77 datasets found
  1. d

    Website Analytics

    • catalog.data.gov
    • data.brla.gov
    • +3more
    Updated Aug 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.brla.gov (2025). Website Analytics [Dataset]. https://catalog.data.gov/dataset/website-analytics-89ba5
    Explore at:
    Dataset updated
    Aug 11, 2025
    Dataset provided by
    data.brla.gov
    Description

    Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.

  2. W

    Website Visitor Tracking Software Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Website Visitor Tracking Software Report [Dataset]. https://www.marketresearchforecast.com/reports/website-visitor-tracking-software-27553
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Mar 5, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global website visitor tracking software market is experiencing robust growth, driven by the increasing need for businesses to understand online customer behavior and optimize their digital strategies. The market, estimated at $5 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $15 billion by 2033. This expansion is fueled by several key factors, including the rising adoption of digital marketing strategies, the growing importance of data-driven decision-making, and the increasing sophistication of website visitor tracking tools. Cloud-based solutions dominate the market due to their scalability, accessibility, and cost-effectiveness, particularly appealing to Small and Medium-sized Enterprises (SMEs). However, large enterprises continue to invest significantly in on-premise solutions for enhanced data security and control. The market is highly competitive, with numerous established players and emerging startups offering a range of features and functionalities. Technological advancements, such as AI-powered analytics and enhanced integration with other marketing tools, are shaping the future of the market. The market's geographical distribution reflects the global digital landscape. North America, with its mature digital economy and high adoption rates, holds a significant market share. However, regions like Asia-Pacific are showing rapid growth, driven by increasing internet penetration and digitalization across various industries. Despite the overall positive outlook, challenges such as data privacy regulations and the increasing complexity of website tracking technology are influencing market dynamics. The ongoing competition among vendors necessitates continuous innovation and the development of more user-friendly and insightful tools. The future growth of the website visitor tracking software market is promising, fueled by the continuing importance of data-driven decision-making within marketing and business strategies. A key factor will be the ongoing adaptation to evolving privacy regulations and user expectations.

  3. Z

    Network Traffic Analysis: Data and Code

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Honig, Joshua (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Moran, Madeline
    Ferrell, Nathan
    Chan-Tin, Eric
    Soni, Shreena
    Homan, Sophia
    Honig, Joshua
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code:

    Packet_Features_Generator.py & Features.py

    To run this code:

    pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

    -h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

    Purpose:

    Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

    Uses Features.py to calcualte the features.

    startMachineLearning.sh & machineLearning.py

    To run this code:

    bash startMachineLearning.sh

    This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

    Options (to be edited within this file):

    --evaluate-only to test 5 fold cross validation accuracy

    --test-scaling-normalization to test 6 different combinations of scalers and normalizers

    Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

    --grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

    Purpose:

    Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

    Data

    Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

    Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

    First number is a classification number to denote what website, query, or vr action is taking place.

    The remaining numbers in each line denote:

    The size of a packet,

    and the direction it is traveling.

    negative numbers denote incoming packets

    positive numbers denote outgoing packets

    Figure 4 Data

    This data uses specific lines from the Virtual Reality.txt file.

    The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

    The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

    The .xlsx and .csv file are identical

    Each file includes (from right to left):

    The origional packet data,

    each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

    and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

  4. craigslist.org Website Traffic, Ranking, Analytics [July 2025]

    • semrush.com
    • semrush.ebundletools.com
    Updated Aug 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Semrush (2025). craigslist.org Website Traffic, Ranking, Analytics [July 2025] [Dataset]. https://www.semrush.com/website/craigslist.org/overview/
    Explore at:
    Dataset updated
    Aug 12, 2025
    Dataset authored and provided by
    Semrushhttps://fr.semrush.com/
    License

    https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/

    Time period covered
    Aug 12, 2025
    Area covered
    Worldwide
    Variables measured
    visits, backlinks, bounceRate, pagesPerVisit, authorityScore, organicKeywords, avgVisitDuration, referringDomains, trafficByCountry, paidSearchTraffic, and 3 more
    Measurement technique
    Semrush Traffic Analytics; Click-stream data
    Description

    craigslist.org is ranked #73 in US with 125.7M Traffic. Categories: Online Services, Real Estate. Learn more about website traffic, market share, and more!

  5. Leading e-commerce websites Philippines Q2 2022, by monthly web visits

    • statista.com
    Updated Aug 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading e-commerce websites Philippines Q2 2022, by monthly web visits [Dataset]. https://www.statista.com/statistics/1120159/philippines-leading-e-commerce-websites-by-monthly-traffic/
    Explore at:
    Dataset updated
    Aug 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Philippines
    Description

    As of the second quarter of 2022, Shopee Philippines, an online department store and marketplace for retailers to sell their products, registered estimated monthly traffic of about ** million on its e-commerce website. Following by a considerable margin was Lazada, with an estimated online website traffic of roughly ** million visitors. Both companies lead the e-commerce market in the Philippines.

  6. amazon.com Website Traffic, Ranking, Analytics [July 2025]

    • semrush.com
    • stb2.digiseotools.com
    Updated Aug 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Semrush (2025). amazon.com Website Traffic, Ranking, Analytics [July 2025] [Dataset]. https://www.semrush.com/website/amazon.com/overview/
    Explore at:
    Dataset updated
    Aug 12, 2025
    Dataset authored and provided by
    Semrushhttps://fr.semrush.com/
    License

    https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/

    Time period covered
    Aug 12, 2025
    Area covered
    Worldwide
    Variables measured
    visits, backlinks, bounceRate, pagesPerVisit, authorityScore, organicKeywords, avgVisitDuration, referringDomains, trafficByCountry, paidSearchTraffic, and 3 more
    Measurement technique
    Semrush Traffic Analytics; Click-stream data
    Description

    amazon.com is ranked #3 in US with 2.82B Traffic. Categories: Online Services. Learn more about website traffic, market share, and more!

  7. Share of global mobile website traffic 2015-2024

    • statista.com
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of global mobile website traffic 2015-2024 [Dataset]. https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
    Explore at:
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.

  8. W

    Website Traffic Analysis Tool Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Apr 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Website Traffic Analysis Tool Report [Dataset]. https://www.datainsightsmarket.com/reports/website-traffic-analysis-tool-1455386
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 25, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global website traffic analysis tool market is experiencing robust growth, driven by the increasing reliance on digital marketing and the need for businesses of all sizes to understand their online audience. The market, estimated at $15 billion in 2025, is projected to grow at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $45 billion by 2033. This expansion is fueled by several key factors. The rising adoption of cloud-based solutions provides scalability and cost-effectiveness for businesses, particularly SMEs seeking affordable analytics. Moreover, the evolution of sophisticated analytics features, including advanced user behavior tracking and predictive analytics, enhances the value proposition for both SMEs and large enterprises. The market is segmented by application (SMEs and large enterprises) and by type (cloud-based and web-based), with cloud-based solutions dominating due to their accessibility and flexibility. Competitive pressures among numerous vendors, including established players like Google Analytics, Semrush, and Ahrefs, as well as emerging niche players, drive innovation and affordability, benefiting users. Geographic distribution shows strong growth across North America and Europe, with Asia-Pacific emerging as a high-growth region. However, factors such as data privacy concerns and the increasing complexity of website analytics can act as potential restraints. Despite these challenges, the continued expansion of e-commerce and digital marketing strategies across various industries will solidify the demand for robust website traffic analysis tools. The market is expected to witness further consolidation through mergers and acquisitions, with leading players investing heavily in research and development to enhance their offerings. The increasing need for real-time data analysis and integration with other marketing automation platforms will further shape market evolution. The emergence of AI-powered analytics, providing predictive insights and automated reporting, is transforming the industry and will continue to drive market expansion in the coming years. This makes this market an attractive landscape for investors and technology providers looking for strong future growth.

  9. d

    Chicago Traffic Tracker - Congestion Estimates by Segments

    • catalog.data.gov
    • data.cityofchicago.org
    Updated Aug 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Chicago Traffic Tracker - Congestion Estimates by Segments [Dataset]. https://catalog.data.gov/dataset/chicago-traffic-tracker-congestion-estimates-by-segments
    Explore at:
    Dataset updated
    Aug 11, 2025
    Dataset provided by
    data.cityofchicago.org
    Area covered
    Chicago
    Description

    This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. For a more detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab. The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (nonfreeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every ten minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimate by traffic segments gives the observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.

  10. Data from: Analysis of the Quantitative Impact of Social Networks General...

    • figshare.com
    • produccioncientifica.ucm.es
    doc
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
    Explore at:
    docAvailable download formats
    Dataset updated
    Oct 14, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
    Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

    Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

  11. c

    Google Analytics www cityofrochester gov

    • data.cityofrochester.gov
    Updated Dec 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2021). Google Analytics www cityofrochester gov [Dataset]. https://data.cityofrochester.gov/datasets/google-analytics-www-cityofrochester-gov
    Explore at:
    Dataset updated
    Dec 11, 2021
    Dataset authored and provided by
    Open_Data_Admin
    Description

    Data dictionary: Page_Title: Title of webpage used for pages of the website www.cityofrochester.gov Pageviews: Total number of pages viewed over the course of the calendar year listed in the year column. Repeated views of a single page are counted. Unique_Pageviews: Unique Pageviews - The number of sessions during which a specified page was viewed at least once. A unique pageview is counted for each URL and page title combination. Avg_Time: Average amount of time users spent looking at a specified page or screen. Entrances: The number of times visitors entered the website through a specified page.Bounce_Rate: " A bounce is a single-page session on your site. In Google Analytics, a bounce is calculated specifically as a session that triggers only a single request to the Google Analytics server, such as when a user opens a single page on your site and then exits without triggering any other requests to the Google Analytics server during that session. Bounce rate is single-page sessions on a page divided by all sessions that started with that page, or the percentage of all sessions on your site in which users viewed only a single page and triggered only a single request to the Google Analytics server. These single-page sessions have a session duration of 0 seconds since there are no subsequent hits after the first one that would let Google Analytics calculate the length of the session. "Exit_Rate: The number of exits from a page divided by the number of pageviews for the page. This is inclusive of sessions that started on different pages, as well as “bounce” sessions that start and end on the same page. For all pageviews to the page, Exit Rate is the percentage that were the last in the session. Year: Calendar year over which the data was collected. Data reflects the counts for each metric from January 1st through December 31st.

  12. s

    Data from: Traffic Volumes

    • data.sandiego.gov
    Updated Jul 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Traffic Volumes [Dataset]. https://data.sandiego.gov/datasets/traffic-volumes/
    Explore at:
    csv csv is tabular data. excel, google docs, libreoffice calc or any plain text editor will open files with this format. learn moreAvailable download formats
    Dataset updated
    Jul 29, 2016
    Description

    The census count of vehicles on city streets is normally reported in the form of Average Daily Traffic (ADT) counts. These counts provide a good estimate for the actual number of vehicles on an average weekday at select street segments. Specific block segments are selected for a count because they are deemed as representative of a larger segment on the same roadway. ADT counts are used by transportation engineers, economists, real estate agents, planners, and others professionals for planning and operational analysis. The frequency for each count varies depending on City staff’s needs for analysis in any given area. This report covers the counts taken in our City during the past 12 years approximately.

  13. Global share of human and bot web traffic 2013-2024

    • statista.com
    Updated Jul 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global share of human and bot web traffic 2013-2024 [Dataset]. https://www.statista.com/statistics/1264226/human-and-bot-web-traffic-share/
    Explore at:
    Dataset updated
    Jul 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In 2024, most of the global website traffic was still generated by humans, but bot traffic is constantly growing. Fraudulent traffic through bad bot actors accounted for 37 percent of global web traffic in the most recently measured period, representing an increase of 12 percent from the previous year. Sophistication of Bad Bots on the rise The complexity of malicious bot activity has dramatically increased in recent years. Advanced bad bots have doubled in prevalence over the past 2 years, indicating a surge in the sophistication of cyber threats. Simultaneously, the share of simple bad bots drastically increased over the last years, suggesting a shift in the landscape of automated threats. Meanwhile, areas like food and groceries, sports, gambling, and entertainment faced the highest amount of advanced bad bots, with more than 70 percent of their bot traffic affected by evasive applications. Good and bad bots across industries The impact of bot traffic varies across different sectors. Bad bots accounted for over 50 percent of the telecom and ISPs, community and society, and computing and IT segments web traffic. However, not all bot traffic is considered bad. Some of these applications help index websites for search engines or monitor website performance, assisting users throughout their online search. Therefore, areas like entertainment, food and groceries, and even areas targeted by bad bots themselves experienced notable levels of good bot traffic, demonstrating the diverse applications of benign automated systems across different sectors.

  14. Grubhub.com: web traffic in the U.S. 2025

    • statista.com
    Updated Jul 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Grubhub.com: web traffic in the U.S. 2025 [Dataset]. https://www.statista.com/statistics/1452409/grubhub-web-traffic-united-states/
    Explore at:
    Dataset updated
    Jul 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2025
    Area covered
    United States
    Description

    Grubhub recorded an estimated ***** million visits to its website in the United States in June 2025, with an average visit duration of **** minutes and ** seconds and a bounce rate of nearly *****percent.

  15. Website traffic of top creator brands worldwide 2022

    • statista.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Website traffic of top creator brands worldwide 2022 [Dataset]. https://www.statista.com/statistics/1340732/creator-brands-website-traffic/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 2022
    Area covered
    Worldwide
    Description

    Beauty brand Ipsy – the largest creator-owned brand worldwide by revenue (estimated annual revenue of half a billion U.S. dollars) – had a monthly traffic of *** million visits to its website ipsy.com as of August 2022. Kylie Cosmetics, second in the revenue ranking, reported *** million monthly visits.

  16. youtube.com Website Traffic, Ranking, Analytics [July 2025]

    • semrush.com
    • stb2.digiseotools.com
    Updated Aug 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Semrush (2025). youtube.com Website Traffic, Ranking, Analytics [July 2025] [Dataset]. https://www.semrush.com/website/youtube.com/overview/
    Explore at:
    Dataset updated
    Aug 12, 2025
    Dataset authored and provided by
    Semrushhttps://fr.semrush.com/
    License

    https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/

    Time period covered
    Aug 12, 2025
    Area covered
    YouTube, Worldwide
    Variables measured
    visits, backlinks, bounceRate, pagesPerVisit, authorityScore, organicKeywords, avgVisitDuration, referringDomains, trafficByCountry, paidSearchTraffic, and 3 more
    Measurement technique
    Semrush Traffic Analytics; Click-stream data
    Description

    youtube.com is ranked #1 in KR with 47.12B Traffic. Categories: Newspapers, Online Services. Learn more about website traffic, market share, and more!

  17. c

    Traffic Counts

    • wsoic.cityofws.org
    • hub.arcgis.com
    Updated Oct 17, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    cows_admin (2017). Traffic Counts [Dataset]. https://wsoic.cityofws.org/items/af7ab9ab7989417693d2158ddd5197bc
    Explore at:
    Dataset updated
    Oct 17, 2017
    Dataset authored and provided by
    cows_admin
    Area covered
    Description

    With more than 44,000 Portable Traffic Count (PTC) Stations located throughout North Carolina, Traffic Survey has adopted a collection schedule. Please see our website: https://www.ncdot.gov/projects/trafficsurvey/for further details. The data in this file was digitized referencing the available NCDOT Linear Referencing System (LRS) and is not the result of using GPS equipment in the field, nor latitude and longitude coordinates. The referencing provided is based on the 2015 Quarter 1 publication of the NCDOT Linear Referencing System (LRS). Some differences will be found when using different quarterly publications with this data set. The data provided is seasonally factored to an estimate of an annual average of daily traffic. The statistics provided are: CVRG_VLM_I: Traffic Survey's seven digit unique station identifier COUNTY: County NameROUTE: Numbered route identifier, or local name if not State maintainedLOCATION: Description of the Annual Average Daily Traffic station location AADT_2015: Estimated Annual Average Daily Traffic in vehicles per day for 2015AADT_2014: Estimated Annual Average Daily Traffic in vehicles per day for 2014AADT_2013: Estimated Annual Average Daily Traffic in vehicles per day for 2013 AADT_2012: Estimated Annual Average Daily Traffic in vehicles per day for 2012 AADT_2011: Estimated Annual Average Daily Traffic in vehicles per day for 2011 AADT_2010: Estimated Annual Average Daily Traffic in vehicles per day for 2010 AADT_2009: Estimated Annual Average Daily Traffic in vehicles per day for 2009 AADT_2008: Estimated Annual Average Daily Traffic in vehicles per day for 2008 AADT_2007: Estimated Annual Average Daily Traffic in vehicles per day for 2007 AADT_2006: Estimated Annual Average Daily Traffic in vehicles per day for 2006 AADT_2005: Estimated Annual Average Daily Traffic in vehicles per day for 2005 AADT_2004: Estimated Annual Average Daily Traffic in vehicles per day for 2004 AADT_2003: Estimated Annual Average Daily Traffic in vehicles per day for 2003 AADT_2002: Estimated Annual Average Daily Traffic in vehicles per day for 2002 Note: A value of zero in the AADT field indicates no available AADT data for that year. Please note the following: Not ALL roads have PTC stations located on them. With the exception of Interstate, NC and US routes, NCDOT County Maps refer to roads using a four digit Secondary Road Number, not a road’s local name. If additional information is needed, or an issue with the data is identified, please contact the Traffic Survey Group at 919 814-5116. Disclaimer related to the spatial accuracy of this file: Data in this file was digitized referencing the available NCDOT GIS Data Layer, LRS Arcs Shapefile Format from Quarter 1 release and is not the result of using GPS equipment in the field.North Carolina Department of Transportation shall not be held liable for any errors in this data. This includes errors of omission, commission, errors concerning the content of data, and relative positional accuracy of the data. This data cannot be construed to be a legal document.

  18. alexa.com Website Traffic, Ranking, Analytics [June 2025]

    • semrush.com
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Semrush (2025). alexa.com Website Traffic, Ranking, Analytics [June 2025] [Dataset]. https://www.semrush.com/website/alexa.com/overview/
    Explore at:
    Dataset updated
    Jul 12, 2025
    Dataset authored and provided by
    Semrushhttps://fr.semrush.com/
    License

    https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/

    Time period covered
    Jul 12, 2025
    Area covered
    Worldwide
    Variables measured
    visits, backlinks, bounceRate, pagesPerVisit, authorityScore, organicKeywords, avgVisitDuration, referringDomains, trafficByCountry, paidSearchTraffic, and 3 more
    Measurement technique
    Semrush Traffic Analytics; Click-stream data
    Description

    alexa.com is ranked #276482 in US with 72.39K Traffic. Categories: Advertising and Marketing, Computer Software and Development, Information Technology, Online Services. Learn more about website traffic, market share, and more!

  19. M

    Annual Average Daily Traffic Locations in Minnesota

    • gisdata.mn.gov
    fgdb, gpkg, html +3
    Updated Aug 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Transportation Department (2025). Annual Average Daily Traffic Locations in Minnesota [Dataset]. https://gisdata.mn.gov/dataset/trans-aadt-traffic-count-locs
    Explore at:
    shp, html, webapp, gpkg, jpeg, fgdbAvailable download formats
    Dataset updated
    Aug 14, 2025
    Dataset provided by
    Transportation Department
    Area covered
    Minnesota
    Description

    AADT represents current (most recent) Annual Average Daily Traffic on sampled road systems. This information is displayed using the Traffic Count Locations Active feature class as of the annual HPMS freeze in January. Historical AADT is found in another table. Please note that updates to this dataset are on an annual basis, therefore the data may not match ground conditions or may not be available for new roadways. Resource Contact: Christy Prentice, Traffic Forecasting & Analysis (TFA), http://www.dot.state.mn.us/tda/contacts.html#TFA

    Check other metadata records in this package for more information on Annual Average Daily Traffic Locations Information.


    Link to ESRI Feature Service:

    Annual Average Daily Traffic Locations in Minnesota: Annual Average Daily Traffic Locations


  20. d

    2023 Traffic Volumes

    • data.detroitmi.gov
    Updated Dec 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Detroit (2024). 2023 Traffic Volumes [Dataset]. https://data.detroitmi.gov/datasets/2023-traffic-volumes
    Explore at:
    Dataset updated
    Dec 17, 2024
    Dataset authored and provided by
    City of Detroit
    Description

    This dataset contains estimates of the average number of vehicles that used roads throughout the City of Detroit in 2023. Each record indicates the Annual Average Daily Traffic (AADT) and Commercial Annual Average Daily Traffic (CAADT) for a road segment, where the road segment is located, and other characteristics. This data is derived from Michigan Department of Transportation's (MDOT) Open Data Portal. SEMCOG was the source for speed limits and number of lanes.The primary measure, Annual Average Daily Traffic (AADT), is the estimated mean daily traffic volume for all types of vehicles. Commercial Annual Average Daily Traffic (CAADT) is the estimated mean daily traffic volume for commercial vehicles, a subset of vehicles included in the AADT. The Route ID is an identifier for each road in Detroit (e.g., Woodward Ave). Routes are divided into segments by features such as cross streets, and Location ID's are used to uniquely identify those segments. Along with traffic volume, each record also states the number of lanes, the posted speed limit, and the type of road (e.g., Trunkline or Ramp) based on the Federal Highway Administration (FHWA) functional classification system.According to MDOT's Traffic Monitoring Program a commercial vehicle would be anything Class 4 and up in the FHWA vehicle classification system. This includes vehicles such as buses, semi-trucks, and personal recreational vehicles (i.e., RVs or campers). Methods used to determine traffic volume vary by site, and may rely on continuous monitoring or estimates based on short-term studies. Approaches to vehicle classification similarly vary, depending on the equipment used at a site, and may consider factors such as vehicle weight and length between axles.For more information, please visit MDOT Traffic Monitoring Program.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.brla.gov (2025). Website Analytics [Dataset]. https://catalog.data.gov/dataset/website-analytics-89ba5

Website Analytics

Explore at:
Dataset updated
Aug 11, 2025
Dataset provided by
data.brla.gov
Description

Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.

Search
Clear search
Close search
Google apps
Main menu