Python Scripting for ArcGIS Pro stars with the fundamentals of Python programming and then dives into how to write useful Python scripts that work with spatial data in ArcGIS Pro. Leam how to execute geoprocessing tools, describe, create and update data, as well as execute a number of specialized tasks. See how to write simple, Custom scripts that will automate your ArcGIS Pro workflows.Some of the key topics you Will learn include:Python fundamentalsSetting up a Python editorAutomating geoprocessing tasksExploring and manipulating spatal and tabular dataWorking With geometriesMap scriptingDebugging ard error handlingHelpful "points to remember," key terms, and review questions are included at the end of each chapter to reinforce your understanding of Python. Corresponding data and exercises are available online.Whether want to learn python or already have some experience, Python Scripting for ArcGlS Pro is comprehensive, hands-on book for learning versatility of Python coding as an approach to solving problems and increasing your productivity in ArcGlS Pro. Follow the step-by-step instruction and common workflow guidance for automating tasks and scripting with Python.Don't forget to also check out Esri Press's other Python title:Advanced Python Scripting for ArcGIS ProAUDIENCEProfessional and scholarly. College/higher education. General/trade.AUTHOR BIOPaul A Zandbergen is an associate professor of geography at the University of New Mexico in Albuquerque. His areas of expertise include geographic information science; spatial and statistical analysis techniques using GIS; error and uncertainty in spatial data; GIS applications in criminology, economics, health, and spatial ecology; terrain analysis and modeling; and community-based mapping using GIS and GPS.Pub Date: Print 7/7/2020 Digital: 7/7/2020ISBN: Print 9781589484993 Digital: 9781589485006 Price: Print: $79.99 USD Digital: $79.99 USD Pages: 420 Trim: 8 x 10 in.Table of ContentsPrefaceAcknowledgmentsChapter 1. Introducing Py%onChapter 2. Working with Python editorsChapter 3. Geoprocessing in ArcGIS ProChapter 4. Leaming Python language fundamentalsChapter 5. Geoprocessing using PythonChapter 6. Exploring spatial dataChapter 7. Debugging and error handlingChapter 8. Manipulating spatial and tabular dataChapter 9. Working with geometriesChapter 10. Working with rastersChapter 11. Map scriptingIndexPython Scripting and Advanced Python Scripting for ArcGIS Pro | Official Trailer | 2020-07-12 | 01:04Paul Zandbergen | Interview with Esri Press | 2020-07-10 | 25:37 | Link.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The market for GIS Mapping Tools is projected to reach a value of $XX million by 2033, growing at a CAGR of XX% during the forecast period (2025-2033). The market growth is attributed to the increasing adoption of GIS mapping tools by various industries, including government, utilities, and telecom, for a wide range of applications such as geological exploration, water conservancy projects, and urban planning. The convergence of GIS with other technologies such as artificial intelligence (AI) and the Internet of Things (IoT) is further driving market growth, as these technologies enable GIS mapping tools to provide more accurate and real-time data analysis. The market is segmented by type (cloud-based, web-based), application (geological exploration, water conservancy projects, urban planning, others), and region (North America, Europe, Asia Pacific, Middle East & Africa). North America is expected to remain the largest market for GIS mapping tools throughout the forecast period, due to the early adoption of these technologies and the presence of leading vendors such as Esri, MapInfo, and Autodesk. Asia Pacific is expected to experience the highest growth rate during the forecast period, due to the increasing adoption of GIS mapping tools in emerging economies such as China and India. Key industry players include Golden Software Surfer, Geoway, QGIS, GRASS GIS, Google Earth Pro, CARTO, Maptive, Shenzhen Edraw Software, MapGIS, Oasis montaj, DIVA-GIS, Esri, MapInfo, Autodesk, BatchGeo, Cadcorp, Hexagon, Mapbox, Trimble, and ArcGIS.
The Viewshed analysis layer is used to identify visible areas. You specify the places you are interested in, either from a file or interactively, and the Viewshed service combines this with Esri-curated elevation data to create output polygons of visible areas. Some questions you can answer with the Viewshed task include:What areas can I see from this location? What areas can see me?Can I see the proposed wind farm?What areas can be seen from the proposed fire tower?The maximum number of input features is 1000.Viewshed has the following optional parameters:Maximum Distance: The maximum distance to calculate the viewshed.Maximum Distance Units: The units for the Maximum Distance parameter. The default is meters.DEM Resolution: The source elevation data; the default is 90m resolution SRTM. Other options include 30m, 24m, 10m, and Finest.Observer Height: The height above the surface of the observer. The default value of 1.75 meters is an average height of a person. If you are looking from an elevation location such as an observation tower or a tall building, use that height instead.Observer Height Units: The units for the Observer Height parameter. The default is meters.Surface Offset: The height above the surface of the object you are trying to see. The default value is 0. If you are trying to see buildings or wind turbines add their height here.Surface Offset Units: The units for the Surface Offset parameter. The default is meters.Generalize Viewshed Polygons: Determine if the viewshed polygons are to be generalized or not. The viewshed calculation is based upon a raster elevation model which creates a result with stair-stepped edges. To create a more pleasing appearance, and improve performance, the default behavior is to generalize the polygons. This generalization will not change the accuracy of the result for any location more than one half of the DEM's resolution.By default, this tool currently works worldwide between 60 degrees north and 56 degrees south based on the 3 arc-second (approximately 90 meter) resolution SRTM dataset. Depending upon the DEM resolution pick by the user, different data sources will be used by the tool. For 24m, tool will use global dataset WorldDEM4Ortho (excluding the counties of Azerbaijan, DR Congo and Ukraine) 0.8 arc-second (approximately 24 meter) from Airbus Defence and Space GmbH. For 30m, tool will use 1 arc-second resolution data in North America (Canada, United States, and Mexico) from the USGS National Elevation Dataset (NED), SRTM DEM-S dataset from Geoscience Australia in Australia and SRTM data between 60 degrees north and 56 degrees south in the remaining parts of the world (Africa, South America, most of Europe and continental Asia, the East Indies, New Zealand, and islands of the western Pacific). For 10m, tool will use 1/3 arc-second resolution data in the continental United States from USGS National Elevation Dataset (NED) and approximately 10 meter data covering Netherlands, Norway, Finland, Denmark, Austria, Spain, Japan Estonia, Latvia, Lithuania, Slovakia, Italy, Northern Ireland, Switzerland and Liechtenstein from various authoritative sources.To learn more, read the developer documentation for Viewshed or follow the Learn ArcGIS exercise called I Can See for Miles and Miles. To use this Geoprocessing service in ArcGIS Desktop 10.2.1 and higher, you can either connect to the Ready-to-Use Services, or create an ArcGIS Server connection. Connect to the Ready-to-Use Services by first signing in to your ArcGIS Online Organizational Account:Once you are signed in, the Ready-to-Use Services will appear in the Ready-to-Use Services folder or the Catalog window:If you would like to add a direct connection to the Elevation ArcGIS Server in ArcGIS for Desktop or ArcGIS Pro, use this URL to connect: https://elevation.arcgis.com/arcgis/services. You will also need to provide your account credentials. ArcGIS for Desktop:ArcGIS Pro:The ArcGIS help has additional information about how to do this:Learn how to make a ArcGIS Server Connection in ArcGIS Desktop. Learn more about using geoprocessing services in ArcGIS Desktop.This tool is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
This deep learning model is used for extracting windows and doors in textured building data displayed in 3D views. Manually digitizing windows/doors from 3D building data can be a slow process. This model automates the extraction of these objects from a 3D view and can help in speeding up 3D editing and analysis workflows. Using this model, existing building data can be enhanced with additional information on location, size and orientation of windows and doors. The extracted windows and doors can be further used to perform 3D visibility analysis using existing 3D geoprocessing tools in ArcGIS.This model can be useful in many industries and workflows. National Government and state-level law enforcement could use this model in security analysis scenarios. Local governments could use windows and door locations to help with tax assessments with CAMA (computer aided mass appraisal) plus impact-studies for urban planning. Public safety users might be interested in regards to physical or visual access to restricted areas, or the ability to build evacuation plans. The commercial sector, with everyone from real-estate agents to advertisers to office/interior designers, would be able to benefit from knowing where windows and doors are located. Even utilities, especially mobile phone providers, could take advantage of knowing window sizes and positions. To be clear, this model doesn't solve these problems, but it does allow users to extract and collate some of the data they will need to do it.Using the modelThis model is generic and is expected to work well with a variety of building styles and shapes. To use this model, you need to install supported deep learning frameworks packages first. See Install deep learning frameworks for ArcGIS for more information. The model can be used with the Interactive Object Detection tool.A blog on the ArcGIS Pro tool that leverages this model is published on Esri Blogs. We've also published steps on how to retrain this model further using your data.InputThe model is expected to work with any textured building data displayed in 3D views. Example data sources include textured multipatches, 3D object scene layers, and integrated mesh layers. OutputFeature class with polygons representing the detected windows and doors in the input imagery. Model architectureThe model uses the FasterRCNN model architecture implemented using ArcGIS API for Python.Training dataThis model was trained using images from the Open Images Dataset.Sample resultsBelow, are sample results of the windows detected with this model in ArcGIS Pro using the Interactive Object Detection tool, which outputs the detected objects as a symbolized point feature class with size and orientation attributes.
Deprecation notice: This tool is deprecated because this functionality is now available with out-of-the-box tools in ArcGIS Pro. The tool author will no longer be making further enhancements or fixing major bugs.Use Add GTFS to a Network Dataset to incorporate transit data into a network dataset so you can perform schedule-aware analyses using the Network Analyst tools in ArcMap.After creating your network dataset, you can use the ArcGIS Network Analyst tools, like Service Area and OD Cost Matrix, to perform transit/pedestrian accessibility analyses, make decisions about where to locate new facilities, find populations underserved by transit or particular types of facilities, or visualize the areas reachable from your business at different times of day. You can also publish services in ArcGIS Server that use your network dataset.The Add GTFS to a Network Dataset tool suite consists of a toolbox to pre-process the GTFS data to prepare it for use in the network dataset and a custom GTFS transit evaluator you must install that helps the network dataset read the GTFS schedules. A user's guide is included to help you set up your network dataset and run analyses.Instructions:Download the tool. It will be a zip file.Unzip the file and put it in a permanent location on your machine where you won't lose it. Do not save the unzipped tool folder on a network drive, the Desktop, or any other special reserved Windows folders (like C:\Program Files) because this could cause problems later.The unzipped file contains an installer, AddGTFStoaNetworkDataset_Installer.exe. Double-click this to run it. The installation should proceed quickly, and it should say "Completed" when finished.Read the User's Guide for instructions on creating and using your network dataset.System requirements:ArcMap 10.1 or higher with a Desktop Standard (ArcEditor) license. (You can still use it if you have a Desktop Basic license, but you will have to find an alternate method for one of the pre-processing tools.) ArcMap 10.6 or higher is recommended because you will be able to construct your network dataset much more easily using a template rather than having to do it manually step by step. This tool does not work in ArcGIS Pro. See the User's Guide for more information.Network Analyst extensionThe necessary permissions to install something on your computer.Data requirements:Street data for the area covered by your transit system, preferably data including pedestrian attributes. If you need help preparing high-quality street data for your network, please review this tutorial.A valid GTFS dataset. If your GTFS dataset has blank values for arrival_time and departure_time in stop_times.txt, you will not be able to run this tool. You can download and use the Interpolate Blank Stop Times tool to estimate blank arrival_time and departure_time values for your dataset if you still want to use it.Help forum
The Geoprocessing tool embeds the Web-based Transformation Tool released by Lands Department of HKSAR in ArcGIS and provides an instant extraction of height information of Hong Kong Principal Datum from various coordinate systems/datums. The Transformation Tool from Lands Department uses the conversion methods, parameters and formulas listed in the "Explanatory Notes on Geodetic Datums in Hong Kong" (PDF) and the "Datum Transformation and Transformation Parameters" (The "7-parameters") (PDF) as well as the Geoid Model established by the Hong Kong Polytechnic University. Please refer to this guidelines for using this geoprocessing tool in ArcGIS Pro.(Note: This tool is only applicable in ArcGIS Pro, and for coordinates within Hong Kong territories.)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.
World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources: Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD. Imagery UpdatesYou can use the Updates Mode in the World Imagery Wayback app to learn more about recent and pending updates. Accessing this information requires a user login with an ArcGIS organizational account. CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
The Travel Time Tool was created by the MN DNR to use GIS analysis for calculation of hydraulic travel time from gridded surfaces and develop a downstream travel time raster for each cell in a watershed. This hydraulic travel time process, known as Time of Concentration, is a concept from the science of hydrology that measures watershed response to a precipitation event. The analysis uses watershed characteristics such as land-use, geology, channel shape, surface roughness, and topography to measure time of travel for water. Described as Travel Time, it calculates the elapsed time for a simulated drop of water to migrate from its source along a hydraulic path across different surfaces of the replicated watershed landscape, ultimately reaching the watershed outlet. The Travel Time Tool creates a raster whereas each cell is a measure of the length of time (in seconds) that it takes water to flow across it, and then accumulates the time (in hours) from the cell to the outlet of the watershed.
The Travel Time Tool creates an impedance raster from Manning's Equation that determines the velocity of water flowing across the cell as a measure of time (in feet per second). The Flow Length Tool uses the travel time Grid for the impedance factor and determines the downstream flow time from each cell to the outlet of the watershed.
The toolbox works with ArcMap 10.6.1 and newer and ArcGIS Pro.
For step-by-step instructions on how to use the tool, please view MN DNR Travel Time Guidance.pdf
Manually digitizing the track of an object can be a slow process. This model automates the object tracking process significantly, and hence speeds up motion imagery analysis workflows. It can be used with the Motion Imagery Toolset found in the Image Analyst extension to track objects. The detailed workflow and description of the object tracking capability in ArcGIS Pro can be found here.This model can be used for applications such as object follower and surveillance of stationary objects. It does not perform very well in case there are sudden camera shakes or abrupt scale changes.Using the modelFollow the guide to use the model. The model can be used with the Motion Imagery tools in ArcGIS Pro 2.8 and onwards. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS. Fine-tuning the modelThis model cannot be fine-tuned using ArcGIS tools.InputObject to track marked as a bounding box in 8-bit, 3-band high resolution full motion video / motion imagery. Recommended object size is greater than 15x15 (in pixels).OutputBounding box depicting object location in successive frames.Applicable geographiesThis model is expected to work well in all regions globally for any generic-type of objects of interest. However, results can vary for motion imagery that are statistically dissimilar to the training data.Model architectureThis model uses the SiamMask model architecture implemented in ArcGIS API for Python.Accuracy metricsThe model has an average precision score of 0.853. Training dataThe model was trained using image sequences from the DAVIS dataset licensed under CC BY 4.0 license, and further fine-tuned on aerial motion imagery.Sample resultsHere are a few results from the model.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 10% from 2025 to 2033, reaching approximately $39 billion by 2033. This expansion is fueled by several key factors. Firstly, the rising adoption of cloud-based GIS solutions offers enhanced accessibility, scalability, and cost-effectiveness, particularly appealing to smaller organizations. Secondly, the burgeoning need for precise spatial data analysis in various applications, including urban planning, geological exploration, and water resource management, significantly contributes to market growth. Thirdly, advancements in technologies such as AI and machine learning are integrating into GIS tools, leading to more sophisticated analytical capabilities and improved decision-making. Finally, the increasing availability of high-resolution satellite imagery and other geospatial data further fuels market expansion. However, market growth is not without challenges. High initial investment costs associated with implementing and maintaining sophisticated GIS systems can pose a barrier to entry for smaller businesses. Furthermore, the complexity of GIS software and the need for specialized skills to operate and interpret data effectively can limit widespread adoption. Despite these restraints, the market’s overall trajectory remains positive, with the cloud-based segment projected to maintain a dominant market share due to its inherent advantages. Growth will be geographically diverse, with North America and Europe continuing to be significant markets, while Asia-Pacific is expected to experience the fastest growth due to rapid urbanization and infrastructure development. The continued development of user-friendly interfaces and increased integration with other business intelligence tools will further accelerate market expansion in the coming years.
GEBCO is a global terrain model for ocean and land providing elevation data in meters on a 15 arc-second interval grid. It is accompanied by a Type Identifier (TID) Grid that gives information on the types of source data that the GEBCO_2021 Grid is based. More Info.What can you do with this layer?Determine spot elevations and depths by clicking on the map and viewing the pop-up.Use in analysis within ArcGIS Online or ArcGIS Pro to enrich points, lines, or polygons with associated elevation data. This can be achieved by using the “Sample” tool in ArcGIS Pro or ArcGIS Online.Use for visualization of seafloor features.Layers associated with the GEBCO 2021 product:GEBCO Type Identifier 2021GEBCO Depth Zones 2021GEBCO 500m Contours 2021GEBCO Shaded Relief 2021GEBCO Bathymetry 2021Each of the layers can be found in this Web Map.
The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes wheat production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Wheat ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United StatesVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Area Harvested in AcresOperations with Area HarvestedOperations with SalesProduction in BushelsSales in US DollarsIrrigated Area Harvested in AcresOperations with Irrigated Area HarvestedAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.Many other ready-to-use layers derived from the Census of Agriculture can be found in the Living Atlas Agriculture of the USA group.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This resource was created by Esri Canada Education and Research. To browse our full collection of higher-education learning resources, please visit https://hed.esri.ca/resourcefinder/.Lidar data have become an important source for detailed 3D information for cities as well as forestry, agriculture, archaeology, and many other applications. Topographic lidar surveys, which are conducted by airplane, helicopter or drone, produce data sets that contain millions or billions of points. This can create challenges for storing, visualizing and analyzing the data. In this tutorial you will learn how to create a LAS Dataset and explore the tools available in ArcGIS Pro for visualizing lidar data.To download the tutorial and data folder, click the Open button to the top right. This will download a ZIP file containing the tutorial documents and data files.Software & Solutions Used: ArcGIS Pro Advanced 3.x. Last tested with ArcGIS Pro version 3.3. Time to Complete: 30 - 60 minsFile Size: 337 MBDate Created: August 2020Last Updated: March 2024
Explore time-discrete statistical climate downscaling using regression tools and a Jupyter notebook with Python to automate temperature predictions and build a time-series mosaic. This has been created for the Learn ArcGIS lesson Downscale climate data with machine learning.This is an archived copy of the tutorial data and will no longer be updated. For an up-to-date version, available only in English, please see Regression Analysis: Building a Regression Model Using ArcGIS Pro, Regression Analysis: Performing Random Forest Regression Using ArcGIS Pro, and Downscaling a Prediction Model Using ArcGIS Notebooks and ArcGIS Pro.
The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes farm and ranch sales plus the number and value of machines and trucks owned by operators from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: Farm and Ranch Sales, Machinery and Truck inventory and ValueCoordinate System: Web Mercator Auxiliary SphereExtent: United States including Hawaii and AlaskaVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Number of Operations - AnimalsSales in US Dollars - AnimalsNumber of Operations - CropsSales in US Dollars - CropsTotal Value in US Dollars - MachineryTractors - InventoryTrucks Including Pickups - InventoryAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.
Python Scripting for ArcGIS Pro stars with the fundamentals of Python programming and then dives into how to write useful Python scripts that work with spatial data in ArcGIS Pro. Leam how to execute geoprocessing tools, describe, create and update data, as well as execute a number of specialized tasks. See how to write simple, Custom scripts that will automate your ArcGIS Pro workflows.Some of the key topics you Will learn include:Python fundamentalsSetting up a Python editorAutomating geoprocessing tasksExploring and manipulating spatal and tabular dataWorking With geometriesMap scriptingDebugging ard error handlingHelpful "points to remember," key terms, and review questions are included at the end of each chapter to reinforce your understanding of Python. Corresponding data and exercises are available online.Whether want to learn python or already have some experience, Python Scripting for ArcGlS Pro is comprehensive, hands-on book for learning versatility of Python coding as an approach to solving problems and increasing your productivity in ArcGlS Pro. Follow the step-by-step instruction and common workflow guidance for automating tasks and scripting with Python.Don't forget to also check out Esri Press's other Python title:Advanced Python Scripting for ArcGIS ProAUDIENCEProfessional and scholarly. College/higher education. General/trade.AUTHOR BIOPaul A Zandbergen is an associate professor of geography at the University of New Mexico in Albuquerque. His areas of expertise include geographic information science; spatial and statistical analysis techniques using GIS; error and uncertainty in spatial data; GIS applications in criminology, economics, health, and spatial ecology; terrain analysis and modeling; and community-based mapping using GIS and GPS.Pub Date: Print 7/7/2020 Digital: 7/7/2020ISBN: Print 9781589484993 Digital: 9781589485006 Price: Print: $79.99 USD Digital: $79.99 USD Pages: 420 Trim: 8 x 10 in.Table of ContentsPrefaceAcknowledgmentsChapter 1. Introducing Py%onChapter 2. Working with Python editorsChapter 3. Geoprocessing in ArcGIS ProChapter 4. Leaming Python language fundamentalsChapter 5. Geoprocessing using PythonChapter 6. Exploring spatial dataChapter 7. Debugging and error handlingChapter 8. Manipulating spatial and tabular dataChapter 9. Working with geometriesChapter 10. Working with rastersChapter 11. Map scriptingIndexPython Scripting and Advanced Python Scripting for ArcGIS Pro | Official Trailer | 2020-07-12 | 01:04Paul Zandbergen | Interview with Esri Press | 2020-07-10 | 25:37 | Link.