Spreadsheets and graphs are powerful tools that make data come alive and tell a story. Now, use maps to see the story from another perspective. ArcGIS Maps for Office enables Microsoft Excel and PowerPoint users worldwide to ask location-related questions of data, get powerful insights, and make the best decisions. You can:Map your spreadsheet data – whether you want to see customer locations, ZIP code aggregations, custom sales territories and more – you can see it all.Add geographic context to your spreadsheet data and communicate these insights via interactive maps in PowerPoint.Gain insight into demographic, spending, behavior, and landscape information, among many more.Use the authoritative content on the ArcGIS platform to supplement your location data and add context to the locations in your spreadsheet.Securely share your maps with colleagues and stakeholders.Bring the power of the ArcGIS platform into your spreadsheets and presentations. To use ArcGIS Maps for Office you need an ArcGIS Online paid or trial subscription or a Portal for ArcGIS Named User License and Microsoft Office 2010, 2013, or 2016. Visit the online documentation for information on how to use this app.
Esri社の海洋分野向けのポータルサイトです。 各種デモアプリにリンクされています。電子海図配信の以下のアプリは海洋分野向けの方々には必見です。Maritime Chart Service (ENC)Maritime Chart Service - Alaska Polar ProjectionWelcome to the Maritime (Demo) Organizational Site.This is a fictional organization designed to demonstrate the capabilities of ArcGIS for Maritime Organizations. ArcGIS Online allows you to create special interest groups, create and share maps, embed maps in websites and blogs, or share applications. ArcGIS Online provides a simple way to increase your organizations online presence.
A dashboard used by government agencies to monitor key performance indicators (KPIs) and communicate progress made on strategic outcomes with the general public and other interested stakeholders.
Create your own initiative by combining existing applications with a custom site. Use this initiative to form teams around a problem and invite your community to participate.
VDOT's mission is to plan, deliver, operate and maintain a transportation system that is safe, enables easy movement of people and goods, enhances the economy and improves our quality of life.VDOT ArcGIS Online is an interactive portal through which VDOT staff, business partners, and the public can access web mapping applications, map publications, and geospatial data pertaining to transportation in Virginia. Users can learn about, browse, search, and/or download data from this site.The products on this site are for informational purposes and may not have been prepared for legal, engineering or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.Questions? Contact the Spatial Intelligence Group.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.
This web map shows the location of offices under Census and Statistics Department in Hong Kong. It is a set of the data made available by the Census and Statistics Department under the Government of Hong Kong Special Administrative Region (the "Government") at https://portal.csdi.gov.hk ("CSDI Portal"). The source data has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of Hong Kong CSDI Portal at https://portal.csdi.gov.hk.
This web map shows the office address and open hour of Information Services Department in Hong Kong. It is a subset of the geo-referenced public facility data made available by the Information Service Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data is in CSV format and processed and converted to Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort. For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK (https://data.gov.hk).
This web map shows the Information of Barrier-free Facilities available in Home Affairs Department’s office premises. It is a set of the data made available by the Home Affair Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://portal.csdi.gov.hk ("CSDI Portal"). The source data has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of Hong Kong CSDI Portal at https://portal.csdi.gov.hk.
This video demonstrates how school board administrators map and analyze student achievement using ArcGIS Maps for Office and ArcGIS Online. Specifically, it covers how to prepare and map student data from Microsoft Excel, how to enrich that data with the geoenrichment service in ArcGIS Online and how to share, communicate and present your work in Microsoft PowerPoint and in Story Map applications.
The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Link to landing page referenced by identifier. Service Protocol: Link to landing page referenced by identifier. Link Function: information-- dc:identifier.
Due to continued coastal population growth and increased threats of erosion, current data on trends and rates of shoreline movement are required to inform shoreline and floodplain management. The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast.
The Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) in cooperation with the Massachusetts Office of Coastal Zone Management, has compiled reliable historical shoreline data along open-facing sections of the Massachusetts coast under the Massachusetts Shoreline Change Mapping and Analysis Project 2013 Update. Two oceanfront shorelines for Massachusetts (approximately 1,800 km in total length) were (1) delineated using 2008/09 color aerial orthoimagery, and (2) extracted from topographic LIDAR datasets (2007) obtained from NOAA's Ocean Service, Coastal Services Center. The new shorelines were integrated with existing Massachusetts Office of Coastal Zone Management and USGS historical shoreline data in order to compute long- and short-term rates using the latest version of the Digital Shoreline Analysis System (DSAS).
Due to continued coastal population growth and increased threats of erosion, current data on trends and rates of shoreline movement are required to inform shoreline and floodplain management. The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast.
The Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) in cooperation with the Massachusetts Office of Coastal Zone Management, has compiled reliable historical shoreline data along open-facing sections of the Massachusetts coast under the Massachusetts Shoreline Change Mapping and Analysis Project 2013 Update. Two oceanfront shorelines for Massachusetts (approximately 1,800 km) were (1) delineated using 2008/09 color aerial orthoimagery, and (2) extracted from topographic LIDAR datasets (2007) obtained from NOAA's Ocean Service, Coastal Services Center. The new shorelines were integrated with existing Massachusetts Office of Coastal Zone Management and USGS historical shoreline data in order to compute long- and short-term rates using the latest version of the Digital Shoreline Analysis System (DSAS).
This layer shows the list of Heritage Trails. It is a set of data made available by the Antiquities and Monuments Office of Development Bureau under the Government of Hong Kong Special Administrative Region (the “Government”) at https://portal.csdi.gov.hk ("CSDI Portal"). The source data is in FGDB format and processed and converted to Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort. For details about the data, source format and terms of conditions of usage, please refer to the website of Hong Kong CSDI Portal at https://portal.csdi.gov.hk.
Due to continued coastal population growth and increased threats of erosion, current data on trends and rates of shoreline movement are required to inform shoreline and floodplain management. The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast.
The Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) in cooperation with the Massachusetts Office of Coastal Zone Management, has compiled reliable historical shoreline data along open-facing sections of the Massachusetts coast under the Massachusetts Shoreline Change Mapping and Analysis Project 2013 Update. Two oceanfront shorelines for Massachusetts (approximately 1,800 km) were (1) delineated using 2008/09 color aerial orthoimagery, and (2) extracted from topographic LIDAR datasets (2007) obtained from NOAA's Ocean Service, Coastal Services Center. The new shorelines were integrated with existing Massachusetts Office of Coastal Zone Management and USGS historical shoreline data in order to compute long- and short-term rates using the latest version of the Digital Shoreline Analysis System (DSAS).
Indoor Space Planner is an ArcGIS Indoors application template for space management and assignment inside buildings. It provides an indoor mapping experience to perform occupant assignment updates to account for reorganization efforts, changes to office space, or growth in the organization. You can use Space Planner to plan office moves as well as define areas and staff assignments for office hoteling.Key Features offered by the Indoor Space Planner appConsolidate space through occupant office assignments and make more space available for other usesUpdate occupant assignments with newly built or acquired office spacesDefine seating arrangements to support a safer work environmentIncrease collaboration between staff and teams with space assignment for improved productivity and communicationAssign staff and teams to areas that optimize access to building assets such as collaboration spaces, meeting rooms, equipment, or amenitiesSpace Planner application requires Indoors Spaces license.
Mauritania Department Boundaries provides a 2023 boundary with a total population count. The layer is designed to be used for mapping and analysis. It can be enriched with additional attributes using data enrichment tools in ArcGIS Online.The 2023 boundaries are provided by Michael Bauer Research GmbH. These were published in October 2023. A new layer will be published in 12-18 months. Other administrative boundaries for this country are also available: Country Province
This layer shows the distribution of Water Dispensers in Public Venues of Environmental Protection Department of Hong Kong. It is a subset of the data made available by the Environmental Protection Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data is in CSV format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.
This layer shows the location of Senior Citizen Card Office in Hong Kong. It is a set of data made available by the Social Welfare Department under the Government of Hong Kong Special Administrative Region (the "Government") at https://GEODATA.GOV.HK/ ("Hong Kong Geodata Store"). The source data is in CSV format and has been processed and converted into Esri File Geodatabase format and uploaded to Esri's ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of Hong Kong Geodata Store at https://geodata.gov.hk/.
Spreadsheets and graphs are powerful tools that make data come alive and tell a story. Now, use maps to see the story from another perspective. ArcGIS Maps for Office enables Microsoft Excel and PowerPoint users worldwide to ask location-related questions of data, get powerful insights, and make the best decisions. You can:Map your spreadsheet data – whether you want to see customer locations, ZIP code aggregations, custom sales territories and more – you can see it all.Add geographic context to your spreadsheet data and communicate these insights via interactive maps in PowerPoint.Gain insight into demographic, spending, behavior, and landscape information, among many more.Use the authoritative content on the ArcGIS platform to supplement your location data and add context to the locations in your spreadsheet.Securely share your maps with colleagues and stakeholders.Bring the power of the ArcGIS platform into your spreadsheets and presentations. To use ArcGIS Maps for Office you need an ArcGIS Online paid or trial subscription or a Portal for ArcGIS Named User License and Microsoft Office 2010, 2013, or 2016. Visit the online documentation for information on how to use this app.