 196 MBDate Created: January 2022Last Updated: August 27, 2024
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This page contains the help documentation for the GIS Open Data Portal. Refer to https://gisdata-csj.opendata.arcgis.com/pages/help.