Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
The goal of this project is to create a map of the planet Mars, by using ESRI software. For this, a 3D project was developed using ArcGIS Pro, considering a global scene, to be published in an online platform. All the various data from Mars will be available in a single website, where everyone can visualize and interact. The Red Planet has been studied for many decades and this year marks the launch of a new rover, Mars2020, which will happen on the 17th of July. This new rover will be continuing the on-going work of the Curiosity Rover, launched in 2012. The main objective for these rovers is to determine if Mars could have supported life, by studying its water, climate and geology. Currently, the only operational rover in Mars is Curiosity and with that in mind, this project will have a strong focus on the path taken by this rover, during almost 8 years of exploration. In the web application, the user will be able to see the course taken by Curiosity in Mars’ Gale Crater, from its landing until January 2020. The map highlights several points of interest, such as the location after each year passed on MarsEarth year and every kilometer, which can be interacted with as well as browse through photos taken at each of the locations, through a pop-up window. Additionally, the application also supports global data of Mars. The two main pieces, used as basemaps, are the global imagery, with a pixel size of 925 meters and the Digital Elevation Model (DEM), with 200 meters per pixel. The DEM represents the topography of Mars and was also used to develop Relief and Slope Maps. Furthermore, the application also includes data regarding the geology of the planet and nomenclature to identify regions, areas of interest and craters of Mars. This project wouldn’t have been possible without NASA’s open-source philosophy, working alongside other entities, such as the European Space Agency, the International Astronomical Union and the Working Group for Planetary System Nomenclature. All the data related to Imagery, DEM raster files, Mars geology and nomenclature was obtained on USGS Astrogeology Science Center database. Finally, the data related to the Curiosity Rover was obtained on the portal of The Planetary Society. Working with global datasets means working with very large files, so selecting the right approach is crucial and there isn’t much margin for experiments. In fact, a wrong step means losing several hours of computing time. All the data that was downloaded came in Mars Coordinate Reference Systems (CRS) and luckily, ESRI handles that format well. This not only allowed the development of accurate analysis of the planet, but also modelling the data around a globe. One limitation, however, is that ESRI only has the celestial body for planet Earth, so this meant that the Mars imagery and elevation was wrapped around Earth. ArcGIS Pro allows CRS transformation on the fly, but rendering times were not efficient, so the workaround was to project all data into WGS84. The slope map and respective reclassification and hillshading was developed in the original CRS. This process was done twice: one globally and another considering the Gale Crater. The results show that the crater’s slope characteristics are quite different from the global panorama of Mars. The crater has a depression that is approximately 5000 meters deep, but at the top it’s possible to identify an elevation of 750 meters, according to the altitude system of Mars. These discrepancies in a relatively small area result in very high slope values. Globally, 88% of the area has slopes less than 2 degrees, while in the Gale Crater this value is only 36%. Slopes between 2 and 10 degrees represent almost 60% of the area of the crater. On the other hand, they only represent 10% of the area globally. A considerable area with more than 10 degrees of slope can also be found within the crater, but globally the value is less than 1%. By combining Curiosity’s track path with the DEM, a profile graph of the path was obtained. It is possible to observe that Curiosity landed in a flat area and has been exploring in a “steady path”. However, in the last few years (since the 12th km), the rover has been more adventurous and is starting to climb the crater. In the last 10 km of its journey, Curiosity “climbed” around 300 meters, whereas in the first 11 km it never went above 100 meters. With the data processed in the WGS84 system, all was ready to start modelling Mars, which was firstly done in ArcGIS Pro. When the data was loaded, symbology and pop-ups configured, the project was exported to ArcGIS Online. Both the imagery and elevation layer were exported as “hosted tile service”. This was a key step, since keeping the same level of detail online and offline would have a steep increase in imagery size, to hundreds of Terabytes, thus a lot of work was put into balancing tile cache size and the intended quality of imagery. For the remaining data, it was a straight-forward step, exporting these files as vectors. Once all the data was in the Online Portal, a Global Web Scene was developed. This is an on-going project with an outlook to develop the global scene into an application with ESRI’s AppBuilder, allowing the addition of more information. In the future, there is also interest to increment the displayed data, like adding the paths taken by other rovers in the past, alongside detailed imagery of other areas beyond the Gale Crater. Finally, with 2021 being the year when the new rover Mars2020 will land on the Red Planet, we might be looking into adding it to this project.https://arcg.is/KuS4r
Sheboygan's custom projection file used with aerial imagery downloads.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Point Conception map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Point Conception map area data layers. Data layers are symbolized as shown on the associated map sheets.
The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/2AFGSWhttps://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/2AFGSW
The UNI-CEN Digital Boundary File Series facilitates the mapping of UNI-CEN census data tables. Boundaries are provided in multiple formats for different use cases: Esri Shapefile (SHP), geoJson, and File Geodatabase (FGDB). SHP and FGDB files are provided in two projections: NAD83 CSRS for print cartography and WGS84 for web applications. The geoJson version is provided in WGS84 only. The UNI-CEN Standardized Census Data Tables are readily merged to these boundary files. For more information about file sources, the methods used to create them, and how to use them, consult the documentation at https://borealisdata.ca/dataverse/unicen_docs. For more information about the project, visit https://observatory.uwo.ca/unicen.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a GIS-usable format employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM) projection, Zone 16, using North American Datum of 1983 (NAD83). To produce a polygon vector layer for use in ArcGIS, we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format using ArcGIS (Version 9.2, © 2006 Environmental Systems Research Institute, Redlands, California). In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map attribute codes (both map class codes and physiognomic modifier codes) to the polygons, and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer of INDU and immediate environs. At this stage, the map layer has only map attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map class names, physiognomic definitions, link to NVC association and alliance codes), we produced a feature class table along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature class layers produced from this project, including vegetation sample plots, accuracy assessment sites, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. GIS Database 2002-2005: Project Size = 1,898 acres Fort Larned National Historic Site (including the Rut Site) = 705 acres 16 Map Classes 11 Vegetated 5 Non-vegetated Minimum Mapping Unit = ½ hectare is the program standard but this was modified at FOLS to ¼ acre. Total Size = 229 Polygons Average Polygon Size = 8.3 acres Overall Thematic Accuracy = 92% To produce the digital map, a combination of 1:8,500-scale (0.75 meter pixels) color infrared digital ortho-imagery acquired on October 26, 2005 by the Kansas Applied Remote Sensing Program and 1:12,000-scale true color ortho-rectified imagery acquired in 2005 by the U.S. Department of Agriculture - Farm Service Agency’s Aerial Photography Field Office, and all of the GPS referenced ground data were used to interpret the complex patterns of vegetation and land-use. In the end, 16 map units (11 vegetated and 5 land-use) were developed and directly cross-walked or matched to corresponding plant associations and land-use classes. All of the interpreted and remotely sensed data were converted to Geographic Information System (GIS) databases using ArcGIS© software. Draft maps were printed, field tested, reviewed and revised. One hundred and six accuracy assessment (AA) data points were collected in 2006 by KNSHI and used to determine the map’s accuracy. After final revisions, the accuracy assessment revealed an overall thematic accuracy of 92%.
Geographic Extent: SANDY_Restoration_VA_MD_DC_QL2 Area of Interest covers approximately 2,002 square miles. Lot #5 contains the full project area Dataset Description: The SANDY_Restoration_VA_MD_DC_QL2 project called for the Planning, Acquisition, processing and derivative products of LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1. The data was developed based on a horizontal projection/datum of UTM Zone 18 North, NAD83, meters and vertical datum of NAVD1988 (GEOID12A), meters. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.2 Files formatted to 2283 individual 1500m x 1500m tiles, and corresponding Intensity Images and Bare Earth DEMs tiled to the same 1500m x 1500m schema, and Breaklines in ESRI Shapefile format. The data was then converted to a horizontal projection/datum of NAD83 Maryland State Plane Coordinate System, Feet. LiDAR was delivered in Classified LAS 1.2 Files formatted to 1927 individual 4000' x 6000' tiles, and corresponding Intensity Images and Bare Earth DEMs tiled to the same 4000' x 6000' schema, and Breaklines in ESRI Shapefile format. Ground Conditions: LiDAR was collected in Winter 2014, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 59 QA control points and 95 Land Cover control points that were used to calibrate the LiDAR to known ground locations established throughout the SANDY_Restoration_VA_MD_DC_QL2 project area.This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://lidar.geodata.md.gov/imap/rest/services/Charles/MD_charles_dem_m/ImageServer
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Application locations and areas within Iowa, submitted by eligible applicants between 7/14/2023 - 8/25/2023 (5:00 PM CST) for Notification of Funding Availability (NOFA) #008.Application locations represent unserved and underserved point-based address locations in Iowa. Application locations were originally selected by Applicants using the Project Selection Tool (Broadband Map V5) and following the selection and submission guidelines in Exhibit 'K' as part of their NOFA #008 application. The application window was open from 7/14/2023 - 8/25/2023 (5:00 PM CST) in order for the OCIO to receive all timely and complete applications per the guidelines described in Exhibit 'A' to NOFA #008. Application areas were constructed based on the list of locations submitted by Applicants using a convex hull to enclose the locations within a polygon.Per NOFA #008 Exhibit 'A', section 1.2. Key Program Definitions:"100/100 Broadband" means reliable one hundred (100) megabits per second of download speed or faster and one hundred (100) megabits per second of upload speed or faster."100/20 Broadband" means reliable one hundred (100) megabits per second of download speed or faster and twenty (20) megabits per second of upload speed or faster, but less than 100/100 Broadband."Broadband Availability Map" means the statewide map that identifies whether and at which speeds a Communications Service Provider Facilitated Broadband to Broadband Unit as of the As of Date, whether a grantee has received a prior state or federal grant to Facilitate 100/20 Broadband to a Broadband Unit, and whether a Broadband Unit is an Eligible Service Location. The Broadband Availability Map is published at : https://ocio.iowa.gov/broadband-availability-map-version-5."Broadband Intervention Zone" or "Zone" means a geographic area comprised of Eligible Service Locations selected by the OCIO upon completion of the evaluation of Applications to the Invitation to Qualify published at https://ocio.iowa.gov/invitation-qualify-001."Broadband Unit(s)" means a Broadband-serviceable location identified on the Broadband Availability Map."Community Anchor Institutions" or "CAI" means an entity such as a school, library, heath clinic, health center, hospital or other medical provider, public safety entity, institution of higher education, public housing organization, or community support organization that facilitates greater use of broadband service by vulnerable populations, including, but not limited to, low-income individuals, unemployed individuals, children, the incarcerated, and aged individuals."Eligible Service Location" means a location identified on the Broadband Availability Map to which no provider offers service at speeds greater than or equal to 100/20 Broadband. The location must not have been previously awarded Federal or State broadband incentives for build out greater than 100/20 Broadband. An Eligible Service Location may include a Community Anchor Institution."Project Area" means one or more Eligible Service Locations to which an Applicant proposed to Facilitate Covered Speeds. The Project Area is established by converting these addresses into a minimum bounding polygon or convex hull formed by enclosing/circumscribing the list of addresses. Reference section 2.2.6.1 (Project Worksheet) and the Project Worksheet for instructions on how to identify a Project.For more information on NOFA #008 and broadband, please visit: https://ocio.iowa.gov/empower-rural-iowa-broadband-grant-program-notice-funding-availability-008.NOFA #008 Exhibit 'A': https://ocio.iowa.gov/sites/default/files/exhibit_a_notice_of_funding_availability_nofa008_final.pdf.NOFA #008 Exhibit 'K': https://ocio.iowa.gov/sites/default/files/exhibit_k_project_selection_and_data.uctions_nofa_008.pdf.Project Selection Tool (Broadband Map V5): https://iowa.maps.arcgis.com/apps/webappviewer/index.html?id=e9d5ba9cb3994b9c9fef59cee6bd4c4d.Broadband Availability Map: https://ocio.iowa.gov/broadband-availability-map-version-5.Iowa Broadband Map v5 Eligibility: https://iowa.maps.arcgis.com/apps/webappviewer/index.html?id=f454e1dd4e1c405787b5f35c56bcfee3.
Proportional change in effective area of similar ecological environments for Reptiles as a function of land clearing and change in long term (30 year average) climates between the present (1990 …Show full descriptionProportional change in effective area of similar ecological environments for Reptiles as a function of land clearing and change in long term (30 year average) climates between the present (1990 centred) and projected future (2050 centred) under the CanESM2 model (RCP 8.5) based on Generalised Dissimilarity Modelling (GDM) of compositional turnover. This metric describes the combined effects of climate change and land clearing on the area of similar environments to each grid cell as a proportion. Each cell is compared with a sample of 60,000 points in both the present uncleared landscape and an alternative scenario (either present with clearing, or future with clearing), and the pairwise similarities summed (e.g. a completely similar cell will contribute 1, a dissimilar cell 0, with a range of values in between). Only cells which are flagged as uncleared contribute. For each time point, this describes the area of similar environments, which will be low for rare environments and high for widely distributed environments. By dividing the test area by the current area, we are able to quantify the reduction in area as a function of land use/climate change. Values less than one indicate a reduction, values of 1 no change, and values greater than 1 (rare cases in the north) show an increase in similar environments. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided in two forms: Zipped ESRI float grids: Binary float grids (.flt) with associated ESRI header files (.hdr) and projection files (.prj). After extracting from the zip archive, these files can be imported into most GIS software packages, and can be used as other binary file formats by substituting the appropriate header file. ArcGIS layer package (.lpk): These packages contain can be unpacked by ArcGIS as a raster with associated legend. Additionally a short methods summary is provided in the file 9sMethodsSummary.pdf for further information. Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE_ TO SCENARIO_ ANALYSIS e.g. A_90_CAN85_S or R_90_MIR85_L where BIOLOGICAL GROUP is A: Mammals, M: mammals, R: reptiles and V: vascular plants The metadata and files (if any) are available to the public.
A suite of 9s resolution climate surfaces for the Australian continent, with adjustment for the radiative effects of terrain. This collection represents a 30 year average centred on 2050 for the …Show full descriptionA suite of 9s resolution climate surfaces for the Australian continent, with adjustment for the radiative effects of terrain. This collection represents a 30 year average centred on 2050 for the MIROC 5 circulation model under RCP 4.5. Projected future climates were generated by applying within-model changes (e.g. MIROC 5 2036-2065 MIROC 5 (1976-2005) calculated at the native general circulation model grid resolution to these current surfaces, using ANUCLIM 6.1 prior to radiative adjustment. Precipitation, temperature, evaporation and water balance data are presented as annual means or totals and maximum and minimum monthly values. Data are provided as zipped ESRI float grids: Binary float grids (.flt) with associated ESRI header files (.hdr) and projection files (*.prj). After extracting from the zip archive, these files can be imported into most GIS software packages, and can be used as other binary file formats by substituting the appropriate header file. Additionally a short methods summary is provided in the file 9sClimateMethodsSummary.pdf for further information, including a nomenclature for files. The metadata and files (if any) are available to the public.
The financially constrained element of Visualize 2045 identifies all the regionally significant capital improvements to the region’s highway and transit systems that transportation agencies expect to make and to be able to afford through 2045.For more information on Visualize 2045, visit https://www.mwcog.org/visualize2045/.To view the web map, visit https://www.mwcog.org/maps/map-listing/visualize-2045-project-map/.* NOTE: the online map shows projects in the current version of the plan (2022 update); this data download is for the 2018 update to the plan.Adding GIS Data to ArcMap from a Map Package:To load the .mpk file if saved locally: From Windows Explorer1. Browse to the location of the .mpk file. 2. Double-click the file to launch ArcMap and unpack all the data in the package. From ArcCatalog1. Browse to the location of the .mpk file. 2. Right-click the file, and select Unpack. This action launches ArcMap and unpacks the data in the package. The process is the same if you are using ArcCatalog from within ArcMap.Note: The .mpk file cannot be opened within ArcMap.Regardless of where the .mpk file is stored originally, the data within the map package when unpacked saves on your hard drive in the Documents and Settings folder:C:\Documents_and_Settings\MyDocuments\ArcGIS\Packages*.gdb
Project file containing the FEMA 2010 (current data) data sets which include Base Flood Elevation, Cross Sections, General Structures, FIRM Panels, Flood Hazard Areas and LOMR. Data is being served to ArcServer for publication in to Open Data on ArcGIS Online. Project file location: \gis-data\gis\library\ESRI\Services 1041\OpenData\FEMA.mxd
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. James W. Sewall Company developed a complete GIS coverage for the park and revised the preliminary vegetation map classes to better match the results from the cluster analysis and NMS ordination. Polygons representing vegetation stands were digitized on-screen in ArcGIS 8.3, and later in ArcMap 9.1 and 9.2, using lines drawn on the acetate overlays, base layers of 1:8,000 CIR aerial photography, orthorectified photo composite image, and plot location and data. The minimum map unit used was 0.5 ha (1.24 ac). Stereo pairs were used to double check stand signatures during the digitizing process. Photo interpretation and polygon digitization extended outside the NPS boundary, especially where vegetation units were arbitrarily truncated by the boundary. Each polygon was attributed with the name of a vegetation map class or an Anderson Level II land use category based on plot data, field observations, aerial photography signatures, and topographic maps. Data fields identifying the USNVC association inclusions within the vegetation map class were attributed to the vegetation polygons in the shapefile. The GIS coverages and shapefiles were projected to Universal Transverse Mercator (UTM) Zone 19 North American Datum 1983 (NAD83). FGDC compliant metadata (FGDC 1998a) were created with the NPS-MP ESRI extension and included with the vegetation map shapefile. A photointerpretation key to the map classes for the 2006 draft vegetation map is included as Appendix A. The composite vegetation coverage was clipped to the NPS 2002 MIMA boundary shapefile for accuracy assessment (AA). After the 2006 vegetation map was completed, the thematic accuracy of this map was assessed.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. An ArcInfo(tm) (ESRI) GIS database was designed for WICA using the National Park GIS Database Design, Layout, and Procedures created by the BOR. This was created through Arc Macro Language (AML) scripts that helped automate the transfer process and ensure that all spatial and attribute data was consistent and stored properly. Actual transfer of information from the interpreted aerial photographs to a digital, geo-referenced format involved two techniques, scanning (for the vegetation classes) and on-screen digitizing (for the land-use classes). Both techniques required the use of 14 digital black-and-white orthophoto quarter quadrangles (DOQQ's) covering the study area. Transferred information was used to create vegetation polygon coverages and ancillary linear coverages in ArcInfo(tm) for each WICA DOQQ. Attribute information including vegetation map unit, location, and aerial photo number was subsequently entered for all polygons.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Our final map product is a geographic information system (GIS) database of vegetation structure and composition across the Crater Lake National Park terrestrial landscape, including wetlands. The database includes photos we took at all relevé, validation, and accuracy assessment plots, as well as the plots that were done in the previous wetlands inventory. We conducted an accuracy assessment of the map by evaluating 698 stratified random accuracy assessment plots throughout the project area. We intersected these field data with the vegetation map, resulting in an overall thematic accuracy of 86.2 %. The accuracy of the Cliff, Scree & Rock Vegetation map unit was difficult to assess, as only 9% of this vegetation type was available for sampling due to lack of access. In addition, fires that occurred during the 2017 accuracy assessment field season affected our sample design and may have had a small influence on the accuracy. Our geodatabase contains the locations where particular associations are found at 600 relevé plots, 698 accuracy assessment plots, and 803 validation plots.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Aerial digital ortho-photography was the foundation imagery for map development. For Abó, the photography was acquired on April May 15, 2002 at a scale of approximately 1:3,000; for Quarai and Gran Quivira it was flown on April 2, 2003 at scales of 1:3,600 and 1:3000, respectively. The 2002-03 digital imagery has a base pixel resolution of 1.0 m. We also made use of statewide 1-meter resolution, true-color imagery from 2005 that became available in 2006 through the New Mexico Resource Geographic Information System. A 10 m spatial resolution USGS Digital Elevation Model (DEM) was used, in conjunction with ground data, to help discriminate between vegetation types based on elevation gradients and terrain. All imagery and other spatial data layers were compiled into a geodatabase and GIS using ArcGIS 9.3 (ESRI 2008).
Created to honor the impressionistic atmospheric quality of the work of Swiss topographic painter and cartographer, Eduard Imhof. These symbols and palettes allow for the application of an homage aesthetic when applied to layered hillshades and digital elevation models. An accompanying how-to resource is forthcoming.In the meantime, the Hillshade color scheme is intended to be applied to a traditional hillshade layer and a multidirectional hillshade layer. The Mist color scheme is intended to be applied to a DEM layer. When viewed in concert with an imagery basemap, the hues and opacities combine to create a distinctive quality.Here it is at a broader scale...Here is a map that uses the Area of Interest, Mask, and Locator layers...Contents:Alternatively, you can download an ArcGIS Pro project with the data and styles already implemented, and you can just start cranking away at Imhofs.Happy Topographic Painting! John Nelson
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Purpose: To acquire detailed surface elevation data for use in conservation planning, design, research, floodplain mapping, dam safety assessments and elevation modeling, etc. Classified LAS files are used to show the manually reviewed bare earth surface. This allows the user to create intensity images, breaklines and raster DEMs. The purpose of these LiDAR data was to produce high accuracy 3D hydro-flattened digital elevation models (DEMs) with a 1-meter cell size. These raw LiDAR point cloud data were used to create classified LiDAR LAS files, intensity images, 3D breaklines, and hydro-flattened DEMs as necessary.Product: These are Digital Elevation Model (DEM) data for Northern Maine as part of the required deliverables for the Crown of Maine 2018 QL2 LiDAR project. Class 2 (ground) lidar points in conjunction with the hydro breaklines were used to create a 1-meter hydro-flattened raster DEM.This lidar data set includes unclassified swath LAS 1.4 files, classified LAS 1.4 files, hydro and bridge breaklines, hydro-flattened digital elevation models (DEMs), and intensity imagery. Geographic Extent: 4 partial counties in Northern Maine, covering approximately 6,732 total square miles. Dataset Description: The Crown of Maine 2018 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.71 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 19, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 8,056 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in spring of 2018 and 2019, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 256 independent accuracy checkpoints, 149 in Bare Earth and Urban landcovers (149 NVA points), 107 in Tall Weeds categories (107 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
New project plans are no longer accepted. Project Plan amendments are the only form of Project Plan that is still reviewed. Before submitting an application, applicants must meet with planning staff and receive an amendment checklist that outlines the required submission items. A Project Plan sets the development density, height limit, and public amenities for optional method projects in the CBD zones under the 2004 Zoning Ordinance. For further details: https://montgomeryplanning.org/development/development-applications/project-plan/ For more information, contact: GIS Manager Information Technology & Innovation (ITI) Montgomery County Planning Department, MNCPPC T: 301-650-5620
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
The goal of this project is to create a map of the planet Mars, by using ESRI software. For this, a 3D project was developed using ArcGIS Pro, considering a global scene, to be published in an online platform. All the various data from Mars will be available in a single website, where everyone can visualize and interact. The Red Planet has been studied for many decades and this year marks the launch of a new rover, Mars2020, which will happen on the 17th of July. This new rover will be continuing the on-going work of the Curiosity Rover, launched in 2012. The main objective for these rovers is to determine if Mars could have supported life, by studying its water, climate and geology. Currently, the only operational rover in Mars is Curiosity and with that in mind, this project will have a strong focus on the path taken by this rover, during almost 8 years of exploration. In the web application, the user will be able to see the course taken by Curiosity in Mars’ Gale Crater, from its landing until January 2020. The map highlights several points of interest, such as the location after each year passed on MarsEarth year and every kilometer, which can be interacted with as well as browse through photos taken at each of the locations, through a pop-up window. Additionally, the application also supports global data of Mars. The two main pieces, used as basemaps, are the global imagery, with a pixel size of 925 meters and the Digital Elevation Model (DEM), with 200 meters per pixel. The DEM represents the topography of Mars and was also used to develop Relief and Slope Maps. Furthermore, the application also includes data regarding the geology of the planet and nomenclature to identify regions, areas of interest and craters of Mars. This project wouldn’t have been possible without NASA’s open-source philosophy, working alongside other entities, such as the European Space Agency, the International Astronomical Union and the Working Group for Planetary System Nomenclature. All the data related to Imagery, DEM raster files, Mars geology and nomenclature was obtained on USGS Astrogeology Science Center database. Finally, the data related to the Curiosity Rover was obtained on the portal of The Planetary Society. Working with global datasets means working with very large files, so selecting the right approach is crucial and there isn’t much margin for experiments. In fact, a wrong step means losing several hours of computing time. All the data that was downloaded came in Mars Coordinate Reference Systems (CRS) and luckily, ESRI handles that format well. This not only allowed the development of accurate analysis of the planet, but also modelling the data around a globe. One limitation, however, is that ESRI only has the celestial body for planet Earth, so this meant that the Mars imagery and elevation was wrapped around Earth. ArcGIS Pro allows CRS transformation on the fly, but rendering times were not efficient, so the workaround was to project all data into WGS84. The slope map and respective reclassification and hillshading was developed in the original CRS. This process was done twice: one globally and another considering the Gale Crater. The results show that the crater’s slope characteristics are quite different from the global panorama of Mars. The crater has a depression that is approximately 5000 meters deep, but at the top it’s possible to identify an elevation of 750 meters, according to the altitude system of Mars. These discrepancies in a relatively small area result in very high slope values. Globally, 88% of the area has slopes less than 2 degrees, while in the Gale Crater this value is only 36%. Slopes between 2 and 10 degrees represent almost 60% of the area of the crater. On the other hand, they only represent 10% of the area globally. A considerable area with more than 10 degrees of slope can also be found within the crater, but globally the value is less than 1%. By combining Curiosity’s track path with the DEM, a profile graph of the path was obtained. It is possible to observe that Curiosity landed in a flat area and has been exploring in a “steady path”. However, in the last few years (since the 12th km), the rover has been more adventurous and is starting to climb the crater. In the last 10 km of its journey, Curiosity “climbed” around 300 meters, whereas in the first 11 km it never went above 100 meters. With the data processed in the WGS84 system, all was ready to start modelling Mars, which was firstly done in ArcGIS Pro. When the data was loaded, symbology and pop-ups configured, the project was exported to ArcGIS Online. Both the imagery and elevation layer were exported as “hosted tile service”. This was a key step, since keeping the same level of detail online and offline would have a steep increase in imagery size, to hundreds of Terabytes, thus a lot of work was put into balancing tile cache size and the intended quality of imagery. For the remaining data, it was a straight-forward step, exporting these files as vectors. Once all the data was in the Online Portal, a Global Web Scene was developed. This is an on-going project with an outlook to develop the global scene into an application with ESRI’s AppBuilder, allowing the addition of more information. In the future, there is also interest to increment the displayed data, like adding the paths taken by other rovers in the past, alongside detailed imagery of other areas beyond the Gale Crater. Finally, with 2021 being the year when the new rover Mars2020 will land on the Red Planet, we might be looking into adding it to this project.https://arcg.is/KuS4r