100+ datasets found
  1. e

    Helpful Videos from the Esri Education Team

    • gisinschools.eagle.co.nz
    Updated Nov 13, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2014). Helpful Videos from the Esri Education Team [Dataset]. https://gisinschools.eagle.co.nz/documents/6c271bfb0b0e42b7a7221120d3e76691
    Explore at:
    Dataset updated
    Nov 13, 2014
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Description

    Youtube Channel that has various Videos using ArcGIS to teach Geography.

  2. Building a resource locator in ArcGIS Online (video)

    • coronavirus-resources.esri.com
    • coronavirus-disasterresponse.hub.arcgis.com
    Updated Mar 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Building a resource locator in ArcGIS Online (video) [Dataset]. https://coronavirus-resources.esri.com/documents/34484698f776415cb4d4247eaf1d0c59
    Explore at:
    Dataset updated
    Mar 17, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    Building a resource locator in ArcGIS Online (video).View this short demonstration on how to build a simple resource locator in ArcGIS Online. In this demonstration the presenter publishes an existing Web Map to the Local Perspective configurable application template. The resulting application includes the ability to locate and navigate to different health resources that would be critical in managing a surge of displaced people related to a significant event impacting public health._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  3. a

    A Map for Every Story (Video)

    • hub.arcgis.com
    Updated Nov 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education and Research (2016). A Map for Every Story (Video) [Dataset]. https://hub.arcgis.com/datasets/415e19997f8144b4b82e20bc5750bf24
    Explore at:
    Dataset updated
    Nov 29, 2016
    Dataset authored and provided by
    Education and Research
    Description

    Published on Jul 25, 2012Unique stories are being created and shared using ArcGIS Online from Esri. Explore the world of web maps, create your own, and discover stories with a cloud-based, collaborative system.Learn more at http://www.esri.com/arcgisonlineView story maps at http://storymaps.esri.com/home/

  4. a

    ArcGIS Pro: Mapping and Visualization

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated May 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). ArcGIS Pro: Mapping and Visualization [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/documents/delaware::arcgis-pro-mapping-and-visualization/about
    Explore at:
    Dataset updated
    May 3, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    Discover how to display and symbolize both 2D and 3D data. Search, access, and create new map symbols. Learn to specify and configure text symbols for your map. Complete your map by creating an effective layout to display and distribute your work.

  5. Build a health resources inventory using Web AppBuilder for ArcGIS (video)

    • coronavirus-resources.esri.com
    • coronavirus-disasterresponse.hub.arcgis.com
    Updated Mar 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Build a health resources inventory using Web AppBuilder for ArcGIS (video) [Dataset]. https://coronavirus-resources.esri.com/documents/846a514e5bd74be7925087496df5e7cd
    Explore at:
    Dataset updated
    Mar 17, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    Build a health resources inventory using Web AppBuilder for ArcGIS (YouTube video).This application is used by public health and human services agencies to inventory homeless, drug treatment, and other health and human service providers in a community. _Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  6. e

    Running an ArcGIS Online Status Report - Video

    • gisinschools.eagle.co.nz
    Updated May 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2020). Running an ArcGIS Online Status Report - Video [Dataset]. https://gisinschools.eagle.co.nz/documents/6c1b42eff7314f0d9677445331b51b02
    Explore at:
    Dataset updated
    May 15, 2020
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Description

    This video is designed to help you check out and create a report on your schools consumption of credits in ArcGIS Online.If you would like to know more about credits please watch the video referenced at https://arcg.is/1reWq4ArcGIS Online Administration.Video recorded - April 2020

  7. 11.2 ArcGIS Pro: Using Imagery

    • hub.arcgis.com
    • training-iowadot.opendata.arcgis.com
    Updated Mar 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 11.2 ArcGIS Pro: Using Imagery [Dataset]. https://hub.arcgis.com/documents/55d6890c874b44719bb3b34321bea385
    Explore at:
    Dataset updated
    Mar 4, 2017
    Dataset authored and provided by
    Iowa Department of Transportationhttps://iowadot.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Video based training seminar.

  8. d

    Data from: Offshore Scott Creek Web Services

    • catalog.data.gov
    • s.cnmilf.com
    Updated Oct 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Offshore Scott Creek Web Services [Dataset]. https://catalog.data.gov/dataset/offshore-scott-creek-web-services
    Explore at:
    Dataset updated
    Oct 21, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. These data are a part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore Scott Creek map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://cmgds.marine.usgs.gov/data/csmp/OffshoreScottCreek/data_catalog_OffshoreScottCreek.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samples, digital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Pigeon Point map area data layers. Data layers are symbolized as shown on the associated map sheets for USGS Open-File Report 2015-1232 (https://doi.org/10.3133/ofr20151232).

  9. e

    Changing User Types in ArcGIS Online - Video

    • gisinschools.eagle.co.nz
    Updated May 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2020). Changing User Types in ArcGIS Online - Video [Dataset]. https://gisinschools.eagle.co.nz/documents/080fbfe183bd4db1885f5294c0a949b9
    Explore at:
    Dataset updated
    May 15, 2020
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Description

    If you have ever had an error message pop up in ArcGIS Online that mentions you have exceeded the user types in your account, watch this video to see how to resolve this issue.This video takes you through the steps of how to do change students and teachers user types on the rare occasion that you are required to change user types in your schools ArcGIS Online account.ArcGIS Online Administration.Video recorded - April 2020.

  10. e

    Changing a students role in ArcGIS Online so they can run analysis - Video

    • gisinschools.eagle.co.nz
    Updated May 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2020). Changing a students role in ArcGIS Online so they can run analysis - Video [Dataset]. https://gisinschools.eagle.co.nz/datasets/changing-a-students-role-in-arcgis-online-so-they-can-run-analysis-video
    Explore at:
    Dataset updated
    May 15, 2020
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Description

    If your students need to run Analysis in ArcGIS Online they will need to have a publisher role in ArcGIS Online.This video will take you through how to change a role in ArcGIS Online so your students can access analysis tools in the ArcGIS Online map viewer.ArcGIS Online Administration.Video recorded - April 2020

  11. d

    California State Waters Map Series--Offshore of Point Conception Web...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). California State Waters Map Series--Offshore of Point Conception Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-point-conception-web-services
    Explore at:
    Dataset updated
    Nov 26, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California, Point Conception
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Point Conception map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Point Conception map area data layers. Data layers are symbolized as shown on the associated map sheets.

  12. e

    Lurgan Schools: The Differences We Share - Esri User Conference San Diego...

    • gisinschools.eagle.co.nz
    Updated Apr 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2020). Lurgan Schools: The Differences We Share - Esri User Conference San Diego 2019 - VIDEO [Dataset]. https://gisinschools.eagle.co.nz/datasets/lurgan-schools-the-differences-we-share-esri-user-conference-san-diego-2019-video
    Explore at:
    Dataset updated
    Apr 8, 2020
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Description

    For the latter part of the 20th century, Northern Ireland, officially part of the United Kingdom but sharing an island with the Republic of Ireland, saw violence between the nationalists (mostly Roman Catholic background) and unionists (mostly Protestant background). The Good Friday Agreement of 1998 sought to end this conflict, by establishing peace between these two communities and guiding how Northern Ireland should be governed. But even 20 years on, Northern Ireland remains divided. Yet, hope is on the horizon. Young students in Lurgan—a town of 25,000 south of Belfast—are using Survey123 for ArcGIS to record data across sectarian lines. After analyzing the data collected, the students from conflicting backgrounds find that they aren't that different after all. This is how change begins. Join the students of Lurgan to learn how youth are using GIS to make a difference in their community.

  13. a

    Video Feeds

    • disaster-amerigeoss.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Apr 13, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Platform for Law Enforcement (2016). Video Feeds [Dataset]. https://disaster-amerigeoss.opendata.arcgis.com/datasets/modelpd::video-feeds
    Explore at:
    Dataset updated
    Apr 13, 2016
    Dataset authored and provided by
    ArcGIS Platform for Law Enforcement
    Area covered
    Earth
    Description

    To use this layer in support of a new event, go to: My Content-Create-New Hosted Feature Layer From Existing Layer to spin up a new version of this service which you can bring into a web map to begin configuring your event plan and supporting web apps.

    This service brings together three Esri solution templates: Special Event Planning, Pre-Incident Planning, and Road Closures modified slightly to support complete event management needs of Law Enforcement. For more information on solution templates go to solutions.esri.com.

  14. d

    Location of sea floor video tracklines along with videos collected in 2014...

    • catalog.data.gov
    • dataone.org
    • +2more
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Location of sea floor video tracklines along with videos collected in 2014 by the U.S. Geological Survey offshore of Fire Island, NY (MP4 videos files and Esri polyline shapefile, Geographic, WGS 84) [Dataset]. https://catalog.data.gov/dataset/location-of-sea-floor-video-tracklines-along-with-videos-collected-in-2014-by-the-u-s-geol
    Explore at:
    Dataset updated
    Dec 2, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Fire Island, New York
    Description

    The U.S. Geological Survey (USGS) conducted a geophysical and sampling survey in October 2014 that focused on a series of shoreface-attached ridges offshore of western Fire Island, NY. Seismic-reflection data, surficial grab samples and bottom photographs and video were collected along the lower shoreface and inner continental shelf. The purpose of this survey was to assess the impact of Hurricane Sandy on this coastal region. These data were compared to seismic-reflection and surficial sediment data collected by the USGS in the same area in 2011 to evaluate any post-storm changes in seabed morphology and modern sediment thickness on the inner continental shelf. For more information about the WHCMSC Field Activity, see: https://cmgds.marine.usgs.gov/fan_info.php?fan=2014-009-FA.

  15. Enroute with ArcGIS Online

    • storymaps-k12.hub.arcgis.com
    Updated Aug 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri K12 GIS Organization (2021). Enroute with ArcGIS Online [Dataset]. https://storymaps-k12.hub.arcgis.com/datasets/enroute-with-arcgis-online--1
    Explore at:
    Dataset updated
    Aug 6, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri K12 GIS Organization
    Description

    Summary: An introduction to ArcGIS Online for K-12 studentsStorymap metadata page: URL forthcoming Possible K-12 Next Generation Science standards addressed:Grade level(s) 1: Standard 1-PS4-2 - Waves and their Applications in Technologies for Information Transfer - Make observations to construct an evidence-based account that objects can be seen only when illuminatedGrade level(s) 1: Standard 1-LS1-2 - From Molecules to Organisms: Structures and Processes - Read texts and use media to determine patterns in behavior of parents and offspring that help offspring surviveGrade level(s) 2: Standard 2-PS1-1 - Matter and its Interactions - Plan and conduct an investigation to describe and classify different kinds of materials by their observable propertiesGrade level(s) 2: Standard 2-PS1-2 - Matter and its Interactions - Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purposeGrade level(s) 4: Standard 4-PS4-3 - Waves and their Applications in Technologies for Information Transfer - Generate and compare multiple solutions that use patterns to transfer informationGrade level(s) 6-8: Standard MS-PS4-3 - Waves and Their Applications in Technologies for Information Transfer - Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signalsGrade level(s) 9-12: Standard HS-PS3-5 - Energy - Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.Grade level(s) 9-12: Standard HS-PS4-4 - Waves and Their Applications in Technologies for Information Transfer - Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.Most frequently used words:tutorialtextvideoApproximate Flesch-Kincaid reading grade level: 9.9. The FK reading grade level should be considered carefully against the grade level(s) in the NGSS content standards above.

  16. Cross Stitch style for ArcGIS Pro

    • cacgeoportal.com
    Updated Apr 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2020). Cross Stitch style for ArcGIS Pro [Dataset]. https://www.cacgeoportal.com/content/16d986275e62408fa1027dee5b257028
    Explore at:
    Dataset updated
    Apr 17, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    Sometimes you just want to thread the needle of plausible cartography and make scientific maps in the most charming homespun manner possible. Here is a video walking through how this style was created using ArcGIS PRo stymbology. Here are a couple frame images if you want to add them atop your ArcGIS Pro layout:

  17. e

    Delete students and content in your schools ArcGIS Online subscription -...

    • gisinschools.eagle.co.nz
    Updated Mar 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2018). Delete students and content in your schools ArcGIS Online subscription - Video [Dataset]. https://gisinschools.eagle.co.nz/datasets/delete-students-and-content-in-your-schools-arcgis-online-subscription-video
    Explore at:
    Dataset updated
    Mar 5, 2018
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Description

    Learn how to use Admin Tools for ArcGIS Online to delete students and the content (including WebMaps and WebApps). You should be thinking about removing student and content on your schools subscription at least once a year.You should be thinking about removing students and content on your subscription at least once a year.To setup Admin Tools for ArcGIS Online on your schools account refer to https://arcg.is/0z4H4rUpdated December 2022.

  18. A

    Mapping incident locations from a CSV file in a web map (video)

    • data.amerigeoss.org
    • coronavirus-disasterresponse.hub.arcgis.com
    esri rest, html
    Updated Mar 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). Mapping incident locations from a CSV file in a web map (video) [Dataset]. https://data.amerigeoss.org/zh_CN/dataset/mapping-incident-locations-from-a-csv-file-in-a-web-map-video
    Explore at:
    esri rest, htmlAvailable download formats
    Dataset updated
    Mar 17, 2020
    Dataset provided by
    ESRI
    Description

    Mapping incident locations from a CSV file in a web map (YouTube video).


    View this short demonstration video to learn how to geocode incident locations from a spreadsheet in ArcGIS Online. In this demonstration, the presenter drags a simple .csv file into a browser-based Web Map and maps the appropriate address fields to display incident points allowing different types of spatial overlays and analysis.

    _

    Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.

    When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.

    Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.


  19. o

    Overview and How-to Tutorial Videos for Using NEWTS Data

    • osti.gov
    Updated Oct 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDOE Office of Fossil Energy (FE) (2022). Overview and How-to Tutorial Videos for Using NEWTS Data [Dataset]. http://doi.org/10.18141/1894330
    Explore at:
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    USDOE Office of Fossil Energy (FE)
    National Energy Technology Laboratory - Energy Data eXchange
    NETL
    Description

    Overview and How-to Tutorial Videos for Using NEWTS Data Video 1: Overview of NEWTS Database Video 2: How-to tutorial for EPA Flue Gas Desulfurization (FGD) Effluent NEWTS dataset Video 3: How-to tutorial for USGS Produced Waters NEWTS dataset Video 4: How-to tutorial for EPA Ash NEWTS dataset Video 5: How-to tutorial for Quillinan, et al 2018 DOE Geothermal Technology Office REE dataset Video 6: Tutorial video on navigating the NEWTS Dashboard, with an overview of NEWTS and navigating between the NEWTS Dashboard and Datasets (https://netl-doe.maps.arcgis.com/apps/dashboards/a5fa4192f7c6478dab3d6180d9c30b84) Video 7: Additional tutorial video on navigating the NEWTS Dashboard and investigating specific data points in the Dashboard and Datasets Video 8: Re-record of recent webinar giving an overview of the NEWTS Database and Dashboard, including interacting with the NEWTS Dashboard, locating specific data points, and finding the relevant streams in the NEWTS Database and datasets on EDX. Includes overview of the datasets, case studies, and steps for taking stream data from the database and modeling stream data in OLI Studio and Geochemist's Workbench. Note: Video 3 tutorial is also applicable to the USGS Brackish Water NEWTS dataset.

  20. d

    California State Waters Map Series--Point Conception to Hueneme Canyon Web...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). California State Waters Map Series--Point Conception to Hueneme Canyon Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-point-conception-to-hueneme-canyon-web-services
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California, Point Conception
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Point Conception to Hueneme Canyon map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Point Conception to Hueneme Canyon map area data layers. Data layers are symbolized as shown on the associated map sheets.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GIS in Schools - Teaching Materials - New Zealand (2014). Helpful Videos from the Esri Education Team [Dataset]. https://gisinschools.eagle.co.nz/documents/6c271bfb0b0e42b7a7221120d3e76691

Helpful Videos from the Esri Education Team

Explore at:
Dataset updated
Nov 13, 2014
Dataset authored and provided by
GIS in Schools - Teaching Materials - New Zealand
Description

Youtube Channel that has various Videos using ArcGIS to teach Geography.

Search
Clear search
Close search
Google apps
Main menu