100+ datasets found
  1. Esri 2020 Land Cover (Mature Support)

    • hub.arcgis.com
    Updated Jun 22, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Esri 2020 Land Cover (Mature Support) [Dataset]. https://hub.arcgis.com/maps/545d16ddc8d0499bb9e5dea2bfee1ab9
    Explore at:
    Dataset updated
    Jun 22, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    A web map displaying the Esri 2020 Land Cover 10-meter resolution land use/land cover layer. The Esri 2020 Land Cover map is derived from ESA Sentinel-2 imagery at 10m resolution. It is a composite of LULC predictions for 10 classes throughout the year in order to generate a representative snapshot of 2020.Land cover classes include: water, trees, grass, flooded vegetation, crops, scrub/shrub, built area, bare ground, snow/ice, and cloudsFor more information, see the layer details.

  2. e

    Sentinel-2 Land Cover Explorer

    • climate.esri.ca
    • cacgeoportal.com
    • +3more
    Updated Feb 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Sentinel-2 Land Cover Explorer [Dataset]. https://climate.esri.ca/datasets/esri::sentinel-2-land-cover-explorer
    Explore at:
    Dataset updated
    Feb 7, 2023
    Dataset authored and provided by
    Esri
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    About the dataLand use land cover (LULC) maps are an increasingly important tool for decision-makers in many industry sectors and developing nations around the world. The information provided by these maps helps inform policy and land management decisions by better understanding and quantifying the impacts of earth processes and human activity.ArcGIS Living Atlas of the World provides a detailed, accurate, and timely LULC map of the world. The data is the result of a three-way collaboration among Esri, Impact Observatory, and Microsoft. For more information about the data, see Sentinel-2 10m Land Use/Land Cover Time Series.About the appOne of the foremost capabilities of this app is the dynamic change analysis. The app provides dynamic visual and statistical change by comparing annual slices of the Sentinel-2 10m Land Use/Land Cover data as you explore the map.Overview of capabilities:Visual change analysis with either 'Step Mode' or 'Swipe Mode'Dynamic statistical change analysis by year, map extent, and classFilter by selected land cover classRegional class statistics summarized by administrative boundariesImagery mode for visual investigation and validation of land coverSelect imagery renderings (e.g. SWIR to visualize forest burn scars)Data download for offline use

  3. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support)...

    • gis-for-secondary-schools-schools-be.hub.arcgis.com
    • pacificgeoportal.com
    • +3more
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support) [Dataset]. https://gis-for-secondary-schools-schools-be.hub.arcgis.com/datasets/30c4287128cc446b888ca020240c456b
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation,
    clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  4. Sentinel-2 10m Land Use/Land Cover Time Series

    • colorado-river-portal.usgs.gov
    • pacificgeoportal.com
    • +9more
    Updated Oct 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Time Series [Dataset]. https://colorado-river-portal.usgs.gov/datasets/esri::sentinel-2-10m-land-use-land-cover-time-series-1
    Explore at:
    Dataset updated
    Oct 19, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2024 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2024. Key Properties Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryAnalysis: Optimized for analysisClass Definitions: ValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Usage Information and Best PracticesProcessing TemplatesThis layer includes a number of preconfigured processing templates (raster function templates) to provide on-the-fly data rendering and class isolation for visualization and analysis. Each processing template includes labels and descriptions to characterize the intended usage. This may include for visualization, for analysis, or for both visualization and analysis. VisualizationThe default rendering on this layer displays all classes.There are a number of on-the-fly renderings/processing templates designed specifically for data visualization.By default, the most recent year is displayed. To discover and isolate specific years for visualization in Map Viewer, try using the Image Collection Explorer. AnalysisIn order to leverage the optimization for analysis, the capability must be enabled by your ArcGIS organization administrator. More information on enabling this feature can be found in the ‘Regional data hosting’ section of this help doc.Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See this group for a complete list of imagery layers optimized for analysis.Prior to running analysis, users should always provide some form of data selection with either a layer filter (e.g. for a specific date range, cloud cover percent, mission, etc.) or by selecting specific images. To discover and isolate specific images for analysis in Map Viewer, try using the Image Collection Explorer.Zonal Statistics is a common tool used for understanding the composition of a specified area by reporting the total estimates for each of the classes. GeneralIf you are new to Sentinel-2 LULC, the Sentinel-2 Land Cover Explorer provides a good introductory user experience for working with this imagery layer. For more information, see this Quick Start Guide.Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.

  5. Land Cover Classification (Aerial Imagery)

    • hub.arcgis.com
    • uneca.africageoportal.com
    • +5more
    Updated Sep 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Land Cover Classification (Aerial Imagery) [Dataset]. https://hub.arcgis.com/content/c1bca075efb145d9a26394b866cd05eb
    Explore at:
    Dataset updated
    Sep 19, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Land cover describes the surface of the earth. Land-cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to the earth's surface is required. Land-cover classification is a complex exercise and is difficult to capture using traditional means. Deep learning models are highly capable of learning these complex semantics and can produce superior results.There are a few public datasets for land cover, but the spatial and temporal coverage of these public datasets may not always meet the user’s requirements. It is also difficult to create datasets for a specific time, as it requires expertise and time. Use this deep learning model to automate the manual process and reduce the required time and effort significantly.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.Input8-bit, 3-band very high-resolution (10 cm) imagery.OutputClassified raster with the 8 classes as in the LA county landcover dataset.Applicable geographiesThe model is expected to work well in the United States and will produce the best results in the urban areas of California.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 84.8%. The table below summarizes the precision, recall and F1-score of the model on the validation dataset: ClassPrecisionRecallF1 ScoreTree Canopy0.8043890.8461520.824742Grass/Shrubs0.7199930.6272780.670445Bare Soil0.89270.9099580.901246Water0.9808850.9874990.984181Buildings0.9222020.9450320.933478Roads/Railroads0.8696370.8629210.866266Other Paved0.8114650.8119610.811713Tall Shrubs0.7076740.6382740.671185Training dataThis model has been trained on very high-resolution Landcover dataset (produced by LA County).LimitationsSince the model is trained on imagery of urban areas of LA County it will work best in urban areas of California or similar geography.Model is trained on limited classes and may lead to misclassification for other types of LULC classes.Sample resultsHere are a few results from the model.

  6. Land Cover Classification (Landsat 8)

    • cacgeoportal.com
    • morocco.africageoportal.com
    • +7more
    Updated Sep 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Land Cover Classification (Landsat 8) [Dataset]. https://www.cacgeoportal.com/content/e732ee81a9c14c238a14df554a8e3225
    Explore at:
    Dataset updated
    Sep 20, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Land cover describes the surface of the earth. Land cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to earth surface is required. Land cover classification is a complex exercise and is hard to capture using traditional means. Deep learning models are highly capable of learning these complex semantics and can produce superior results.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.InputRaster, mosaic dataset, or image service. (Preferred cell size is 30 meters.)OutputClassified raster with the same classes as in the National Land Cover Database (NLCD) 2016.Note: The classified raster contains 20 classes based on a modified Anderson Level II classification system as used by the National Land Cover Database.Applicable geographiesThis model is expected to work well in the United States.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 77 percent. The table below summarizes the precision, recall and F1-score of the model on the validation dataset.ClassCollection 2 Level 2 ImageryCollection 1 Level 1 ImageryPrecisionRecallF1 ScorePrecisionRecallF1 ScoreOpen Water0.960.970.960.950.970.96Perennial Snow/Ice0.860.690.770.490.940.64Developed, Open Space0.510.380.440.430.380.4Developed, Low Intensity0.520.460.490.470.480.47Developed, Medium Intensity0.540.50.520.490.540.51Developed, High Intensity0.670.540.60.550.680.61Barren Land0.760.590.660.60.770.68Deciduous Forest0.740.810.780.780.760.77Evergreen Forest0.770.820.790.80.820.81Mixed Forest0.560.470.510.50.530.51Shrub/Scrub0.820.820.820.840.810.83Herbaceous0.780.740.760.790.770.78Hay/Pasture0.70.740.720.670.750.71Cultivated Crops0.870.910.890.910.90.9Woody Wetlands0.70.680.690.670.680.68Emergent Herbaceous Wetlands0.720.540.620.540.610.57Training dataThis model has been trained on the National Land Cover Database (NLCD) 2016 with the same Landsat 8 scenes that were used to produce the database. Scene IDs for the imagery were available in the metadata of the dataset.Sample resultsHere are a few results from the model.

  7. Land Cover 2050 - Global

    • uneca.africageoportal.com
    • cacgeoportal.com
    • +12more
    Updated Jul 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Global [Dataset]. https://uneca.africageoportal.com/datasets/esri::land-cover-2050-global/about
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this global model layer when performing analysis across continents. This layer displays a global land cover map and model for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  8. a

    Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021

    • chi-phi-nmcdc.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated May 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/items/c6d64a3ac69e4c0c80fdfa011f08d0e2
    Explore at:
    Dataset updated
    May 19, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020.By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter.1. Click the filter button.2. Next, click add expression.3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button.5. Under unique values click style options.6. Click the symbol next to No Change at the bottom of the legend.7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro.1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties.2. In the dialogue that comes up, choose the tab that says processing templates.3. On the right where it says processing template, choose the pair of years you would like to display.The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer:Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe.Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes.Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map.Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  9. D

    Land Use 2005

    • catalog.dvrpc.org
    • staging-catalog.cloud.dvrpc.org
    • +1more
    api, geojson, html +1
    Updated May 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DVRPC (2025). Land Use 2005 [Dataset]. https://catalog.dvrpc.org/dataset/land-use-2005
    Explore at:
    xml, geojson, html, apiAvailable download formats
    Dataset updated
    May 23, 2025
    Dataset provided by
    Delaware Valley Regional Planning Commissionhttps://www.dvrpc.org/
    Authors
    DVRPC
    Description

    Every five years, since 1990, the Delaware Valley Regional Planning Commission has produced a GIS Land Use layer for its 9-county region. As it was in 2000, digital orthophotography was flown by DVRPC in 2005. Digitizing was done using these 2005 true-color aerials on the ESRI ArcGIS software platform at a 1:2400 (1 inch = 200 feet) scale.

  10. c

    Land Cover 1992-2020

    • cacgeoportal.com
    • hub.arcgis.com
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Land Cover 1992-2020 [Dataset]. https://www.cacgeoportal.com/maps/bb0e4bcd891c4679881f80997c9b8871
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  11. Land Cover Vulnerability to Change 2050 - Global

    • resilience-fema.hub.arcgis.com
    • uneca.africageoportal.com
    • +8more
    Updated Jul 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover Vulnerability to Change 2050 - Global [Dataset]. https://resilience-fema.hub.arcgis.com/datasets/esri::land-cover-vulnerability-to-change-2050-global
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this global model layer when performing analysis across continents. This layer displays predictions globally of relative vulnerability to modification by humans by the year 2050. ESA CCI land cover maps from the years 2010 and 2018 were used to create this prediction.Variable mapped: Vulnerability of land cover to anthropogenic change by 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer can be used in analysis, to estimate and compare vulnerability to land cover change globally due to expansion of human activity, by 2050. This layer is useful in ecological planning, helping to prioritize areas for conservation. Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and global) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between proximate countries, use the country level. If mapping larger patterns or vastly separated countries, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasContinentCountryRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil Texture

  12. a

    Sentinel-2 10m Land Use Land Cover Time Series

    • wfp-demographic-analysis-usfca.hub.arcgis.com
    Updated Oct 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Analysis Lab (GsAL) at USF (2024). Sentinel-2 10m Land Use Land Cover Time Series [Dataset]. https://wfp-demographic-analysis-usfca.hub.arcgis.com/content/42945cf091f84444ab43c9850959edc3
    Explore at:
    Dataset updated
    Oct 2, 2024
    Dataset authored and provided by
    Geospatial Analysis Lab (GsAL) at USF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2023 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2023.Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryWhat can you do with this layer?Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. This layer can also be used in analyses that require land use/land cover input. For example, the Zonal toolset allows a user to understand the composition of a specified area by reporting the total estimates for each of the classes. NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Class definitionsValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.

  13. d

    West Africa Land Use Land Cover 2000

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). West Africa Land Use Land Cover 2000 [Dataset]. https://catalog.data.gov/dataset/west-africa-land-use-land-cover-2000
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Africa, West Africa
    Description

    This dataset is the second (circa 2000) in a series of three 2-kilometer land use land cover (LULC) time-periods datasets (1975, 2000, and 2013) aids in monitoring change in West Africa’s land resources (exception is Tchad at 4 kilometers). To monitor and map these changes, a 26 general LULC class system was used. The classification system that was developed was primarily inspired by the “Yangambi Classification” (Trochain, 1957). This fairly broad class system for LULC was used because the classes can be readily identified on Landsat satellite imagery. A visual photo-interpretation approach was used to identify and map the LULC classes represented on Landsat images. The Rapid Land Cover Mapper (RLCM) was used to facilitate the photo-interpretation using Esri’s ArcGIS Desktop ArcMap software. Citation: Trochain, J.-L., 1957, Accord interafricain sur la définition des types de végétation de l’Afrique tropicale: Institut d’études centrafricaines.

  14. d

    U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2.

    • datadiscoverystudio.org
    • data.globalchange.gov
    • +3more
    Updated May 21, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/5943529b1b9043a397058fffe2a2440a/html
    Explore at:
    Dataset updated
    May 21, 2018
    Description

    description: This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer; abstract: This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer

  15. Land cover of Mozambique - Globcover Regional (46 classes)

    • data.amerigeoss.org
    html, http, png, wms +1
    Updated Mar 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of Mozambique - Globcover Regional (46 classes) [Dataset]. https://data.amerigeoss.org/dataset/e58eada2-046a-4277-a812-5c11762ed902
    Explore at:
    png, wms, http, html, zipAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Mozambique
    Description

    This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download - Land cover of Mozambique - Shape file format

    GLOBCOVER on the ESA Web site

    Global Land Cover Network - GLCN

  16. High Resolution Land Cover Classification - USA

    • hub.arcgis.com
    • ai-climate-hackathon-global-community.hub.arcgis.com
    • +1more
    Updated Dec 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). High Resolution Land Cover Classification - USA [Dataset]. https://hub.arcgis.com/content/a10f46a8071a4318bcc085dae26d7ee4
    Explore at:
    Dataset updated
    Dec 8, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    United States
    Description

    Land cover describes the surface of the earth. Land cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to earth surface is required. Land cover classification is a complex exercise and is hard to capture using traditional means. Deep learning models are highly capable of learning these complex semantics and can produce superior results.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.Input8-bit, 3-band high-resolution (80 - 100 cm) imagery.OutputClassified raster with the same classes as in the Chesapeake Bay Landcover dataset (2013/2014). By default, the output raster contains 9 classes. A simpler classification with 6 classes can be performed by setting the the 'detailed_classes' model argument to false.Note: The output classified raster will not contain 'Aberdeen Proving Ground' class. Find class descriptions here.Applicable geographiesThis model is applicable in the United States and is expected to produce best results in the Chesapeake Bay Region.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 86.5% for classification into 9 land cover classes and 87.86% for 6 classes. The table below summarizes the precision, recall and F1-score of the model on the validation dataset, for classification into 9 land cover classes:ClassPrecisionRecallF1 ScoreWater0.936140.930460.93329Wetlands0.816590.759050.78677Tree Canopy0.904770.931430.91791Shrubland0.516250.186430.27394Low Vegetation0.859770.866760.86325Barren0.671650.509220.57927Structures0.80510.848870.82641Impervious Surfaces0.735320.685560.70957Impervious Roads0.762810.812380.78682The table below summarizes the precision, recall and F1-score of the model on the validation dataset, for classification into 6 land cover classes: ClassPrecisionRecallF1 ScoreWater0.950.940.95Tree Canopy and Shrubs0.910.920.92Low Vegetation0.850.850.85Barren0.790.690.74Impervious Surfaces0.840.840.84Impervious Roads0.820.830.82Training dataThis model has been trained on the Chesapeake Bay high-resolution 2013/2014 NAIP Landcover dataset (produced by Chesapeake Conservancy with their partners University of Vermont Spatial Analysis Lab (UVM SAL), and Worldview Solutions, Inc. (WSI)) and other high resolution imagery. Find more information about the dataset here.Sample resultsHere are a few results from the model.

  17. Land cover of United Republic of Tanzania - Globcover Regional (46 classes)

    • data.amerigeoss.org
    html, http, png, wms +1
    Updated Mar 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of United Republic of Tanzania - Globcover Regional (46 classes) [Dataset]. https://data.amerigeoss.org/dataset/adb0b581-b530-4a06-8a86-ed562ddc63b6
    Explore at:
    png, html, wms, zip, httpAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Tanzania
    Description

    This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download - Land cover of United Republic of Tanzania - Shape file format

    GLOBCOVER on the ESA Web site

    Global Land Cover Network - GLCN

  18. d

    West Africa Land Use Land Cover 1975

    • catalog.data.gov
    • gimi9.com
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). West Africa Land Use Land Cover 1975 [Dataset]. https://catalog.data.gov/dataset/west-africa-land-use-land-cover-1975
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Africa, West Africa
    Description

    This dataset is the first (circa 1975) in a series of three 2-kilometer land use land cover (LULC) time-periods datasets (1975, 2000, and 2013) aids in monitoring change in West Africa’s land resources (exception is Tchad at 4 kilometers). To monitor and map these changes, a 26 general LULC class system was used. The classification system that was developed was primarily inspired by the “Yangambi Classification” (Trochain, 1957). This fairly broad class system for LULC was used because the classes can be readily identified on Landsat satellite imagery. A visual photo-interpretation approach was used to identify and map the LULC classes represented on Landsat images. The Rapid Land Cover Mapper (RLCM) was used to facilitate the photo-interpretation using Esri’s ArcGIS Desktop ArcMap software. Citation: Trochain, J.-L., 1957, Accord interafricain sur la définition des types de végétation de l’Afrique tropicale: Institut d’études centrafricaines.

  19. a

    Land Use and Land Cover (2011)

    • hub.arcgis.com
    • rigis.org
    Updated Jan 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Data Center (2025). Land Use and Land Cover (2011) [Dataset]. https://hub.arcgis.com/datasets/edc::land-use-and-land-cover-2011?uiVersion=content-views
    Explore at:
    Dataset updated
    Jan 30, 2025
    Dataset authored and provided by
    Environmental Data Center
    Area covered
    Description

    This hosted feature layer has been published in RI State Plane Feet NAD 83 This is a statewide, seamless digital dataset of the land cover/land use for the State of Rhode Island derived using automated and semi-automated methods and is based on orthophotography captured in spring 2011. The project area encompasses the State of Rhode Island and also extends 1/2 mile into the neighboring states of Connecticut and Massachusetts, or to the limits of the source orthophotography. Geographic feature accuracy meets the National Mapping Standards for 1:5000 scale mapping with respect to base level data (roads, hydrography, and orthos). The minimum mapping unit for this dataset is 0.5 acre.The land use classification scheme used for these data was based on the same Anderson Level III modified coding schema used in previous land use datasets in Rhode Island (1988 & 2003/2004). To provide a statewide dataset representing land cover/land use. The dataset is also intended to be incorporated into the Rhode Island Geographic Information System database for use by federal, state and local government and made available to the general public. The intention of this dataset is to serve as an update to the 2003/2004 land cover/land use dataset. Geography for the dataset was based on ground conditions of 2011 four-band orthophotography with a spatial resolution of 0.5 ft and 2011 LiDAR data and data derivatives with a nominal post spacing of 1m. Additional ancillary data used in the production of this dataset were provided by the State of Rhode Island and included 2003/2004 land cover/land use, road centerline, hydrography, railroads, state boundary, municipal boundary, coastline, location of schools, hospitals, governmental facilities, waste disposal sites, etc. Landuse / Landcover for RI is based upon Anderson Level 3 coding described in the United States Geological Survey Publication: "A Land Use And Land Cover Classification System for Use With Remote Sensor Data, Geological Survey Professional Paper 964" Available Online at: https://landcover.usgs.gov/pdf/anderson.pdf.

  20. Land cover of Equatorial Guinea - Globcover Regional (46 classes)

    • data.amerigeoss.org
    html, http, png, wms +1
    Updated Mar 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of Equatorial Guinea - Globcover Regional (46 classes) [Dataset]. https://data.amerigeoss.org/dataset/bbb85e88-7441-492e-9702-e143ac2d62d3
    Explore at:
    html, zip, png, wms, httpAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Equatorial Guinea
    Description

    This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download - Land cover of Equatorial Guinea - Shape file format

    GLOBCOVER on the ESA Web site

    Global Land Cover Network - GLCN

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2021). Esri 2020 Land Cover (Mature Support) [Dataset]. https://hub.arcgis.com/maps/545d16ddc8d0499bb9e5dea2bfee1ab9
Organization logo

Esri 2020 Land Cover (Mature Support)

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 22, 2021
Dataset authored and provided by
Esrihttp://esri.com/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Description

A web map displaying the Esri 2020 Land Cover 10-meter resolution land use/land cover layer. The Esri 2020 Land Cover map is derived from ESA Sentinel-2 imagery at 10m resolution. It is a composite of LULC predictions for 10 classes throughout the year in order to generate a representative snapshot of 2020.Land cover classes include: water, trees, grass, flooded vegetation, crops, scrub/shrub, built area, bare ground, snow/ice, and cloudsFor more information, see the layer details.

Search
Clear search
Close search
Google apps
Main menu