100+ datasets found
  1. Esri - Water Resources

    • 3dhp-for-the-nation-nsgic.hub.arcgis.com
    Updated Jan 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National States Geographic Information Council (NSGIC) (2025). Esri - Water Resources [Dataset]. https://3dhp-for-the-nation-nsgic.hub.arcgis.com/datasets/esri-water-resources
    Explore at:
    Dataset updated
    Jan 6, 2025
    Dataset provided by
    National States Geographic Information Council
    Authors
    National States Geographic Information Council (NSGIC)
    Description

    Esri's Water Resources GIS Platform offers a comprehensive suite of tools and resources designed to modernize water resource management. It emphasizes geospatial solutions for monitoring, analyzing, and modeling water systems, helping decision-makers tackle challenges like drought resilience, flood mitigation, and environmental protection. By leveraging the capabilities of ArcGIS, users can transform raw water data into actionable insights, ensuring more efficient and effective water resource management.A central feature of the platform is Arc Hydro, a specialized data model and toolkit developed for GIS-based water resource analysis. This toolset allows users to integrate, analyze, and visualize water datasets for applications ranging from live stream gauge monitoring to pollution control. Additionally, the platform connects users to the ArcGIS Living Atlas of the World, which offers extensive water-related datasets such as rivers, wetlands, and soils, supporting in-depth analyses of hydrologic conditions. The Hydro Community further enhances collaboration, enabling stakeholders to share expertise, discuss challenges, and build innovative solutions together.Esri’s platform also provides training opportunities and professional services to empower users with technical knowledge and skills. Through instructor-led courses, documentation, and best practices, users gain expertise in using ArcGIS and Arc Hydro for their specific water management needs. The combination of tools, datasets, and community engagement makes Esri's water resources platform a powerful asset for advancing sustainable water management initiatives across public and private sectors.

  2. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  3. Esri Maps for Public Policy

    • ilcn-lincolninstitute.hub.arcgis.com
    • center-for-community-investment-lincolninstitute.hub.arcgis.com
    • +1more
    Updated Oct 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Esri Maps for Public Policy [Dataset]. https://ilcn-lincolninstitute.hub.arcgis.com/datasets/esri::esri-maps-for-public-policy
    Explore at:
    Dataset updated
    Oct 1, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    OVERVIEWThis site is dedicated to raising the level of spatial and data literacy used in public policy. We invite you to explore curated content, training, best practices, and datasets that can provide a baseline for your research, analysis, and policy recommendations. Learn about emerging policy questions and how GIS can be used to help come up with solutions to those questions.EXPLOREGo to your area of interest and explore hundreds of maps about various topics such as social equity, economic opportunity, public safety, and more. Browse and view the maps, or collect them and share via a simple URL. Sharing a collection of maps is an easy way to use maps as a tool for understanding. Help policymakers and stakeholders use data as a driving factor for policy decisions in your area.ISSUESBrowse different categories to find data layers, maps, and tools. Use this set of content as a driving force for your GIS workflows related to policy. RESOURCESTo maximize your experience with the Policy Maps, we’ve assembled education, training, best practices, and industry perspectives that help raise your data literacy, provide you with models, and connect you with the work of your peers.

  4. H

    Golf Courses

    • opendata.hawaii.gov
    • geoportal.hawaii.gov
    • +2more
    Updated Sep 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning (2023). Golf Courses [Dataset]. https://opendata.hawaii.gov/dataset/golf-courses
    Explore at:
    ogc wfs, pdf, arcgis geoservices rest api, ogc wms, kml, html, csv, geojson, zipAvailable download formats
    Dataset updated
    Sep 29, 2023
    Dataset provided by
    Hawaii Statewide GIS Program
    Authors
    Office of Planning
    Description
    [Metadata] Locations of golf courses in the State of Hawaii as of August 2023.
    Source: Downloaded by Hawaii Statewide GIS Program staff from Hawaii State Golf Association website (https://hawaiistategolf.org), 8/8/23. NOTE: This data layer shows the status of golf courses BEFORE THE MAUI WILDFIRES OF AUGUST 2023. Geocoded using Esri's World Geocoder. Modified some locations based on satellite imagery, various road layers, etc.

    For more information, please see metadata at https://files.hawaii.gov/dbedt/op/gis/data/golf_courses.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
  5. a

    Integrating Data in ArcGIS Pro

    • hub.arcgis.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2020). Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/3a11f895a7dc4d28ad45cee9cc5ba6d8
    Explore at:
    Dataset updated
    Mar 25, 2020
    Dataset authored and provided by
    State of Delaware
    Description

    In this course, you will learn about some common types of data used for GIS mapping and analysis, and practice adding data to a file geodatabase to support a planned project.Goals Create a file geodatabase. Add data to a file geodatabase. Create an empty geodatabase feature class.

  6. n

    Module 2 Lesson 3 – Student Directions – Thinking Spatially Using GIS

    • library.ncge.org
    Updated Jun 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). Module 2 Lesson 3 – Student Directions – Thinking Spatially Using GIS [Dataset]. https://library.ncge.org/documents/03a693e0f4e34636ad78c9f997cf7778
    Explore at:
    Dataset updated
    Jun 9, 2020
    Dataset authored and provided by
    NCGE
    Description

    Thinking Spatially Using GIS

    Thinking Spatially Using GIS is a 1:1 set of instructional materials for students that use ArcGIS Online to teach basic geography concepts found in upper elementary school and above.
    Each module has both a teacher and student file.

    The zoo in your community is so popular and successful that it has decided to expand. After careful research, zookeepers have decided to add an exotic animal to the zoo population. They are holding a contest for visitors to guess what the new animal will be. You will use skills you have learned in classification and analysis to find what part of the world the new animal is from and then identify it.

    To help you get started, the zoo has provided a list of possible animals. A list of clues will help you choose the correct answers. You will combine information you have in multiple layers of maps to find your answer.

    The Thinking Spatially Using GIS home is at: http://esriurl.com/TSG

    All Esri GeoInquiries can be found at: http://www.esri.com/geoinquiries

  7. a

    GIS in Action with Cory Munro

    • edu.hub.arcgis.com
    Updated Mar 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education and Research (2020). GIS in Action with Cory Munro [Dataset]. https://edu.hub.arcgis.com/documents/cf52c28f4e154d5eb6a2dc0ca9e9c57f
    Explore at:
    Dataset updated
    Mar 10, 2020
    Dataset authored and provided by
    Education and Research
    Description

    Attend this session to find out how teachers are using GIS to engage students in hands-on learning.Engaging Secondary Students with Spatial Community Based ProjectsCory Munro, Saugeen District Secondary School, Bluewater District School BoardStudents become engaged when they collect and analyze data for projects that produce meaningful results. This session will briefly highlight the work of several student and class projects at the local and international level. Forming community partnerships in recent years has provided excellent opportunities for students to build their spatial analysis skills using ArcMap, ArcGIS Online, Survey123, Story Maps, and Collector for ArcGIS. Projects to be highlighted include mapping safe routes to school based on local infrastructure and student surveys, tracking school graduates and their post-secondary destinations, fire safety in Saugeen Shores, and more.

  8. M

    DNR Toolbox for ArcGIS 10

    • gisdata.mn.gov
    • data.wu.ac.at
    esri_toolbox
    Updated May 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2024). DNR Toolbox for ArcGIS 10 [Dataset]. https://gisdata.mn.gov/dataset/dnr-arcgis-toolbox
    Explore at:
    esri_toolboxAvailable download formats
    Dataset updated
    May 25, 2024
    Dataset provided by
    Natural Resources Department
    Description

    The Minnesota DNR Toolbox and Hydro Tools provide a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR. All tools require at least ArcGIS 10+.

    If you create a GDRS using GDRS Manager and include this toolbox resource and MNDNR Quick Layers, the DNR toolboxes will automatically be added to the ArcToolbox window whenever Quick Layers GDRS Location is set to the GDRS location that has the toolboxes.

    Toolsets included in MNDNR Tools V10:
    - Analysis Tools
    - Conversion Tools
    - Division Tools
    - General Tools
    - Hydrology Tools
    - LiDAR and DEM Tools
    - Raster Tools
    - Sampling Tools

    These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.

  9. Geographic Management Information System

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jun 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.usaid.gov (2024). Geographic Management Information System [Dataset]. https://catalog.data.gov/dataset/geographic-management-information-system
    Explore at:
    Dataset updated
    Jun 25, 2024
    Dataset provided by
    United States Agency for International Developmenthttp://usaid.gov/
    Description

    The Geographic Management Information System (GeoMIS) is a FISMA Moderate minor application built using ArcGIS Server and portal, Microsoft SQL, and a web-facing front-end. The system can be accessed over the internet via https://www.usaidgiswbg.com using a web browser. GeoMIS is based on a commercial off-the-shelf product developed by Esri. Esri is creates geographic information system (GIS) software, web GIS and geodatabase management applications and is based in California. GeoMISIt is maintained by an Israeli company, Systematics (see Attachment 3) which is EsriI's agent in Israel. The mission has an annual maintenance contract with Systematics for GeoMIS. GeoMIS has 100 users from USAID staff (USA Direct Hire and Foreign Service Nationals) and 200 users from USAID contractors and grantees. The system is installed at USAID WBG office in Tel Aviv/Israel inside the computer room in the DMZ. It has no interconnections with any other system.

  10. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +2more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  11. Geospatial data for the Vegetation Mapping Inventory Project of Theodore...

    • catalog.data.gov
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Theodore Roosevelt National Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-theodore-roosevelt-nationa
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. An ArcInfo (copyright ESRI) GIS database was designed for THRO using the National Park GIS Database Design, Layout, and Procedures created by RSGIG. This was created through Arc Macro Language (AML) scripts that helped automate the transfer process and ensure that all spatial and attribute data was consistent and stored properly. Actual transfer of information from the interpreted aerial photographs to a digital, geo-referenced format involved two techniques, scanning (for the vegetation classes) and on-screen digitizing (for the land-use classes). Transferred information used to create vegetation polygon coverages and linear coverages in ArcInfo were based on quarter-quad borders. Attribute information including vegetation map unit, location, and aerial photo number was subsequently entered for all polygons. In addition, the spatial database has an FGDC-compliant metadata file.

  12. ArcGIS Technology for Mapping COVID-19

    • coronavirus-resources.esri.com
    Updated Apr 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). ArcGIS Technology for Mapping COVID-19 [Dataset]. https://coronavirus-resources.esri.com/datasets/arcgis-technology-for-mapping-covid-19
    Explore at:
    Dataset updated
    Apr 3, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    ArcGIS Technology for Mapping COVID-19 (Esri Training).Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic. This plan will teach you the core ArcGIS technology necessary to understand, prepare for, and respond to COVID-19 in your community or organization.More information about Esri training..._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  13. a

    13.2 Building Models for GIS Analysis Using ArcGIS

    • hub.arcgis.com
    Updated Mar 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 13.2 Building Models for GIS Analysis Using ArcGIS [Dataset]. https://hub.arcgis.com/documents/IowaDOT::13-2-building-models-for-gis-analysis-using-arcgis/about
    Explore at:
    Dataset updated
    Mar 4, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ArcGIS has many analysis and geoprocessing tools that can help you solve real-world problems with your data. In some cases, you are able to run individual tools to complete an analysis. But sometimes you may require a more comprehensive way to create, share, and document your analysis workflow.In these situations, you can use a built-in application called ModelBuilder to create a workflow that you can reuse, modify, save, and share with others.In this course, you will learn the basics of working with ModelBuilder and creating models. Models contain many different elements, many of which you will learn about. You will also learn how to work with models that others create and share with you. Sharing models is one of the major advantages of working with ModelBuilder and models in general. You will learn how to prepare a model for sharing by setting various model parameters.After completing this course, you will be able to:Identify model elements and states.Describe a prebuilt model's processes and outputs.Create and document models for site selection and network analysis.Define model parameters and prepare a model for sharing.

  14. Geospatial data for the Vegetation Mapping Inventory Project of Wind Cave...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Wind Cave National Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-wind-cave-national-park
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. An ArcInfo(tm) (ESRI) GIS database was designed for WICA using the National Park GIS Database Design, Layout, and Procedures created by the BOR. This was created through Arc Macro Language (AML) scripts that helped automate the transfer process and ensure that all spatial and attribute data was consistent and stored properly. Actual transfer of information from the interpreted aerial photographs to a digital, geo-referenced format involved two techniques, scanning (for the vegetation classes) and on-screen digitizing (for the land-use classes). Both techniques required the use of 14 digital black-and-white orthophoto quarter quadrangles (DOQQ's) covering the study area. Transferred information was used to create vegetation polygon coverages and ancillary linear coverages in ArcInfo(tm) for each WICA DOQQ. Attribute information including vegetation map unit, location, and aerial photo number was subsequently entered for all polygons.

  15. WSDOT - GIS Point Feature Class Template

    • geo.wa.gov
    • hub.arcgis.com
    • +1more
    Updated Jan 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WSDOT Online Map Center (2020). WSDOT - GIS Point Feature Class Template [Dataset]. https://geo.wa.gov/datasets/WSDOT::wsdot-gis-point-feature-class-template/explore?location=46.714052%2C-120.768216%2C6.86&showTable=true
    Explore at:
    Dataset updated
    Jan 16, 2020
    Dataset provided by
    Washington State Department of Transportationhttp://www.wsdot.wa.gov/
    Authors
    WSDOT Online Map Center
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    WSDOT template for Esri file geodatabase point feature class. Template has pre-defined attribute schema to help users create data that is more consistent or compliant with agency standards. Metadata has been created using the FGDC metadata style but stored in the ArcGIS format. Content presentation will change upon export to FGDC format.This service is maintained by the WSDOT Transportation Data, GIS & Modeling Office. If you are having trouble viewing the service, please contact Online Map Support at onlinemapsupport@wsdot.wa.gov.

  16. OpenStreetMap (Blueprint)

    • catalog.data.gov
    • gimi9.com
    • +7more
    Updated Jun 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2024). OpenStreetMap (Blueprint) [Dataset]. https://catalog.data.gov/dataset/openstreetmap-blueprint-653c6
    Explore at:
    Dataset updated
    Jun 8, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Description

    This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.

  17. U

    Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro

    • data.usgs.gov
    • catalog.data.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Black, Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro [Dataset]. http://doi.org/10.5066/P9RGW46K
    Explore at:
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Sarah Black
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Dec 2, 2020
    Description

    GIS project files and imagery data required to complete the Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro tutorial. These data cover the area in and around Jezero crater, Mars.

  18. OpenStreetMap

    • cacgeoportal.com
    • ethiopia.africageoportal.com
    • +28more
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). OpenStreetMap [Dataset]. https://www.cacgeoportal.com/maps/1c071fcf8ff2448599b0547116e2de55
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    This 3D basemap presents OpenStreetMap (OSM) data and other data sources and is hosted by Esri using the OpenStreetMap style.Esri created the Places and Labels, Trees, and OpenStreetMap layers from the Daylight map distribution of OSM data, which is supported by Facebook and supplemented with additional data from Microsoft. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new scene available to the OSM, GIS, and Developer communities.The Buildings layer (beta) presents open buildings data that has been processed and hosted by Esri. Esri created this buildings scene layer using data from the Overture Maps Foundation (OMF) which is supported by Meta, Microsoft, Amazon, TomTom, Esri and other members. Overture includes data from many sources, including OpenStreetMap (OSM). The 3D buildings layer will be updated each month with the latest version of Overture data, which includes the latest updates from OSM, Esri Community Maps, and other sources.Overture Maps is a collaborative project to create reliable, easy-to-use, and interoperable open map data. Member companies work to bring together the best available open datasets, and the resulting data can be downloaded from Microsoft Azure or Amazon S3. Esri is a member of the OMF project and is excited to make this 3D web scene available to the ArcGIS user community.

  19. W

    USA Flood Hazard Areas

    • wifire-data.sdsc.edu
    • gis-calema.opendata.arcgis.com
    • +1more
    csv, esri rest +4
    Updated Jul 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). USA Flood Hazard Areas [Dataset]. https://wifire-data.sdsc.edu/dataset/usa-flood-hazard-areas
    Explore at:
    geojson, csv, kml, esri rest, html, zipAvailable download formats
    Dataset updated
    Jul 14, 2020
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description
    The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance.

    Dataset Summary

    Phenomenon Mapped: Flood Hazard Areas
    Coordinate System: Web Mercator Auxiliary Sphere
    Extent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, the Northern Mariana Islands and American Samoa
    Visible Scale: The layer is limited to scales of 1:1,000,000 and larger. Use the USA Flood Hazard Areas imagery layer for smaller scales.
    Publication Date: April 1, 2019

    This layer is derived from the April 1, 2019 version of the National Flood Hazard Layer feature class S_Fld_Haz_Ar. The data were aggregated into eight classes to produce the Esri Symbology field based on symbology provided by FEMA. All other layer attributes are derived from the National Flood Hazard Layer. The layer was projected to Web Mercator Auxiliary Sphere and the resolution set to 1 meter.

    To improve performance Flood Zone values "Area Not Included", "Open Water", "D", "NP", and No Data were removed from the layer. Areas with Flood Zone value "X" subtype "Area of Minimal Flood Hazard" were also removed. An imagery layer created from this dataset provides access to the full set of records in the National Flood Hazard Layer.

    A web map featuring this layer is available for you to use.

    What can you do with this Feature Layer?

    Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.

    ArcGIS Online
    • Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.
    • Change the layer’s transparency and set its visibility range
    • Open the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.
    • Change the layer’s style and filter the data. For example, you could change the symbology field to Special Flood Hazard Area and set a filter for = “T” to create a map of only the special flood hazard areas.
    • Add labels and set their properties
    • Customize the pop-up
    ArcGIS Pro
    • Add this layer to a 2d or 3d map. The same scale limit as Online applies in Pro
    • Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Areas up to 1,000-2,000 features can be exported successfully.
    • Change the symbology and the attribute field used to symbolize the data
    • Open table and make interactive selections with the map
    • Modify the pop-ups
    • Apply Definition Queries to create sub-sets of the layer
    This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
  20. USGS National Map

    • data.openlaredo.com
    • data.baltimorecity.gov
    • +13more
    html
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Portal (2025). USGS National Map [Dataset]. https://data.openlaredo.com/dataset/usgs-national-map
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    GIS Portal
    Description

    The USGS Topo base map service from The National Map is a combination of contours, shaded relief, woodland and urban tint, along with vector layers, such as geographic names, governmental unit boundaries, hydrography, structures, and transportation, to provide a composite topographic base map. Data sources are the National Atlas for small scales, and The National Map for medium to large scales.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National States Geographic Information Council (NSGIC) (2025). Esri - Water Resources [Dataset]. https://3dhp-for-the-nation-nsgic.hub.arcgis.com/datasets/esri-water-resources
Organization logo

Esri - Water Resources

Explore at:
31 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 6, 2025
Dataset provided by
National States Geographic Information Council
Authors
National States Geographic Information Council (NSGIC)
Description

Esri's Water Resources GIS Platform offers a comprehensive suite of tools and resources designed to modernize water resource management. It emphasizes geospatial solutions for monitoring, analyzing, and modeling water systems, helping decision-makers tackle challenges like drought resilience, flood mitigation, and environmental protection. By leveraging the capabilities of ArcGIS, users can transform raw water data into actionable insights, ensuring more efficient and effective water resource management.A central feature of the platform is Arc Hydro, a specialized data model and toolkit developed for GIS-based water resource analysis. This toolset allows users to integrate, analyze, and visualize water datasets for applications ranging from live stream gauge monitoring to pollution control. Additionally, the platform connects users to the ArcGIS Living Atlas of the World, which offers extensive water-related datasets such as rivers, wetlands, and soils, supporting in-depth analyses of hydrologic conditions. The Hydro Community further enhances collaboration, enabling stakeholders to share expertise, discuss challenges, and build innovative solutions together.Esri’s platform also provides training opportunities and professional services to empower users with technical knowledge and skills. Through instructor-led courses, documentation, and best practices, users gain expertise in using ArcGIS and Arc Hydro for their specific water management needs. The combination of tools, datasets, and community engagement makes Esri's water resources platform a powerful asset for advancing sustainable water management initiatives across public and private sectors.

Search
Clear search
Close search
Google apps
Main menu