This will audit all of the web App Builder Applications in an organization, and provide a list of the widgets within them. The list will be in a csv file. You can then cross reference the list of widgets with the following blog, in order to prioritize the order with which you migrate your Web App Builder Applications to Experience Builder. https://community.esri.com/t5/arcgis-experience-builder-documents/functionality-matrix-for-web-appbuilder-and/ta-p/1113766
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
the dataset of paper "Detecting common features from point patterns for similarity measurement using matrix decomposition" the code is implemented by C# with ArcGIS Engine the data denotes points with X and Y please cite our paper if the dataset can help you with your research
description: These products were developed to provide scientific and correspondingly spatially explicit information regarding the distribution and abundance of conifers (namely, singleleaf pinyon (Pinus monophylla), Utah juniper (Juniperus osteosperma), and western juniper (Juniperus occidentalis)) in Nevada and portions of northeastern California. Encroachment of these trees into sagebrush ecosystems of the Great Basin can present a threat to populations of greater sage-grouse (Centrocercus urophasianus). These data provide land managers and other interested parties with a high-resolution representation of conifers across the range of sage-grouse habitat in Nevada and northeastern California that can be used for a variety of management and research applications. We mapped conifer trees at 1 x 1 meter resolution across the extent of all Nevada Department of Wildlife Sage-grouse Population Management Units plus a 10 km buffer. Using 2010 and 2013 National Agriculture Imagery Program digital orthophoto quads (DOQQs) as our reference imagery, we applied object-based image analysis with Feature Analyst software (Overwatch, 2013) to classify conifer features across our study extent. This method relies on machine learning algorithms that extract features from imagery based on their spectral and spatial signatures. Conifers in 6230 DOQQs were classified and outputs were then tested for errors of omission and commission using stratified random sampling. Results of the random sampling were used to populate a confusion matrix and calculate the overall map accuracy of 84.3 percent. We provide 4 sets of products for this mapping process across the entire mapping extent: (1) a shapefile representing accuracy results linked to our mapping subunits; (2) binary rasters representing conifer presence or absence at a 1 x 1 meter resolution; (3) a 30 x 30 meter resolution raster representing percentage of conifer canopy cover within each cell from 0 to 100; and (4) 1 x 1 meter resolution canopy cover classification rasters derived from a 50 meter radius moving window analysis. The latter two products can be reclassified into user-specified bins to meet different management or study objectives, which include approximations for phases of encroachment. These products complement, and in some cases improve upon, existing conifer maps in the western United States, and will help facilitate sage-grouse habitat management and sagebrush ecosystem restoration. These data support the following publication: Coates, P.S., Gustafson, K.B., Roth, C.L., Chenaille, M.P., Ricca, M.A., Mauch, Kimberly, Sanchez-Chopitea, Erika, Kroger, T.J., Perry, W.M., and Casazza, M.L., 2017, Using object-based image analysis to conduct high-resolution conifer extraction at regional spatial scales: U.S. Geological Survey Open-File Report 2017-1093, 40 p., https://doi.org/10.3133/ofr20171093. References: ESRI, 2013, ArcGIS Desktop: Release 10.2: Environmental Systems Research Institute. Overwatch, 2013, Feature Analyst Version 5.1.2.0 for ArcGIS: Overwatch Systems Ltd.; abstract: These products were developed to provide scientific and correspondingly spatially explicit information regarding the distribution and abundance of conifers (namely, singleleaf pinyon (Pinus monophylla), Utah juniper (Juniperus osteosperma), and western juniper (Juniperus occidentalis)) in Nevada and portions of northeastern California. Encroachment of these trees into sagebrush ecosystems of the Great Basin can present a threat to populations of greater sage-grouse (Centrocercus urophasianus). These data provide land managers and other interested parties with a high-resolution representation of conifers across the range of sage-grouse habitat in Nevada and northeastern California that can be used for a variety of management and research applications. We mapped conifer trees at 1 x 1 meter resolution across the extent of all Nevada Department of Wildlife Sage-grouse Population Management Units plus a 10 km buffer. Using 2010 and 2013 National Agriculture Imagery Program digital orthophoto quads (DOQQs) as our reference imagery, we applied object-based image analysis with Feature Analyst software (Overwatch, 2013) to classify conifer features across our study extent. This method relies on machine learning algorithms that extract features from imagery based on their spectral and spatial signatures. Conifers in 6230 DOQQs were classified and outputs were then tested for errors of omission and commission using stratified random sampling. Results of the random sampling were used to populate a confusion matrix and calculate the overall map accuracy of 84.3 percent. We provide 4 sets of products for this mapping process across the entire mapping extent: (1) a shapefile representing accuracy results linked to our mapping subunits; (2) binary rasters representing conifer presence or absence at a 1 x 1 meter resolution; (3) a 30 x 30 meter resolution raster representing percentage of conifer canopy cover within each cell from 0 to 100; and (4) 1 x 1 meter resolution canopy cover classification rasters derived from a 50 meter radius moving window analysis. The latter two products can be reclassified into user-specified bins to meet different management or study objectives, which include approximations for phases of encroachment. These products complement, and in some cases improve upon, existing conifer maps in the western United States, and will help facilitate sage-grouse habitat management and sagebrush ecosystem restoration. These data support the following publication: Coates, P.S., Gustafson, K.B., Roth, C.L., Chenaille, M.P., Ricca, M.A., Mauch, Kimberly, Sanchez-Chopitea, Erika, Kroger, T.J., Perry, W.M., and Casazza, M.L., 2017, Using object-based image analysis to conduct high-resolution conifer extraction at regional spatial scales: U.S. Geological Survey Open-File Report 2017-1093, 40 p., https://doi.org/10.3133/ofr20171093. References: ESRI, 2013, ArcGIS Desktop: Release 10.2: Environmental Systems Research Institute. Overwatch, 2013, Feature Analyst Version 5.1.2.0 for ArcGIS: Overwatch Systems Ltd.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This will audit all of the web App Builder Applications in an organization, and provide a list of the widgets within them. The list will be in a csv file. You can then cross reference the list of widgets with the following blog, in order to prioritize the order with which you migrate your Web App Builder Applications to Experience Builder. https://community.esri.com/t5/arcgis-experience-builder-documents/functionality-matrix-for-web-appbuilder-and/ta-p/1113766