Coconuts and coconut products are an important commodity in the Tongan economy. Plantations, such as the one in the town of Kolovai, have thousands of trees. Inventorying each of these trees by hand would require lots of time and manpower. Alternatively, tree health and location can be surveyed using remote sensing and deep learning. In this lesson, you'll use the Deep Learning tools in ArcGIS Pro to create training samples and run a deep learning model to identify the trees on the plantation. Then, you'll estimate tree health using a Visible Atmospherically Resistant Index (VARI) calculation to determine which trees may need inspection or maintenance.
To detect palm trees and calculate vegetation health, you only need ArcGIS Pro with the Image Analyst extension. To publish the palm tree health data as a feature service, you need ArcGIS Online and the Spatial Analyst extension.
In this lesson you will build skills in these areas:
Learn ArcGIS is a hands-on, problem-based learning website using real-world scenarios. Our mission is to encourage critical thinking, and to develop resources that support STEM education.
ArcGIS Technology for Mapping COVID-19 (Esri Training).Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic. This plan will teach you the core ArcGIS technology necessary to understand, prepare for, and respond to COVID-19 in your community or organization.More information about Esri training..._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Daten des amtlichen Liegenschaftskatsterinformationssystems (ALKIS) - Ortsteile von Berlin.Quelle: Geoportal BerlinVerarbeitungsprozesse: WFS wurde in ArcGIS Pro als Feature Layer importiert, nach Web Mercator projiziert und als Web Layer in ArcGIS Online veröffentlicht.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Der Datensatz beinhaltet die geografische Verteilung der gewerbetreibenden Unternehmen des Landes Berlin, nach Branche, Beschäftigtenklasse, Alter des Unternehmens und Rechtsform. Die Daten stellen die von der IHK erfassten, aktiven Gewerbetreibenden Berlins (Hauptsitze und Filialen) dar. Übersicht der Wirtschaftszweige und zugehöriger WahlgruppenQuelle: Berlin Open DataVerarbeitungsprozess: CSV-Tabelle wurde in ArcGIS Pro anhand der XY-Werte nach als Punkte-Feature-Klasse transformiert, nach Web Mercator projiziert und als Web Layer in ArcGIS Online veröffentlicht.
OVERVIEWThis site is dedicated to raising the level of spatial and data literacy used in public policy. We invite you to explore curated content, training, best practices, and datasets that can provide a baseline for your research, analysis, and policy recommendations. Learn about emerging policy questions and how GIS can be used to help come up with solutions to those questions.EXPLOREGo to your area of interest and explore hundreds of maps about various topics such as social equity, economic opportunity, public safety, and more. Browse and view the maps, or collect them and share via a simple URL. Sharing a collection of maps is an easy way to use maps as a tool for understanding. Help policymakers and stakeholders use data as a driving factor for policy decisions in your area.ISSUESBrowse different categories to find data layers, maps, and tools. Use this set of content as a driving force for your GIS workflows related to policy. RESOURCESTo maximize your experience with the Policy Maps, we’ve assembled education, training, best practices, and industry perspectives that help raise your data literacy, provide you with models, and connect you with the work of your peers.
ArcGIS Dashboards Training Videos for COVID-19With the current COVID-19 situation across the world, there’s been a proliferation of corona virus themed dashboards emerging over the last few weeks in ArcGIS Online. Many of these were created with ArcGIS Dashboards, which enables users to convey information by presenting location-based analytics using intuitive and interactive data visualizations on a single screen._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
This deep learning model is used to detect palm trees in high resolution drone or aerial imagery. Palm trees detection can be used for creating an inventory of palm trees, monitoring their health and location, and predicting the yield of palm oil, etc. High resolution aerial and drone imagery can be used for palm tree detection due to its high spatio-temporal coverage.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.InputHigh resolution RGB imagery (5 - 15 centimeter spatial resolution).OutputFeature class containing detected palm trees.Applicable geographiesThe model is expected to work well globally.Model architectureThis model uses the FasterRCNN model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an average precision score of 75 percent.Training dataThis model has been trained on an Esri proprietary palm tree detection dataset.Sample resultsHere are a few results from the model. To view more, see this story.
Der Adress-Datensatz enthält eine Auswahl von Sachattributen, welche in der Regel Referenzen auf andere Raumbezüge in Form von Schlüsselwerten enthalten. Diese sind:AdressID (AdressID, INT)Hausnummer ohne Zusatz (HNR, INT)Hausnummernzusatz (HNR_Zusatz, Text, 1 Zeichen)Straßenschlüssel (STR_NR Text, 5 Ziffern))Straßenname (STR_Name, Text, 100 Zeichen))Postleitzahl (PLZ, Text, 5 Ziffern)Bezirksname (BEZ_Name, Text, 50 Zeichen)Bezirksschlüssel ( BEZ_Nr, Text, 2 Ziffern)Ortsteilname (ORT_Name, Text, 50 Zeichen)Ortsteilschlüssel (ORT_Nr, Text, 4 Ziffern)LOR-Name (PLR_Name, Text, 50 Zeichen)LOR-Schlüssel ( PLR_Nr, Text, 8 Ziffern)1 - 2 = Bezirksschlüssel3 - 4 = Schlüssel Prognoseraum5 - 6 = Schlüssel Bezirksregion7 - 8 = Schlüssel PlanungsraumSchlüssel Statistischer Block (BLK, Text, 6 Ziffern), die ersten 3 Ziffern entsprechen dem Schlüssel des statistischen GebietsAufnahmedatum der Adresse (ADR_Datum, date)Aufnahmedatum der Straße (STR_Datum, date)Qualität der Adresse (Qualitaet, Text, 25 Zeichen)Qualität A = Hauskoordinate im Gebäudeumring (1000)Qualität B = Hauskoordinate innerhalb Flurstück (2000)RBS = Datensatz im Regionalen BezugssystemAdresstyp (Typ, Text, 25 Zeichen)AdressePlatz/Straße ohne HNR – Mittelpunkt von Straße oder Platz, denen keine Adresse zugeordnet istDatensatznummer HKO (gml_id, Text, 100 Zeichen)Für Straßen und Plätze ohne Hausnummer wurde der Mittelpunkt des Verkehrsobjektes generiert. Es handelt sich um keine Adresse. Bitte beachten Sie, dass sich die Regionalisierung (Postleitzahlengebiet, Bezirk etc.) ausschließlich auf den generierten Mittelpunkt bezieht. Die Zuordnungen geben keine Auskunft darüber, ob sich das Verkehrsobjekt auch zusätzlich über andere Gebiete erstreckt.Quelle: Geoportal BerlinVerarbeitungsprozesse: WFS "Adressen Berlin" wurde in ArcGIS Pro importiert, nach Web Mercator projiziert und als Web Layer in ArcGIS Online veröffentlicht.
Human settlement maps are useful in understanding growth patterns, population distribution, resource management, change detection, and a variety of other applications where information related to earth surface is required. Human settlements classification is a complex exercise and is hard to capture using traditional means. Deep learning models are highly capable of learning these complex semantics and can produce superior results.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.InputRaster, mosaic dataset, or image service. (Preferred cell size is 30 meters.)Note: This model is trained to work on Landsat 8 Imagery datasets which are in WGS 1984 Web Mercator (auxiliary sphere) coordinate system (WKID 3857).OutputClassified layer containing two classes: settlement and otherApplicable geographiesThis model is expected to work well in the United States.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 91.6 percent.Training dataThis model has been trained on an Esri proprietary human settlements classification dataset.Sample resultsHere are a few results from the model.
This web map shows the location of early education and training centres in Hong Kong. It is a set of data made available by the Social Welfare Department under the Government of Hong Kong Special Administrative Region (the "Government") at https://portal.csdi.gov.hk ("CSDI Portal"). The source data has been processed and converted into Esri File Geodatabase format and uploaded to Esri's ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of Hong Kong CSDI Portal at https://portal.csdi.gov.hk.
Standorte der Berliner Schulen mit Informationen zu Schulart, Name, Anschrift und Kontaktmöglichkeiten. Die Daten beinhalten auch die Information, ob es sich um eine öffentliche oder private Schule handelt. Es werden nur die Hauptstandorte dargestellt.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
DB_Netz_INSPIRE_20131128_MarkerPost
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Video based training seminar.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bei den Hausumringen handelt es sich um die georeferenzierten Umringpolygone (Vektordaten) der Gebäudegrundrisse des Liegenschaftskatasters.Quelle: OpenData Portal der Bayerischen VermessungsverwaltungVerarbeitungsprozesse: SHP Datei in ETRS89 / UTM zone 32N wurde in ArcGIS Pro nach WebMercator projiziert und als Feature Service in ArcGIS Online veröffentlicht.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Die Grenzverläufe der Gemarkungen (Katasterbezirke) werden aus den Daten des Amtlichen Liegenschaftskatasterinformationssystems (ALKIS®) abgeleitet und sind somit parzellenscharf.Quelle: OpenData Portal der Bayerischen VermessungsverwaltungVerarbeitungsprozesse: SHP Datei in ETRS89 / UTM zone 32N wurde in ArcGIS Pro nach WebMercator projiziert und als Feature Service in ArcGIS Online veröffentlicht.
Darstellung der in Berlin gelegenen Kleingartenanlagen.Meldung des Kleingartenbestandes durch die bezirklichen Natur- und Grünflächenämter. Datengrundlage: GRIS Berlin (Grünflächeninformations- und -managementsystem)Quelle: Geoportal BerlinVerarbeitungsprozesse: WFS Datei wurde in ArcGIS Pro importiert, nach WebMercator WGS84 projiziert und als Feature Service in ArcGIS Online veröffentlicht.
Dieser Datenlayer enthält detaillierte Informationen zu den Flurstücken in Berlin auf Grundlage des ALKIS mit Ortsinformationen. Er bietet eine präzise Erfassung der geografischen und administrativen Merkmale der Flurstücke, die in Berlin verzeichnet sind.Zusätzliche InformationenEin Flurstück ist ein Teil der Erdoberfläche, der von einer im Liegenschaftskataster festgelegten Grenzlinie umschlossen und mit einer Nummer bezeichnet ist. Es ist die Buchungseinheit des Liegenschaftskatasters. QuelleGeodatensuche | Zuletzt aufgerufen am: 17.4.2025VerarbeitungsprozesseShapefile "ALKIS Flurstücke" wurde in ArcGIS Pro importiert, nach Web Mercator projiziert und als Web Layer in ArcGIS Online veröffentlicht.
Die Flurgrenzen des Liegenschaftskatasters haben folgende Attribute:• GmkNr – Gemarkungsschlüssel• Gemarkung – langschriftlicher Gemarkungsname• Flur – Nummer der Flur• KNr – Nummer des Landkreises• Kreis – langschriftlicher Kreisname• GmdNr – Gemeindeschlüssel• Gemeinde – langschriftlicher Gemeindename• Stand – Aktualitätsstand Quelle: Kostenfreie Geobasisdaten des LVermGeo LSAVerarbeitungsprozess: Gezippte SHP Dateien in ETRS89_UTM32 wurden in ArcGIS Pro zusammengeführt, nach WebMercator projiziert und als Feature Service in ArcGIS Online veröffentlicht.
This web map was created by Esri Training Services to show National Park System units using National Park Service data.The data and related materials are made available through Esri (http://www.esri.com) and are intended for educational purposes only (see Access and Use Constraints section).
Einschulbereiche für das aktuelle Schuljahr. Die Einschulbereiche werden durch die zwölf Bezirksschulämter festgelegt und im Amt für Statistik Berlin-Brandenburg zusammengeführt.
Coconuts and coconut products are an important commodity in the Tongan economy. Plantations, such as the one in the town of Kolovai, have thousands of trees. Inventorying each of these trees by hand would require lots of time and manpower. Alternatively, tree health and location can be surveyed using remote sensing and deep learning. In this lesson, you'll use the Deep Learning tools in ArcGIS Pro to create training samples and run a deep learning model to identify the trees on the plantation. Then, you'll estimate tree health using a Visible Atmospherically Resistant Index (VARI) calculation to determine which trees may need inspection or maintenance.
To detect palm trees and calculate vegetation health, you only need ArcGIS Pro with the Image Analyst extension. To publish the palm tree health data as a feature service, you need ArcGIS Online and the Spatial Analyst extension.
In this lesson you will build skills in these areas:
Learn ArcGIS is a hands-on, problem-based learning website using real-world scenarios. Our mission is to encourage critical thinking, and to develop resources that support STEM education.