87 datasets found
  1. National Hydrography Dataset Plus High Resolution

    • hub.arcgis.com
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). National Hydrography Dataset Plus High Resolution [Dataset]. https://hub.arcgis.com/maps/f1f45a3ba37a4f03a5f48d7454e4b654
    Explore at:
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  2. W

    USA Flood Hazard Areas

    • wifire-data.sdsc.edu
    • gis-calema.opendata.arcgis.com
    • +1more
    csv, esri rest +4
    Updated Jul 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). USA Flood Hazard Areas [Dataset]. https://wifire-data.sdsc.edu/dataset/usa-flood-hazard-areas
    Explore at:
    geojson, csv, kml, esri rest, html, zipAvailable download formats
    Dataset updated
    Jul 14, 2020
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description
    The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance.

    Dataset Summary

    Phenomenon Mapped: Flood Hazard Areas
    Coordinate System: Web Mercator Auxiliary Sphere
    Extent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, the Northern Mariana Islands and American Samoa
    Visible Scale: The layer is limited to scales of 1:1,000,000 and larger. Use the USA Flood Hazard Areas imagery layer for smaller scales.
    Publication Date: April 1, 2019

    This layer is derived from the April 1, 2019 version of the National Flood Hazard Layer feature class S_Fld_Haz_Ar. The data were aggregated into eight classes to produce the Esri Symbology field based on symbology provided by FEMA. All other layer attributes are derived from the National Flood Hazard Layer. The layer was projected to Web Mercator Auxiliary Sphere and the resolution set to 1 meter.

    To improve performance Flood Zone values "Area Not Included", "Open Water", "D", "NP", and No Data were removed from the layer. Areas with Flood Zone value "X" subtype "Area of Minimal Flood Hazard" were also removed. An imagery layer created from this dataset provides access to the full set of records in the National Flood Hazard Layer.

    A web map featuring this layer is available for you to use.

    What can you do with this Feature Layer?

    Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.

    ArcGIS Online
    • Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.
    • Change the layer’s transparency and set its visibility range
    • Open the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.
    • Change the layer’s style and filter the data. For example, you could change the symbology field to Special Flood Hazard Area and set a filter for = “T” to create a map of only the special flood hazard areas.
    • Add labels and set their properties
    • Customize the pop-up
    ArcGIS Pro
    • Add this layer to a 2d or 3d map. The same scale limit as Online applies in Pro
    • Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Areas up to 1,000-2,000 features can be exported successfully.
    • Change the symbology and the attribute field used to symbolize the data
    • Open table and make interactive selections with the map
    • Modify the pop-ups
    • Apply Definition Queries to create sub-sets of the layer
    This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
  3. Power Line Classification

    • hub.arcgis.com
    • uneca.africageoportal.com
    • +2more
    Updated Dec 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Power Line Classification [Dataset]. https://hub.arcgis.com/content/6ce6dae2d62c4037afc3a3abd19afb11
    Explore at:
    Dataset updated
    Dec 16, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    The classification of point cloud datasets to identify distribution wires is useful for identifying vegetation encroachment around power lines. Such workflows are important for preventing fires and power outages and are typically manual, recurring, and labor-intensive. This model is designed to extract distribution wires at the street level. Its predictions for high-tension transmission wires are less consistent with changes in geography as compared to street-level distribution wires. In the case of high-tension transmission wires, a lower ‘recall’ value is observed as compared to the value observed for low-lying street wires and poles.Using the modelFollow the guide to use the model. The model can be used with ArcGIS Pro's Classify Point Cloud Using Trained Model tool. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.InputThe model accepts unclassified point clouds with point geometry (X, Y and Z values). Note: The model is not dependent on any additional attributes such as Intensity, Number of Returns, etc. This model is trained to work on unclassified point clouds that are in a projected coordinate system, in which the units of X, Y and Z are based on the metric system of measurement. If the dataset is in degrees or feet, it needs to be re-projected accordingly. The model was trained using a training dataset with the full set of points. Therefore, it is important to make the full set of points available to the neural network while predicting - allowing it to better discriminate points of 'class of interest' versus background points. It is recommended to use 'selective/target classification' and 'class preservation' functionalities during prediction to have better control over the classification and scenarios with false positives.The model was trained on airborne lidar datasets and is expected to perform best with similar datasets. Classification of terrestrial point cloud datasets may work but has not been validated. For such cases, this pre-trained model may be fine-tuned to save on cost, time, and compute resources while improving accuracy. Another example where fine-tuning this model can be useful is when the object of interest is tram wires, railway wires, etc. which are geometrically similar to electricity wires. When fine-tuning this model, the target training data characteristics such as class structure, maximum number of points per block and extra attributes should match those of the data originally used for training this model (see Training data section below).OutputThe model will classify the point cloud into the following classes with their meaning as defined by the American Society for Photogrammetry and Remote Sensing (ASPRS) described below: Classcode Class Description 0 Background Class 14 Distribution Wires 15 Distribution Tower/PolesApplicable geographiesThe model is expected to work within any geography. It's seen to produce favorable results as shown here in many regions. However, results can vary for datasets that are statistically dissimilar to training data.Model architectureThis model uses the RandLANet model architecture implemented in ArcGIS API for Python.Accuracy metricsThe table below summarizes the accuracy of the predictions on the validation dataset. - Precision Recall F1-score Background (0) 0.999679 0.999876 0.999778 Distribution Wires (14) 0.955085 0.936825 0.945867 Distribution Poles (15) 0.707983 0.553888 0.621527Training dataThis model is trained on manually classified training dataset provided to Esri by AAM group. The training data used has the following characteristics: X, Y, and Z linear unitmeter Z range-240.34 m to 731.17 m Number of Returns1 to 5 Intensity1 to 4095 Point spacing0.2 ± 0.1 Scan angle-42 to +35 Maximum points per block20000 Extra attributesNone Class structure[0, 14, 15]Sample resultsHere are a few results from the model.

  4. Sentinel-2 10m Land Use/Land Cover Time Series

    • colorado-river-portal.usgs.gov
    • pacificgeoportal.com
    • +9more
    Updated Oct 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Time Series [Dataset]. https://colorado-river-portal.usgs.gov/datasets/esri::sentinel-2-10m-land-use-land-cover-time-series-1
    Explore at:
    Dataset updated
    Oct 19, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2024 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2024. Key Properties Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryAnalysis: Optimized for analysisClass Definitions: ValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Usage Information and Best PracticesProcessing TemplatesThis layer includes a number of preconfigured processing templates (raster function templates) to provide on-the-fly data rendering and class isolation for visualization and analysis. Each processing template includes labels and descriptions to characterize the intended usage. This may include for visualization, for analysis, or for both visualization and analysis. VisualizationThe default rendering on this layer displays all classes.There are a number of on-the-fly renderings/processing templates designed specifically for data visualization.By default, the most recent year is displayed. To discover and isolate specific years for visualization in Map Viewer, try using the Image Collection Explorer. AnalysisIn order to leverage the optimization for analysis, the capability must be enabled by your ArcGIS organization administrator. More information on enabling this feature can be found in the ‘Regional data hosting’ section of this help doc.Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See this group for a complete list of imagery layers optimized for analysis.Prior to running analysis, users should always provide some form of data selection with either a layer filter (e.g. for a specific date range, cloud cover percent, mission, etc.) or by selecting specific images. To discover and isolate specific images for analysis in Map Viewer, try using the Image Collection Explorer.Zonal Statistics is a common tool used for understanding the composition of a specified area by reporting the total estimates for each of the classes. GeneralIf you are new to Sentinel-2 LULC, the Sentinel-2 Land Cover Explorer provides a good introductory user experience for working with this imagery layer. For more information, see this Quick Start Guide.Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.

  5. d

    Public Land Survey System Quarter Sections (Feature Layer)

    • catalog.data.gov
    • datasets.ai
    • +6more
    Updated May 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Public Land Survey System Quarter Sections (Feature Layer) [Dataset]. https://catalog.data.gov/dataset/public-land-survey-system-quarter-sections-feature-layer-e14be
    Explore at:
    Dataset updated
    May 8, 2025
    Dataset provided by
    U.S. Forest Service
    Description

    This Quarter Section feature class depicts PLSS Second Divisions . PLSS townships are subdivided in a spatial hierarchy of first, second, and third division. These divisions are typically aliquot parts ranging in size from 640 acres to 160 to 40 acres, and subsequently all the way down to 2.5 acres. The data in this feature class was translated from the PLSSSecondDiv feature class in the original production data model, which defined the second division for a specific parcel of land. Metadata

  6. a

    Heat Severity - USA 2023

    • hub.arcgis.com
    • community-climatesolutions.hub.arcgis.com
    Updated Apr 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2024). Heat Severity - USA 2023 [Dataset]. https://hub.arcgis.com/datasets/db5bdb0f0c8c4b85b8270ec67448a0b6
    Explore at:
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. Heat Severity is a reclassified version of Heat Anomalies raster which is also published on this site. This data is generated from 30-meter Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  7. d

    Australia - Present Major Vegetation Groups - NVIS Version 4.1 (Albers 100m...

    • data.gov.au
    • researchdata.edu.au
    • +1more
    zip
    Updated Apr 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). Australia - Present Major Vegetation Groups - NVIS Version 4.1 (Albers 100m analysis product) [Dataset]. https://data.gov.au/data/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 13, 2022
    Dataset authored and provided by
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Australia
    Description

    Abstract

    This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.

    Resource contains an ArcGIS file geodatabase raster for the National Vegetation Information System (NVIS) Major Vegetation Groups - Australia-wide, present extent (FGDB_NVIS4_1_AUST_MVG_EXT).

    Related datasets are also included: FGDB_NVIS4_1_KEY_LAYERS_EXT - ArcGIS File Geodatabase Feature Class of the Key Datasets that make up NVIS Version 4.1 - Australia wide; and FGDB_NVIS4_1_LUT_KEY_LAYERS - Lookup table for Dataset Key Layers.

    This raster dataset provides the latest summary information (November 2012) on Australia's present (extant) native vegetation. It is in Albers Equal Area projection with a 100 m x 100 m (1 Ha) cell size. A comparable Estimated Pre-1750 (pre-european, pre-clearing) raster dataset is available: - NVIS4_1_AUST_MVG_PRE_ALB. State and Territory vegetation mapping agencies supplied a new version of the National Vegetation Information System (NVIS) in 2009-2011. Some agencies did not supply new data for this version but approved re-use of Version 3.1 data. Summaries were derived from the best available data in the NVIS extant theme as at June 2012. This product is derived from a compilation of data collected at different scales on different dates by different organisations. Please refer to the separate key map showing scales of the input datasets. Gaps in the NVIS database were filled by non-NVIS data, notably parts of South Australia and small areas of New South Wales such as the Curlewis area. The data represent on-ground dates of up to 2006 in Queensland, 2001 to 2005 in South Australia (depending on the region) and 2004/5 in other jurisdictions, except NSW. NVIS data was partially updated in NSW with 2001-09 data, with extensive areas of 1997 data remaining from the earlier version of NVIS. Major Vegetation Groups were identified to summarise the type and distribution of Australia's native vegetation. The classification contains different mixes of plant species within the canopy, shrub or ground layers, but are structurally similar and are often dominated by a single genus. In a mapping sense, the groups reflect the dominant vegetation occurring in a map unit where there are a mix of several vegetation types. Subdominant vegetation groups which may also be present in the map unit are not shown. For example, the dominant vegetation in an area may be mapped as dominated by eucalypt open forest, although it contains pockets of rainforest, shrubland and grassland vegetation as subdominants. The (related) Major Vegetation Subgroups represent more detail about the understorey and floristics of the Major Vegetation Groups and are available as separate raster datasets: - NVIS4_1_AUST_MVS_EXT_ALB - NVIS4_1_AUST_MVS_PRE_ALB A number of other non-vegetation and non-native vegetation land cover types are also represented as Major Vegetation Groups. These are provided for cartographic purposes, but should not be used for analyses. For further background and other NVIS products, please see the links on http://www.environment.gov.au/erin/nvis/index.html.

    The current NVIS data products are available from http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system.

    Purpose

    For use in Bioregional Assessment land classification analyses

    Dataset History

    NVIS Version 4.1

    The input vegetation data were provided from over 100 individual projects representing the majority of Australia's regional vegetation mapping over the last 50 years. State and Territory custodians translated the vegetation descriptions from these datasets into a common attribute framework, the National Vegetation Information System (ESCAVI, 2003). Scales of input mapping ranged from 1:25,000 to 1:5,000,000. These were combined into an Australia-wide set of vector data. Non-terrestrial areas were mostly removed by the State and Territory custodians before supplying the data to the Environmental Resources Information Network (ERIN), Department of Sustainability Environment Water Population and Communities (DSEWPaC).

    Each NVIS vegetation description was written to the NVIS XML format file by the custodian, transferred to ERIN and loaded into the NVIS database at ERIN. A considerable number of quality checks were performed automatically by this system to ensure conformity to the NVIS attribute standards (ESCAVI, 2003) and consistency between levels of the NVIS Information Hierarchy within each description. Descriptions for non-vegetation and non-native vegetation mapping codes were transferred via CSV files.

    The NVIS vector (polygon) data for Australia comprised a series of jig-saw pieces, eachup to approx 500,000 polygons - the maximum tractable size for routine geoprocesssing. The spatial data was processed to conform to the NVIS spatial format (ESCAVI, 2003; other papers). Spatial processing and attribute additions were done mostly in ESRI File Geodatabases. Topology and minor geometric corrections were also performed at this stage. These datasets were then loaded into ESRI Spatial Database Engine as per the ERIN standard. NVIS attributes were then populated using Oracle database tables provided by custodians, mostly using PL/SQL Developer or in ArcGIS using the field calculator (where simple).

    Each spatial dataset was joined to and checked against a lookup table for the relevant State/Territory to ensure that all mapping codes in the dominant vegetation type of each polygon (NVISDSC1) had a valid lookup description, including an allocated MVG. Minor vegetation components of each map unit (NVISDSC2-6) were not checked, but could be considered mostly complete.

    Each NVIS vegetation description was allocated to a Major Vegetation Group (MVG) by manual interpretation at ERIN. The Australian Natural Resources Atlas (http://www.anra.gov.au/topics/vegetation/pubs/native_vegetation/vegfsheet.html) provides detailed descriptions of most Major Vegetation Groups. Three new MVGs were created for version 4.1 to better represent open woodland formations and forests (in the NT) with no further data available. NVIS vegetation descriptions were reallocated into these classes, if appropriate:

    • Unclassified Forest

    • Other Open Woodlands

    • Mallee Open Woodlands and Sparse Mallee Shublands

    (Thus there are a total of 33 MVGs existing as at June 2012). Data values defined as cleared or non-native by data custodians were attributed specific MVG values such as 25 - Cleared or non native, 27 - naturally bare, 28 - seas & estuaries, and 99 - Unknown.

    As part of the process to fill gaps in NVIS, the descriptive data from non-NVIS sources was also referenced in the NVIS database, but with blank vegetation descriptions. In general. the gap-fill data comprised (a) fine scale (1:250K or better) State/Territory vegetation maps for which NVIS descriptions were unavailable and (b) coarse-scale (1:1M) maps from Commonwealth and other sources. MVGs were then allocated to each description from the available desciptions in accompanying publications and other sources.

    Parts of New South Wales, South Australia, QLD and the ACT have extensive areas of vector "NoData", thus appearing as an inland sea. The No Data areas were dealt with differently by state. In the ACT and SA, the vector data was 'gap-filled' and attributed using satellite imagery as a guide prior to rasterising. Most of these areas comprised a mixture of MVG 24 (inland water) and 25 (cleared), and in some case 99 (Unknown). The NSW & QLD 'No Data' areas were filled using a raster mask to fill the 'holes'. These areas were attributed with MVG 24, 26 (water & unclassified veg), MVG 25 (cleared); or MVG 99 Unknown/no data, where these areas were a mixture of unknown proportions.

    Each spatial dataset with joined lookup table (including MVG_NUMBER linked to NVISDSC1) was exported to a File Geodatabase as a feature class. These were reprojected into Albers Equal Area projection (Central_Meridian: 132.000000, Standard_Parallel_1: -18.000000, Standard_Parallel_2: -36.000000, Linear Unit: Meter (1.000000), Datum GDA94, other parameters 0).

    Each feature class was then rasterised to a 100m raster with extents to a multiple of 1000 m, to ensure alignment. In some instances, areas of 'NoData' had to be modelled in raster. For example, in NSW where non-native areas (cleared, water bodies etc) have not been mapped. The rasters were then merged into a 'state wide' raster. State rasters were then merged into this 'Australia wide' raster dataset.

    November 2012 Corrections

    Closer inspection of the original 4.1 MVG Extant raster dataset highlighted some issues with the raster creation process which meant that raster pixels in some areas did not align as intended. These were corrected, and the new properly aligned rasters released in November 2012.

    Dataset Citation

    Department of the Environment (2012) Australia - Present Major Vegetation Groups - NVIS Version 4.1 (Albers 100m analysis product). Bioregional Assessment Source Dataset. Viewed 10 July 2017, http://data.bioregionalassessments.gov.au/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374.

  8. National Hydrography Dataset Plus Version 2.1

    • geodata.colorado.gov
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://geodata.colorado.gov/datasets/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  9. USA Protected Areas - GAP Status Code (Mature Support)

    • resilience.climate.gov
    • cgs-topics-lincolninstitute.hub.arcgis.com
    • +1more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USA Protected Areas - GAP Status Code (Mature Support) [Dataset]. https://resilience.climate.gov/datasets/esri::usa-protected-areas-gap-status-code-mature-support-1/about
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of September 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The USGS Protected Areas Database of the United States (PAD-US) is the official inventory of public parks and other protected open space. The spatial data in PAD-US represents public lands held in trust by thousands of national, state and regional/local governments, as well as non-profit conservation organizations.GAP 1 and 2 areas are primarily managed for biodiversity, GAP 3 are managed for multiple uses including conservation and extraction, GAP 4 no known mandate for biodiversity protection. Provides a general overview of protection status including management designations. PAD-US is published by the U.S. Geological Survey (USGS) Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP). GAP produces data and tools that help meet critical national challenges such as biodiversity conservation, recreation, public health, climate change adaptation, and infrastructure investment. See the GAP webpage for more information about GAP and other GAP data including species and land cover.The USGS Protected Areas Database of the United States (PAD-US) classifies lands into four GAP Status classes:GAP Status 1 - Areas managed for biodiversity where natural disturbances are allowed to proceedGAP Status 2 - Areas managed for biodiversity where natural disturbance is suppressedGAP Status 3 - Areas protected from land cover conversion but subject to extractive uses such as logging and miningGAP Status 4 - Areas with no known mandate for protectionIn the United States, areas that are protected from development and managed for biodiversity conservation include Wilderness Areas, National Parks, National Wildlife Refuges, and Wild & Scenic Rivers. Understanding the geographic distribution of these protected areas and their level of protection is an important part of landscape-scale planning. Dataset SummaryPhenomenon Mapped: Areas protected from development and managed to maintain biodiversity Coordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, the Northern Mariana Islands and other Pacific Ocean IslandsVisible Scale: 1:1,000,000 and largerSource: USGS Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP) PAD-US version 3.0Publication Date: July 2022Attributes included in this layer are: CategoryOwner TypeOwner NameLocal OwnerManager TypeManager NameLocal ManagerDesignation TypeLocal DesignationUnit NameLocal NameSourcePublic AccessGAP Status - Status 1, 2, or 3GAP Status DescriptionInternational Union for Conservation of Nature (IUCN) Description - I: Strict Nature Reserve, II: National Park, III: Natural Monument or Feature, IV: Habitat/Species Management Area, V: Protected Landscape/Seascape, VI: Protected area with sustainable use of natural resources, Other conservation area, UnassignedDate of EstablishmentThe source data for this layer are available here. What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for Gap Status Code = 3 to create a map of only the GAP Status 3 areas.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Note that many features in the PAD-US database overlap. For example wilderness area designations overlap US Forest Service and other federal lands. Any analysis should take this into consideration. An imagery layer created from the same data set can be used for geoprocessing analysis with larger extents and eliminates some of the complications arising from overlapping polygons.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  10. c

    Land Cover 1992-2020

    • cacgeoportal.com
    • hub.arcgis.com
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Land Cover 1992-2020 [Dataset]. https://www.cacgeoportal.com/maps/bb0e4bcd891c4679881f80997c9b8871
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  11. m

    Water resource plan areas - Queensland

    • demo.dev.magda.io
    • cloud.csiss.gmu.edu
    • +3more
    zip
    Updated Dec 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). Water resource plan areas - Queensland [Dataset]. https://demo.dev.magda.io/dataset/ds-dga-faa58e08-5f2a-47fc-b58a-4550f13f80aa
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 4, 2022
    Dataset provided by
    Bioregional Assessment Program
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Queensland
    Description

    Abstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. Dataset WM1127 contains all the …Show full descriptionAbstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. Dataset WM1127 contains all the water resource plan (WRP) areas in Queensland that are in force in legislation currently, except for the Great Artesian Basin (GAB) WRP area (dataset WM0702). (For more information see http://www.dnrm.qld.gov.au/water/catchments-planning ). WM1127 replaced WM0924v2 due to the "Water Resource (Burnett Basin) Plan 2014" (Burnett 2014 WRP) coming into force (mapping accuracy improvements were applied for part of the Burnett WRP area). (Reference: CAS1881, 2026.) Purpose Legislation: 2000 Act Number 34, "Water Act 2000", Part 3 "Water planning", Division 2 "Water resource plans", Subdivision 1 "Power to prepare water resource plans", section 38 "Minister may prepare water resource plans" and section 55 "When water resource plans may be amended or replaced" (http://www.legislation.qld.gov.au/OQPChome.htm http://www.legislation.qld.gov.au/LEGISLTN/CURRENT/W/WaterA00.pdf ). Subordinate legislation: "Water Resource (title) Plan year" (http://www.legislation.qld.gov.au/Acts_SLs/Acts_SL_W.htm ). Dataset History Metadata format: Esri ArcGIS v10+ Style: ISO 19139. (Open Data metadata is supplied in three formats: HyperText Markup Language (.htm file), Esri ArcGIS v10+ ArcGIS metadata (.shp.xml file), and International Standards Organisation (ISO) 19139 "Geographic Information - Metadata XML schema implementation" of ISO 19115 "Geographic Information - Metadata" (_ISO19139.xml file). View the .htm file in a web browser, the .shp.xml file in Esri ArcGIS v10+, and the ISO19139 file in other GIS applications. The ArcGIS metadata format is editable in ArcGIS and has live hyperlinks.) Mapping scale is generally 1:100,000 and enhanced in places with larger scale mapping (for example 1:25,000) and in places by ground truthing by visiting the location. If required, more information should be obtained from the department where an area of interest is near to or crossing a boundary. Information asset theme "water management", subtheme "management area", "water resource plan". Attributes: SDI Spatial Data Index, departmental internal unique identifier for a Feature Object and Feature Class. TITLE Title (name). COMMENCE Commencement date "in force". COMMENCESL Subordinate legislation number. INTERNET Uniform Resource Locator (URL, web address) of department webpage for the object. Dataset Citation Queensland Government (2015) Water resource plan areas - Queensland. Bioregional Assessment Source Dataset. Viewed 11 April 2016, http://data.bioregionalassessments.gov.au/dataset/d2fe0619-4545-4bd0-b983-5cbb4e9399be.

  12. i

    INDOT County Log Inventory

    • indianamap.org
    Updated Jan 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndianaMap (2024). INDOT County Log Inventory [Dataset]. https://www.indianamap.org/datasets/indot-county-log-inventory
    Explore at:
    Dataset updated
    Jan 24, 2024
    Dataset authored and provided by
    IndianaMap
    Area covered
    Description

    Indiana County Log Line Inventory created as an ESRI polyline shapefile consisting of a Feature polyline geometry. The data set was compiled by Road Inventory of the Indiana GIS Department of Transportation (INDOT) . Dataset is classified as sde Feature Class. The Feature Class is projected Coordinate System: NAD 1983, UTM, Zone 16 N. The Projections is Transverse Mercator.Each County Log Line Inventory is placed as to Position.(County Log is a utilized measurement from a County Line intersecting with a Highway Network, for example Interstate, State and US. Measurement is from West to East and South to North). Position also utilizes Jurisdiction, County, Road System, Route Name and Alternative RouteCounty Log line inventory is as of 2006-2015. There is a total of (133,278) records

  13. a

    Centerline

    • data-cosm.hub.arcgis.com
    • data.nola.gov
    • +1more
    Updated Oct 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of San Marcos (2020). Centerline [Dataset]. https://data-cosm.hub.arcgis.com/datasets/centerline
    Explore at:
    Dataset updated
    Oct 22, 2020
    Dataset authored and provided by
    City of San Marcos
    Area covered
    Description

    Road segments representing centerlines of all roadways or carriageways in a local government. Typically, this information is compiled from orthoimagery or other aerial photography sources. This representation of the road centerlines support address geocoding and mapping. It also serves as a source for public works and other agencies that are responsible for the active management of the road network. (From ESRI Local Government Model "RoadCenterline" Feature)**This dataset was significantly revised in August of 2014 to correct for street segments that were not properly split at intersections. There may be issues with using data based off of the original centerline file. ** The column Speed Limit was updated in November 2014 by the Transportation Intern and is believed to be accurate** The column One Way was updated in November of 2014 by core GIS and is believed to be accurate.[MAXIMOID] A unique id field used in a work order management software called Maximo by IBM. Maximo uses GIS CL data to assign locations to work orders using this field. This field is maintained by the Transportation GIS specialists and is auto incremented when new streets are digitized. For example, if the latest digitized street segment MAXIMOID = 999, the next digitized line will receive MAXIMOID = 1000, and so on. STREET NAMING IS BROKEN INTO THREE FIELDS FOR GEOCODING:PREFIX This field is attributed if a street name has a prefix such as W, N, E, or S.NAME Domain with all street names. The name of the street without prefix or suffix.ROAD_TYPE (Text,4) Describes the type of road aka suffix, if applicable. CAPCOG Addressing Guidelines Sec 504 U. states, “Every road shall have corresponding standard street suffix…” standard street suffix abbreviations comply with USPS Pub 28 Appendix C Street Abbreviations. Examples include, but are not limited to, Rd, Dr, St, Trl, Ln, Gln, Lp, CT. LEFT_LOW The minimum numeric address on the left side of the CL segment. Left side of CL is defined as the left side of the line segment in the From-To direction. For example, if a line has addresses starting at 101 and ending at 201 on its left side, this column will be attributed 101.LEFT_HIGH The largest numeric address on the left side of the CL segment. Left side of CL is defined as the left side of the line segment in the From-To direction. For example, if a line has addresses starting at 101 and ending at 201 on its left side, this column will be attributed 201.LOW The minimum numeric address on the RIGHT side of the CL segment. Right side of CL is defined as the right side of the line segment in the From-To direction. For example, if a line has addresses starting at 100 and ending at 200 on its right side, this column will be attributed 100.HIGHThe maximum numeric address on the RIGHT side of the CL segment. Right side of CL is defined as the right side of the line segment in the From-To direction. For example, if a line has addresses starting at 100 and ending at 200 on its right side, this column will be attributed 200.ALIAS Alternative names for roads if known. This field is useful for geocode re-matching. CLASSThe functional classification of the centerline. For example, Minor (Minor Arterial), Major (Major Arterial). THIS FIELD IS NOT CONSISTENTLY FILLED OUT, NEEDS AN AUDIT. FULLSTREET The full name of the street concatenating the [PREFIX], [NAME], and [SUFFIX] fields. For example, "W San Antonio St."ROWWIDTH Width of right-of-way along the CL segment. Data entry from Plat by Planning GIS Or from Engineering PICPs/ CIPs.NUMLANES Number of striped vehicular driving lanes, including turn lanes if present along majority of segment. Does not inlcude bicycle lanes. LANEMILES Describes the total length of lanes for that segment in miles. It is manually field calculated as follows (( [ShapeLength] / 5280) * [NUMLANES]) and maintained by Transportation GIS.SPEEDLIMIT Speed limit of CL segment if known. If not, assume 30 mph for local and minor arterial streets. If speed limit changes are enacted by city council they will be recorded in the Traffic Register dataset, and this field will be updating accordingly. Initial data entry made by CIP/Planning GIS and maintained by Transportation GIS.[YRBUILT] replaced by [DateBuilt] See below. Will be deleted. 4/21/2017LASTYRRECON (Text,10) Is the last four-digit year a major reconstruction occurred. Most streets have not been reconstructed since orignal construction, and will have values. The Transportation GIS Specialist will update this field. OWNER Describes the governing body or private entity that owns/maintains the CL. It is possible that some streets are owned by other entities but maintained by CoSM. Possible attributes include, CoSM, Hays Owned/City Maintained, TxDOT Owned/City Maintained, TxDOT, one of four counties (Hays, Caldwell, Guadalupe, and Comal), TxState, and Private.ST_FROM Centerline segments are split at their intersections with other CL segments. This field names the nearest cross-street in the From- direction. Should be edited when new CL segments that cause splits are added. ST_TO Centerline segments are split at their intersections with other CL segments. This field names the nearest cross-street in the To- direction. Should be edited when new CL segments that cause splits are added. PAV_WID Pavement width of street in feet from back-of-curb to back-of-curb. This data is entered from as-built by CIP GIS. In January 2017 Transportation Dept. field staff surveyed all streets and measured width from face-of-curb to face-of-curb where curb was present, and edge of pavement to edge of pavement where it was not. This data was used to field calculate pavement width where we had values. A value of 1 foot was added to the field calculation if curb and gutter or stand up curb were present (the face-of-curb to back-of-curb is 6 in, multiple that by 2 to find 1 foot). If no curb was present, the value enter in by the field staff was directly copied over. If values were already present, and entered from asbuilt, they were left alone. ONEWAY Field describes direction of travel along CL in relation to digitized direction. If a street allows bi-directional travel it is attributed "B", a street that is one-way in the From_To direction is attributed "F", a street that is one-way in the To_From direction is attributed "T", and a street that does not allow travel in any direction is attibuted "N". ROADLEVEL Field will be aliased to [MINUTES] and be used to calculate travel time along CL segments in minutes using shape length and [SPEEDLIMIT]. Field calculate using the following expression: [MINUTES] = ( ([SHAPE_LENGTH] / 5280) / ( [SPEEDLIMIT] / 60 ))ROWSTATUS Values include "Open" or "Closed". Describes whether a right-of-way is open or closed. If a street is constructed within ROW it is "Open". If a street has not yet been constructed, and there is ROW, it is "Cosed". UPDATE: This feature class only has CL geometries for "Open" rights-of-way. This field should be deleted or re-purposed. ASBUILT field used to hyper link as-built documents detailing construction of the CL. Field was added in Dec. 2016. DateBuilt Date field used to record month and year a road was constructed from Asbuilt. Data was collected previously without month information. Data without a known month is entered as "1/1/YYYY". When month and year are known enter as "M/1/YYYY". Month and Year from asbuilt. Added by Engineering/CIP. ACCEPTED Date field used to record the month, day, and year that a roadway was officially accepted by the City of San Marcos. Engineering signs off on acceptance letters and stores these documents. This field was added in May of 2018. Due to a lack of data, the date built field was copied into this field for older roadways. Going forward, all new roadways will have this date. . This field will typically be populated well after a road has been drawn into GIS. Entered by Engineering/CIP. ****In an effort to make summarizing the data more efficient in Operations Dashboard, a generic date of "1/1/1900" was assigned to all COSM owned or maintained roads that had NULL values. These were roads that either have not been accepted yet, or roads that were expcepted a long time ago and their accepted date is not known. WARRANTY_EXP Date field used to record the expiration date of a newly accepted roadway. Typically this is one year from acceptance date, but can be greater. This field was added in May of 2018, so only roadways that have been excepted since and older roadways with valid warranty dates within this time frame have been populated.

  14. Global Land Cover 1992-2020

    • climate.esri.ca
    • cacgeoportal.com
    • +4more
    Updated Apr 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Global Land Cover 1992-2020 [Dataset]. https://climate.esri.ca/datasets/1453082255024699af55c960bc3dc1fe
    Explore at:
    Dataset updated
    Apr 2, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meter Source Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary Sphere Extent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer? This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro. In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend. To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth. Different Classifications Available to Map Five processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display. Using Time By default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year. In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change. Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009. This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover. Land Cover Processing To provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015. Source data The datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.php CitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%) 50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  15. i

    Interstates 2016

    • indianamap.org
    • indianamapold-inmap.hub.arcgis.com
    • +1more
    Updated Jul 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndianaMap (2016). Interstates 2016 [Dataset]. https://www.indianamap.org/maps/INMap::interstates-2016
    Explore at:
    Dataset updated
    Jul 1, 2016
    Dataset authored and provided by
    IndianaMap
    Area covered
    Description

    INTERSTATES_INDOT_IN.SHP is a line shapefile of Indiana interstates, as provided by the Indiana GIS Department of Transportation (INDOT), Road Inventory Section. Data were collected for the years 2006-2015. The following is excerpted from the metadata provided by INDOT for the source feature class named "INTERSTATE_HIGHWAYS": "Indiana County Log Line Inventory created as an Esri polyline shapefile consisting of a Feature polyline geometry. The data set was compiled by Road Inventory of the Indiana GIS Department of Transportation (INDOT) . Dataset is classified as sde Feature Class. The Feature Class is projected Coordinate System: NAD 1983, UTM, Zone 16 N. The Projections is Transverse Mercator.Each County Log Line Inventory is placed as to Position. (County Log is a utilized measurement from a County Line intersecting with a Highway Network, for example Interstate, State and US. Measurement is from West to East and South to North). Position also utilizes Jurisdiction, County, Road System, Route Name and Alternative RouteCounty Log line inventory is as of 2006-2015."

  16. o

    OC Municipal Tax District

    • accessoakland.oakgov.com
    • detroitdata.org
    • +5more
    Updated Apr 19, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oakland County, Michigan (2019). OC Municipal Tax District [Dataset]. https://accessoakland.oakgov.com/datasets/oc-municipal-tax-district
    Explore at:
    Dataset updated
    Apr 19, 2019
    Dataset authored and provided by
    Oakland County, Michigan
    Area covered
    Description

    BY USING THIS WEBSITE OR THE CONTENT THEREIN, YOU AGREE TO THE TERMS OF USE. A spatial representation of the local tax authorities. This polygon feature class was derived from the MunicipalDistrict feature class. It differs from the MunicipalDistrict feature class in areas where the tax authority differs from the legal authority. For example, two municipalities may have a 425 agreement in which an annexation does not occur, but the tax authority for certain parcels changes from one municipality to another. Key attributes include the Name (CVT name) and Type (CVT type: city, village, general law township, charter township), and CVTCode (unique code identifying the tax authority).

  17. a

    Subdivision

    • opendata.atlantaregional.com
    • arc-garc.opendata.arcgis.com
    • +2more
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Forsyth County Georgia (2023). Subdivision [Dataset]. https://opendata.atlantaregional.com/datasets/forsythcoga::subdivision-1
    Explore at:
    Dataset updated
    May 30, 2023
    Dataset authored and provided by
    Forsyth County Georgia
    Area covered
    Description

    A means of defining multiple units of land in a single survey document in such a way that all their boundaries have equal legal status. A common example of simultaneous conveyance is the modern subdivision. The Simultaneous Conveyance feature class is updated nightly extracting information from the Parcel Fabric into the feature class.

  18. Windows and Doors Extraction

    • sdiinnovation-geoplatform.hub.arcgis.com
    • hub.arcgis.com
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Windows and Doors Extraction [Dataset]. https://sdiinnovation-geoplatform.hub.arcgis.com/datasets/esri::windows-and-doors-extraction
    Explore at:
    Dataset updated
    Nov 9, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    This deep learning model is used for extracting windows and doors in textured building data displayed in 3D views. Manually digitizing windows/doors from 3D building data can be a slow process. This model automates the extraction of these objects from a 3D view and can help in speeding up 3D editing and analysis workflows. Using this model, existing building data can be enhanced with additional information on location, size and orientation of windows and doors. The extracted windows and doors can be further used to perform 3D visibility analysis using existing 3D geoprocessing tools in ArcGIS.This model can be useful in many industries and workflows. National Government and state-level law enforcement could use this model in security analysis scenarios. Local governments could use windows and door locations to help with tax assessments with CAMA (computer aided mass appraisal) plus impact-studies for urban planning. Public safety users might be interested in regards to physical or visual access to restricted areas, or the ability to build evacuation plans. The commercial sector, with everyone from real-estate agents to advertisers to office/interior designers, would be able to benefit from knowing where windows and doors are located. Even utilities, especially mobile phone providers, could take advantage of knowing window sizes and positions. To be clear, this model doesn't solve these problems, but it does allow users to extract and collate some of the data they will need to do it.Using the modelThis model is generic and is expected to work well with a variety of building styles and shapes. To use this model, you need to install supported deep learning frameworks packages first. See Install deep learning frameworks for ArcGIS for more information. The model can be used with the Interactive Object Detection tool.A blog on the ArcGIS Pro tool that leverages this model is published on Esri Blogs. We've also published steps on how to retrain this model further using your data.InputThe model is expected to work with any textured building data displayed in 3D views. Example data sources include textured multipatches, 3D object scene layers, and integrated mesh layers. OutputFeature class with polygons representing the detected windows and doors in the input imagery. Model architectureThe model uses the FasterRCNN model architecture implemented using ArcGIS API for Python.Training dataThis model was trained using images from the Open Images Dataset.Sample resultsBelow, are sample results of the windows detected with this model in ArcGIS Pro using the Interactive Object Detection tool, which outputs the detected objects as a symbolized point feature class with size and orientation attributes.

  19. w

    Address Points - Preliminary File

    • data.wu.ac.at
    • data.ct.gov
    csv, json, xml
    Updated Nov 20, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Connecticut (2015). Address Points - Preliminary File [Dataset]. https://data.wu.ac.at/schema/data_ct_gov/MzVidi14YTZp
    Explore at:
    xml, csv, jsonAvailable download formats
    Dataset updated
    Nov 20, 2015
    Dataset provided by
    State of Connecticut
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    A preliminary file of address points compiled from various digital sources. Address point feature class derived from FGDC addressing standard. All address components, like address number, streets name and unit number, are broken up into their individual components to enable maximum flexibility for use. Fields within feature class should be able to accommodate all addresses within the state of Connecticut. This file was created by compiling address point data from existing digital sources, or by creating parcel base centroids where digital parcel data exists.

    A .zip file is available to for downloading the entre database in an ESRI FGDB format. Alternatively, an ArcGIS Open Data website has been established for downloading data in alternate formats and for specific areas in the State.

    A REST endpoint is also available: http://www.ctgismaps2.ct.gov/arcgis/rest/services/CT_Open_Maps/Address_Points/MapServer/

  20. d

    Victorian Land Use Information System 2016-2017

    • data.gov.au
    • researchdata.edu.au
    csv, dwg, dxf +6
    Updated Mar 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Jobs, Skills, Industry and Regions (2025). Victorian Land Use Information System 2016-2017 [Dataset]. https://data.gov.au/dataset/ds-vic-cbece4e0-7cbd-49c3-bc3a-76f41709fbdb
    Explore at:
    extended, gdb, shp, dwg, csv, mif, dxf, wms, wfsAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset provided by
    Department of Jobs, Skills, Industry and Regions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Victoria
    Description

    The Victorian Land Use Information System (VLUIS) 2016/17 dataset has been created by the Spatial Information Sciences Group of the Agriculture Victoria Research in the Department of Economic …Show full descriptionThe Victorian Land Use Information System (VLUIS) 2016/17 dataset has been created by the Spatial Information Sciences Group of the Agriculture Victoria Research in the Department of Economic Development, Jobs, Transport, and Resources. It covers the entire landmass of Victoria and separately describes the land tenure, land use and land cover across the state at the cadastral parcel level. The methodology for creating the VLUIS is described in Morse-McNabb et al. (2015) with the following notable changes: Land use data provided by the Office of the Valuer-General of Victoria for the 2014 year has been used as a base input. Readily available sources of land use information from government and industry have been used to provide updates to the land tenure and land use components of the 2016/17 dataset. The source dataset and source date are recorded for each parcel. The land cover mapping method remains unchanged to previous versions of the VLUIS. The Australian Land Use and Management (ALUM) Classification, version 8, has been added to the attribute table. The VLUIS land use code fields have been translated across to the ALUM classification. Version 8 has been used you can find the ALUM Classification on the Department of Agriculture and Water Resources ABARES ALUM page: http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification. Land parcels within urban areas, mapped in previous versions, have been masked out and have been renamed as Built Up Areas vastly reducing the size of the 2016/17 dataset. Land cover for Built Up Areas (LC_CODE = BUILT) is listed as null. Road reserves and road parcels have been merged together and renamed Voids. Land cover for Voids (LC_CODE = VOID) is listed as null. Parcels <12.5 hectares: land cover has not been attributed as the resolution of MODIS cannot support classifications of polygons smaller than 12.5 hectares. The data is in the form of an ESRI feature class. To use the VLUIS data correctly it is important to understand the difference between the three components of VLUIS. The Guidelines for land use mapping in Australia: principles, procedures and definitions, Edition 3 published in 2006 by the Commonwealth of Australia, defines them as follows: Land tenure is the form of an interest in land. Some forms of tenure (such as pastoral leases or nature conservation reserves) relate directly to land use and land management practice. Land use means the purpose to which the land cover is committed. Some land uses, such as agriculture, have a characteristic land cover pattern. These usually appear in land cover classifications. Other land uses, such as nature conservation, are not readily discriminated by a characteristic land cover pattern. For example, where the land cover is woodland, land use may be timber production or nature conservation. Land cover refers to the physical surface of the earth, including various combinations of vegetation types, soils, exposed rocks and water bodies as well as anthropogenic elements, such as agriculture and built environments. Land cover classes can usually be discriminated by characteristic patterns using remote sensing. A metadata statement, for the VLUIS product, and ESRI symbology files for the data can be freely downloaded from the VLUIS project page on the Victorian Resources Online website: http://vro.agriculture.vic.gov.au/dpi/vro/vrosite.nsf/pages/vluis DOI 10.26279/5b96043f7bd02

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2023). National Hydrography Dataset Plus High Resolution [Dataset]. https://hub.arcgis.com/maps/f1f45a3ba37a4f03a5f48d7454e4b654
Organization logo

National Hydrography Dataset Plus High Resolution

Explore at:
Dataset updated
Mar 16, 2023
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

Search
Clear search
Close search
Google apps
Main menu