The Minnesota DNR Toolbox and Hydro Tools provide a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR. All tools require at least ArcGIS 10+.
If you create a GDRS using GDRS Manager and include this toolbox resource and MNDNR Quick Layers, the DNR toolboxes will automatically be added to the ArcToolbox window whenever Quick Layers GDRS Location is set to the GDRS location that has the toolboxes.
Toolsets included in MNDNR Tools V10:
- Analysis Tools
- Conversion Tools
- Division Tools
- General Tools
- Hydrology Tools
- LiDAR and DEM Tools
- Raster Tools
- Sampling Tools
These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The market for GIS Mapping Tools is projected to reach a value of $XX million by 2033, growing at a CAGR of XX% during the forecast period (2025-2033). The market growth is attributed to the increasing adoption of GIS mapping tools by various industries, including government, utilities, and telecom, for a wide range of applications such as geological exploration, water conservancy projects, and urban planning. The convergence of GIS with other technologies such as artificial intelligence (AI) and the Internet of Things (IoT) is further driving market growth, as these technologies enable GIS mapping tools to provide more accurate and real-time data analysis. The market is segmented by type (cloud-based, web-based), application (geological exploration, water conservancy projects, urban planning, others), and region (North America, Europe, Asia Pacific, Middle East & Africa). North America is expected to remain the largest market for GIS mapping tools throughout the forecast period, due to the early adoption of these technologies and the presence of leading vendors such as Esri, MapInfo, and Autodesk. Asia Pacific is expected to experience the highest growth rate during the forecast period, due to the increasing adoption of GIS mapping tools in emerging economies such as China and India. Key industry players include Golden Software Surfer, Geoway, QGIS, GRASS GIS, Google Earth Pro, CARTO, Maptive, Shenzhen Edraw Software, MapGIS, Oasis montaj, DIVA-GIS, Esri, MapInfo, Autodesk, BatchGeo, Cadcorp, Hexagon, Mapbox, Trimble, and ArcGIS.
In this tutorial, you will be introduced to the basics of the ArcGIS Online Web-based Geographic Information System (GIS) software tool. You will begin by exploring spatial data in the form of map layers that are available on the Web as well as map applications (apps). You will then use the ArcGIS Online Map Viewer to search for content, add features to a map, and save and share your completed map with others.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Geographic Information System (GIS) Software market is experiencing robust growth, driven by increasing adoption across various sectors, including government, utilities, and transportation. The market size in 2025 is estimated at $15 billion, exhibiting a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This significant expansion is fueled by several key factors. The rising need for precise location-based data analysis, coupled with advancements in cloud computing and big data technologies, is enabling the development of sophisticated and scalable GIS solutions. Furthermore, the integration of GIS with other technologies, such as artificial intelligence (AI) and the Internet of Things (IoT), is opening new avenues for innovation and application. This leads to enhanced spatial data management, improved decision-making capabilities, and optimized resource allocation across diverse industries. Government initiatives promoting digital transformation and smart city development also contribute significantly to market growth. However, the market faces certain challenges. High initial investment costs for software and infrastructure, along with the need for skilled professionals to operate and maintain these systems, can hinder wider adoption, particularly among smaller organizations. Data security and privacy concerns associated with handling sensitive geospatial data also pose a significant restraint. Despite these limitations, the overall market outlook for GIS software remains highly positive, driven by the increasing reliance on location intelligence across a broad spectrum of industries and the continuous evolution of GIS technologies. The increasing availability of open-source GIS software is also expected to foster market growth, particularly in developing economies. By 2033, the market is projected to reach approximately $45 billion, signifying a substantial increase in market value and adoption.
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.
BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer.
This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching an estimated market value of approximately $45 billion by 2033. Key drivers include the rising adoption of cloud-based GIS solutions, enhanced data analytics capabilities, the proliferation of location-based services, and the growing need for precise spatial data analysis in various industries like urban planning, geological exploration, and water resource management. The market is segmented by application (Geological Exploration, Water Conservancy Projects, Urban Planning, Others) and type (Cloud-based, Web-based). Cloud-based solutions are gaining significant traction due to their scalability, accessibility, and cost-effectiveness. The increasing availability of high-resolution satellite imagery and advancements in artificial intelligence (AI) and machine learning (ML) are further fueling market expansion. While data security concerns and the high initial investment costs for some advanced solutions present restraints, the overall market outlook remains positive, with significant opportunities for both established players and emerging technology providers. Geographical expansion is another key aspect of market growth. North America and Europe currently hold a significant market share, owing to established GIS infrastructure and early adoption of advanced technologies. However, the Asia-Pacific region is expected to witness rapid growth in the coming years, driven by rising government investments in infrastructure development and increasing urbanization in countries like China and India. Competitive dynamics are shaping the market, with major players like Esri, Autodesk, Hexagon, and Mapbox competing on the basis of software features, data integration capabilities, and customer support. The emergence of open-source GIS solutions like QGIS and GRASS GIS is also challenging the dominance of proprietary software, offering cost-effective alternatives for various applications. The continued development and integration of advanced technologies like 3D mapping, real-time data visualization, and location intelligence will further enhance the capabilities of GIS mapping tools, driving market expansion and innovation across various sectors.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $28 billion by 2033. This growth is fueled by several key factors. Firstly, the burgeoning adoption of cloud-based solutions offers scalability, cost-effectiveness, and enhanced accessibility to a wider user base, including small and medium-sized enterprises (SMEs). Secondly, the escalating need for precise spatial data analysis in various applications, such as urban planning, geological exploration, and water resource management, is significantly boosting market demand. The increasing integration of GIS with other technologies like AI and IoT further amplifies its capabilities, leading to more sophisticated applications and increased market penetration. Finally, government initiatives promoting digitalization and smart city development across the globe are indirectly fueling this market expansion. However, certain restraints limit market growth. The high initial investment cost for advanced GIS software and the requirement for skilled professionals to operate these systems can be a barrier, especially for smaller organizations. Additionally, data security and privacy concerns related to the handling of sensitive geographical information pose challenges to wider adoption. Market segmentation reveals strong growth in the cloud-based GIS segment, driven by its inherent advantages, while applications in urban planning and geological exploration lead the application-based segmentation. North America and Europe currently hold significant market shares, with strong growth potential in the Asia-Pacific region due to increasing infrastructure development and government investments. Leading companies like Esri, Hexagon, and Autodesk are shaping the market landscape through continuous innovation and competitive pricing strategies, while the emergence of open-source options like QGIS and GRASS GIS provides alternative, cost-effective solutions.
Esri's Water Resources GIS Platform offers a comprehensive suite of tools and resources designed to modernize water resource management. It emphasizes geospatial solutions for monitoring, analyzing, and modeling water systems, helping decision-makers tackle challenges like drought resilience, flood mitigation, and environmental protection. By leveraging the capabilities of ArcGIS, users can transform raw water data into actionable insights, ensuring more efficient and effective water resource management.A central feature of the platform is Arc Hydro, a specialized data model and toolkit developed for GIS-based water resource analysis. This toolset allows users to integrate, analyze, and visualize water datasets for applications ranging from live stream gauge monitoring to pollution control. Additionally, the platform connects users to the ArcGIS Living Atlas of the World, which offers extensive water-related datasets such as rivers, wetlands, and soils, supporting in-depth analyses of hydrologic conditions. The Hydro Community further enhances collaboration, enabling stakeholders to share expertise, discuss challenges, and build innovative solutions together.Esri’s platform also provides training opportunities and professional services to empower users with technical knowledge and skills. Through instructor-led courses, documentation, and best practices, users gain expertise in using ArcGIS and Arc Hydro for their specific water management needs. The combination of tools, datasets, and community engagement makes Esri's water resources platform a powerful asset for advancing sustainable water management initiatives across public and private sectors.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 10% from 2025 to 2033, reaching approximately $39 billion by 2033. This expansion is fueled by several key factors. Firstly, the rising adoption of cloud-based GIS solutions offers enhanced accessibility, scalability, and cost-effectiveness, particularly appealing to smaller organizations. Secondly, the burgeoning need for precise spatial data analysis in various applications, including urban planning, geological exploration, and water resource management, significantly contributes to market growth. Thirdly, advancements in technologies such as AI and machine learning are integrating into GIS tools, leading to more sophisticated analytical capabilities and improved decision-making. Finally, the increasing availability of high-resolution satellite imagery and other geospatial data further fuels market expansion. However, market growth is not without challenges. High initial investment costs associated with implementing and maintaining sophisticated GIS systems can pose a barrier to entry for smaller businesses. Furthermore, the complexity of GIS software and the need for specialized skills to operate and interpret data effectively can limit widespread adoption. Despite these restraints, the market’s overall trajectory remains positive, with the cloud-based segment projected to maintain a dominant market share due to its inherent advantages. Growth will be geographically diverse, with North America and Europe continuing to be significant markets, while Asia-Pacific is expected to experience the fastest growth due to rapid urbanization and infrastructure development. The continued development of user-friendly interfaces and increased integration with other business intelligence tools will further accelerate market expansion in the coming years.
Succeeds and combines earlier versions of the tools - Topography Toolbox for ArcGIS 9.x - http://arcscripts.esri.com/details.asp?dbid=15996Riparian Topography Toolbox for calculating Height Above River and Height Above Nearest Drainage - http://arcscripts.esri.com/details.asp?dbid=16792PRISM Data Helper - http://arcscripts.esri.com/details.asp?dbid=15976Tools:UplandBeer’s AspectMcCune and Keon Heat Load IndexLandform ClassifcationPRISM Data HelperSlope Position ClassificationSolar Illumination IndexTopographic Convergence/Wetness IndexTopographic Position IndexRiparianDerive Stream Raster using Cost DistanceHeight Above Nearest DrainageHeight Above RiverMiscellaneousMoving Window Correlation
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Geographic Information System (GIS) market is experiencing robust growth, projected to reach $5.15 billion in 2025 and exhibiting a Compound Annual Growth Rate (CAGR) of 20.55% from 2025 to 2033. This expansion is fueled by several key drivers. Increasing urbanization and the need for efficient urban planning are creating significant demand for GIS solutions. Furthermore, advancements in technology, particularly in cloud computing and artificial intelligence (AI), are enhancing GIS capabilities, leading to wider adoption across various sectors. The integration of GIS with other technologies like IoT (Internet of Things) and big data analytics is enabling more sophisticated spatial analysis and decision-making. Industries like transportation, utilities, and agriculture are leveraging GIS for improved asset management, infrastructure planning, and precision farming. The market is segmented by component (software, data, services) and deployment (on-premise, cloud), with the cloud-based deployment model experiencing faster growth due to its scalability and cost-effectiveness. The competitive landscape is characterized by a mix of established players like Esri, Autodesk, and Trimble, and emerging technology providers, creating a dynamic market with significant innovation. However, factors like high initial investment costs and the need for skilled professionals to implement and manage GIS systems pose challenges to market growth. Despite these restraints, the long-term outlook for the GIS market remains positive. The increasing availability of geospatial data, coupled with declining hardware costs and improvements in user interfaces, is making GIS technology more accessible to a wider range of users. The integration of GIS into mobile applications and the rise of location-based services further broaden the market's potential. Government initiatives promoting smart cities and digital infrastructure development are also contributing to market growth. The North American region, particularly the United States, currently holds a significant market share due to early adoption and a robust technology ecosystem. However, other regions, especially in Asia-Pacific and Europe, are experiencing rapid growth, driven by increasing infrastructure investments and the adoption of advanced technologies. Future growth will be influenced by continued technological innovation, the availability of skilled workforce, and government regulations related to geospatial data management.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Geographic Information Systems (GIS) Platform market is experiencing robust growth, projected to reach a market size of $4078.2 million in 2025. While the provided CAGR is missing, considering the widespread adoption of GIS across various sectors like government, utilities, and commercial businesses, coupled with advancements in cloud-based GIS and increasing demand for spatial analytics, a conservative estimate of the Compound Annual Growth Rate (CAGR) between 2025 and 2033 would be around 7-9%. This suggests a significant expansion of the market over the forecast period. Key drivers include the rising need for efficient resource management, improved infrastructure planning, precise location-based services, and the growing adoption of big data analytics combined with location intelligence. The market is segmented by type (Desktop GIS, Web Map Service GIS, Others) and application (Government & Utilities, Commercial Use), reflecting the diverse applications of GIS technology. Leading players like Environmental Systems Research Institute (Esri), Hexagon, Pitney Bowes, and SuperMap are shaping the market landscape through continuous innovation and strategic partnerships. The North American market currently holds a significant share due to high technology adoption and substantial investments in GIS infrastructure, but rapid growth is anticipated in Asia Pacific regions like China and India driven by urbanization and infrastructure development. The increasing availability of affordable high-resolution imagery and data fuels further expansion. The continued integration of GIS with other technologies like AI and IoT is expected to unlock new applications and further drive market growth. Challenges include the high initial investment costs for sophisticated GIS solutions, the need for skilled professionals to manage and interpret data, and ensuring data security and privacy. However, the benefits of improved decision-making, optimized resource allocation, and enhanced operational efficiency are expected to outweigh these challenges, contributing to the sustained expansion of the GIS Platform market throughout the forecast period. The market's future trajectory remains positive, fueled by technological advancements and the increasing reliance on location intelligence across various industries.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market's expansion is fueled by several key factors: the rising adoption of cloud-based GIS solutions offering enhanced accessibility and scalability, the escalating need for precise spatial data analysis in urban planning and resource management, and the expanding application of GIS in geological exploration for efficient resource discovery and extraction. Furthermore, advancements in location-based services (LBS) and the integration of GIS with other technologies such as IoT and AI are creating new opportunities and driving market expansion. While the market size in 2025 is estimated at $15 billion (a reasonable assumption considering similar market sizes for related technologies), the Compound Annual Growth Rate (CAGR) is projected to remain strong, likely exceeding 8% through 2033. This sustained growth indicates a highly promising market outlook for vendors and investors. However, market growth is not without challenges. High initial investment costs for sophisticated GIS software and the requirement for skilled personnel to operate and maintain these systems can pose barriers to entry, particularly for smaller organizations. Additionally, data security concerns and the need for robust data management strategies are critical factors impacting market adoption. Despite these constraints, the continued integration of GIS tools into various business processes and the growing availability of user-friendly, affordable solutions are expected to mitigate these challenges and propel the market towards sustained and significant growth in the coming years. Segmentation reveals a strong preference for cloud-based solutions due to their flexibility and cost-effectiveness, with the geological exploration and urban planning applications exhibiting the highest growth rates. Key players such as Esri, Autodesk, and Hexagon are strategically positioned to capitalize on these trends.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geographic Information System (GIS) industry is experiencing robust growth, projected to maintain a Compound Annual Growth Rate (CAGR) of 10.80% from 2025 to 2033. This expansion is driven by increasing adoption across diverse sectors, including agriculture, utilities, mining, construction, transportation, and oil and gas. The rising need for precise location-based data for efficient operations, optimized resource management, and informed decision-making fuels this market growth. Advancements in hardware, such as high-resolution sensors and drones, coupled with sophisticated software capabilities like advanced spatial analytics and cloud-based GIS solutions, are key contributors. Furthermore, the proliferation of location-based services (LBS) and the growing adoption of telematics and navigation systems are expanding the applications of GIS technology. While data security concerns and the need for skilled professionals present some challenges, the overall market outlook remains positive. The segmentation of the GIS market reveals a strong demand across various components (hardware and software) and functionalities (mapping, surveying, telematics and navigation, and location-based services). North America currently holds a significant market share due to early adoption and technological advancements, but regions like Asia are exhibiting rapid growth fueled by infrastructure development and increasing digitalization. Leading companies like Bentley Systems, Esri, Trimble, and Hexagon AB are at the forefront of innovation, continuously developing and implementing advanced GIS solutions to meet the evolving needs of different industries. The forecast for the next decade points to further market consolidation, with leading players investing heavily in research and development to enhance their product offerings and expand their market reach. The continued integration of GIS with other technologies such as AI and IoT will further drive market expansion and create new opportunities for growth. Comprehensive Coverage GIS Industry Report (2019-2033) This in-depth report provides a comprehensive analysis of the Geographic Information System (GIS) industry, projecting robust growth from $XXX million in 2025 to $YYY million by 2033. The study covers the historical period (2019-2024), base year (2025), and forecast period (2025-2033), offering invaluable insights for businesses, investors, and policymakers. Keywords: GIS market, GIS software, GIS hardware, GIS solutions, geospatial technology, location intelligence, mapping software, surveying equipment, spatial analysis, geospatial analytics. Recent developments include: November 2022 : The new Geodata Portal and broadband maps for the state will be accessible starting on November 18, 2022, according to a statement from the Connecticut Office of Policy and Management (OPM). This announcement was made on GIS Day 2022, which encourages people to learn about geography and the practical uses of GIS that can improve society., November 2022 : The lt. governor of the Indian state, Jammu and Kashmir, launched a GIS-based system in the region. It highlights the significance of GIS technology in addressing new challenges and exploring new opportunities and its real-world applications, accelerating growth in business, government, and society.. Key drivers for this market are: Growing role of GIS in smart cities ecosystem, Integration of location-based mapping systems with business intelligence systems. Potential restraints include: Integration issues with traditional systems, Data quality and accuracy issues. Notable trends are: The Rising Smart Cities Development and Urban Planning to Drive the Market Growth.
The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Minnesota DNR Toolbox provides a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR.
Toolsets included in MNDNR Tools:
- Analysis Tools
- Conversion Tools
- General Tools
- LiDAR and DEM Tools
- Sampling Tools
The application download includes a comprehensive help document, which you can also access separately here: ArcGISPro_MNDNR_Toolbox_Pro_User_Guide.pdf
These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.
Two dashboards, one intelligent URL (ArcGIS Blog). Half of website traffic is generated by mobile devices and half by desktops. Does your dashboard look good on both?_Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
1) Use the search tool to find where you go to school or work2) Measure the distance you travel to school or work
GIS in the age of community health (Learn ArcGIS Path). Arm yourself with hands-on skills and knowledge of how GIS tools can analyze health data and better understand diseases.
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
The Minnesota DNR Toolbox and Hydro Tools provide a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR. All tools require at least ArcGIS 10+.
If you create a GDRS using GDRS Manager and include this toolbox resource and MNDNR Quick Layers, the DNR toolboxes will automatically be added to the ArcToolbox window whenever Quick Layers GDRS Location is set to the GDRS location that has the toolboxes.
Toolsets included in MNDNR Tools V10:
- Analysis Tools
- Conversion Tools
- Division Tools
- General Tools
- Hydrology Tools
- LiDAR and DEM Tools
- Raster Tools
- Sampling Tools
These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.