100+ datasets found
  1. d

    Chicago Traffic Tracker - Congestion Estimates by Segments

    • catalog.data.gov
    • data.cityofchicago.org
    • +4more
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Chicago Traffic Tracker - Congestion Estimates by Segments [Dataset]. https://catalog.data.gov/dataset/chicago-traffic-tracker-congestion-estimates-by-segments
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset provided by
    data.cityofchicago.org
    Area covered
    Chicago
    Description

    This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. For a more detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab. The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (nonfreeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every ten minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimate by traffic segments gives the observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.

  2. TrueCar quarterly website traffic 2020-2023

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). TrueCar quarterly website traffic 2020-2023 [Dataset]. https://www.statista.com/statistics/1327898/truecar-quarterly-website-traffic-unique-visitors/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    TrueCar is a marketplace and e-commerce site which provides new and used car buyers with pricing and information related to the car buying experience. In the second quarter of 2021, the company recorded *** million average monthly unique visitors to its site, the most of any quarter listed. Since then, quarterly website traffic has been declining, reaching *** million unique visitors in the most recent quarter.

  3. d

    Website Analytics

    • catalog.data.gov
    • data.brla.gov
    • +2more
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.brla.gov (2025). Website Analytics [Dataset]. https://catalog.data.gov/dataset/website-analytics-89ba5
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset provided by
    data.brla.gov
    Description

    Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.

  4. Top websites by average monthly traffic according to Alexa in Ukraine 2021

    • statista.com
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Top websites by average monthly traffic according to Alexa in Ukraine 2021 [Dataset]. https://www.statista.com/statistics/1278726/ukraine-most-visited-websites-by-monthly-traffic/
    Explore at:
    Dataset updated
    Feb 15, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2021
    Area covered
    Ukraine
    Description

    Google.com, youtube.com, and facebook.com were the most visited websites in Ukraine in December 2021. Furthermore, Google's website on the Ukrainian domain, google.com.ua, ranked in the top 10 during that time.

  5. Global Network Traffic Analytics Market 2018-2022

    • technavio.com
    pdf
    Updated Jun 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2018). Global Network Traffic Analytics Market 2018-2022 [Dataset]. https://www.technavio.com/report/global-network-traffic-analytics-market-analysis-share-2018
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 21, 2018
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Description

    Snapshot img

    Global network traffic analytics Industry Overview

    Technavio’s analysts have identified the increasing use of network traffic analytics solutions to be one of major factors driving market growth. With the rapidly changing IT infrastructure, security hackers can steal valuable information through various modes. With the increasing dependence on web applications and websites for day-to-day activities and financial transactions, the instances of theft have increased globally. Also, the emergence of social networking websites has aided the malicious attackers to extract valuable information from vulnerable users. The increasing consumer dependence on web applications and websites for day-to-day activities and financial transactions are further increasing the risks of theft. This encourages the organizations to adopt network traffic analytics solutions.

    Want a bigger picture? Try a FREE sample of this report now!

    See the complete table of contents and list of exhibits, as well as selected illustrations and example pages from this report.

    Companies covered

    The network traffic analytics market is fairly concentrated due to the presence of few established companies offering innovative and differentiated software and services. By offering a complete analysis of the competitiveness of the players in the network monitoring tools market offering varied software and services, this network traffic analytics industry analysis report will aid clients identify new growth opportunities and design new growth strategies.

    The report offers a complete analysis of a number of companies including:

    Allot
    Cisco Systems
    IBM
    Juniper Networks
    Microsoft
    Symantec
    

    Network traffic analytics market growth based on geographic regions

    Americas
    APAC
    EMEA
    

    With a complete study of the growth opportunities for the companies across regions such as the Americas, APAC, and EMEA, our industry research analysts have estimated that countries in the Americas will contribute significantly to the growth of the network monitoring tools market throughout the predicted period.

    Network traffic analytics market growth based on end-user

    Telecom
    BFSI
    Healthcare
    Media and entertainment
    

    According to our market research experts, the telecom end-user industry will be the major end-user of the network monitoring tools market throughout the forecast period. Factors such as increasing use of network traffic analytics solutions and increasing use of mobile devices at workplaces will contribute to the growth of the market shares of the telecom industry in the network traffic analytics market.

    Key highlights of the global network traffic analytics market for the forecast years 2018-2022:

    CAGR of the market during the forecast period 2018-2022
    Detailed information on factors that will accelerate the growth of the network traffic analytics market during the next five years
    Precise estimation of the global network traffic analytics market size and its contribution to the parent market
    Accurate predictions on upcoming trends and changes in consumer behavior
    Growth of the network traffic analytics industry across various geographies such as the Americas, APAC, and EMEA
    A thorough analysis of the market’s competitive landscape and detailed information on several vendors
    Comprehensive information about factors that will challenge the growth of network traffic analytics companies
    

    Get more value with Technavio’s INSIGHTS subscription platform! Gain easy access to all of Technavio’s reports, along with on-demand services. Try the demo

    This market research report analyzes the market outlook and provides a list of key trends, drivers, and challenges that are anticipated to impact the global network traffic analytics market and its stakeholders over the forecast years.

    The global network traffic analytics market analysts at Technavio have also considered how the performance of other related markets in the vertical will impact the size of this market till 2022. Some of the markets most likely to influence the growth of the network traffic analytics market over the coming years are the Global Network as a Service Market and the Global Data Analytics Outsourcing Market.

    Technavio’s collection of market research reports offer insights into the growth of markets across various industries. Additionally, we also provide customized reports based on the specific requirement of our clients.

  6. W

    Website Traffic Analysis Tool Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Website Traffic Analysis Tool Report [Dataset]. https://www.archivemarketresearch.com/reports/website-traffic-analysis-tool-30314
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Feb 16, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The size of the Website Traffic Analysis Tool market was valued at USD XXX million in 2024 and is projected to reach USD XXX million by 2033, with an expected CAGR of XX % during the forecast period.

  7. s

    Data from: Traffic Volumes

    • data.sandiego.gov
    Updated Jul 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Traffic Volumes [Dataset]. https://data.sandiego.gov/datasets/traffic-volumes/
    Explore at:
    csv csv is tabular data. excel, google docs, libreoffice calc or any plain text editor will open files with this format. learn moreAvailable download formats
    Dataset updated
    Jul 29, 2016
    Description

    The census count of vehicles on city streets is normally reported in the form of Average Daily Traffic (ADT) counts. These counts provide a good estimate for the actual number of vehicles on an average weekday at select street segments. Specific block segments are selected for a count because they are deemed as representative of a larger segment on the same roadway. ADT counts are used by transportation engineers, economists, real estate agents, planners, and others professionals for planning and operational analysis. The frequency for each count varies depending on City staff’s needs for analysis in any given area. This report covers the counts taken in our City during the past 12 years approximately.

  8. Grubhub.com: web traffic in the U.S. 2025

    • statista.com
    Updated Jan 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Grubhub.com: web traffic in the U.S. 2025 [Dataset]. https://www.statista.com/statistics/1452409/grubhub-web-traffic-united-states/
    Explore at:
    Dataset updated
    Jan 18, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2025
    Area covered
    United States
    Description

    Grubhub recorded an estimated ***** million visits to its website in the United States in June 2025, with an average visit duration of **** minutes and ** seconds and a bounce rate of nearly *****percent.

  9. W

    Website Visitor Tracking Software Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Website Visitor Tracking Software Report [Dataset]. https://www.marketresearchforecast.com/reports/website-visitor-tracking-software-27553
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Mar 5, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming website visitor tracking software market! Our analysis reveals a $5 billion market in 2025, projected to reach $15 billion by 2033, driven by digital marketing, data-driven decisions, and AI-powered analytics. Learn about key players, market trends, and regional insights.

  10. d

    Chicago Traffic Tracker - Historical Congestion Estimates by Segment -...

    • catalog.data.gov
    • data.cityofchicago.org
    Updated Oct 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Chicago Traffic Tracker - Historical Congestion Estimates by Segment - 2024-Current [Dataset]. https://catalog.data.gov/dataset/chicago-traffic-tracker-historical-congestion-estimates-by-segment-2024-current
    Explore at:
    Dataset updated
    Oct 18, 2025
    Dataset provided by
    data.cityofchicago.org
    Area covered
    Chicago
    Description

    This dataset contains the historical estimated congestion for over 1,000 traffic segments, starting 6/11/2024 (except for a single time slice on 3/8/2024). Older records are in https://data.cityofchicago.org/d/sxs8-h27x. The most recent estimates for each segment are in https://data.cityofchicago.org/d/n4j6-wkkf. The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (non-freeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every 10 minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimates by traffic segments gives observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for a relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. Speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.

  11. Data from: Annual Average Daily Traffic

    • gisdata-caltrans.opendata.arcgis.com
    • data.ca.gov
    • +2more
    Updated Sep 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California_Department_of_Transportation (2024). Annual Average Daily Traffic [Dataset]. https://gisdata-caltrans.opendata.arcgis.com/datasets/d8833219913c44358f2a9a71bda57f76
    Explore at:
    Dataset updated
    Sep 30, 2024
    Dataset provided by
    Caltranshttp://dot.ca.gov/
    Authors
    California_Department_of_Transportation
    Area covered
    Description

    Annual average daily traffic is the total volume for the year divided by 365 days. The traffic count year is from October 1st through September 30th. Very few locations in California are actually counted continuously. Traffic Counting is generally performed by electronic counting instruments moved from location throughout the State in a program of continuous traffic count sampling. The resulting counts are adjusted to an estimate of annual average daily traffic by compensating for seasonal influence, weekly variation and other variables which may be present. Annual ADT is necessary for presenting a statewide picture of traffic flow, evaluating traffic trends, computing accident rates. planning and designing highways and other purposes.Traffic Census Program Page

  12. W

    Website Traffic Generator Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Feb 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Website Traffic Generator Report [Dataset]. https://www.marketresearchforecast.com/reports/website-traffic-generator-19356
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Feb 13, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The size of the Website Traffic Generator market was valued at USD XXX million in 2024 and is projected to reach USD XXX million by 2033, with an expected CAGR of XX% during the forecast period.

  13. d

    Chicago Traffic Tracker - Congestion Estimates by Regions

    • catalog.data.gov
    • data.cityofchicago.org
    Updated Nov 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Chicago Traffic Tracker - Congestion Estimates by Regions [Dataset]. https://catalog.data.gov/dataset/chicago-traffic-tracker-congestion-estimates-by-regions
    Explore at:
    Dataset updated
    Nov 22, 2025
    Dataset provided by
    data.cityofchicago.org
    Area covered
    Chicago
    Description

    This dataset contains the current estimated congestion for the 29 traffic regions. For a detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab. The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (non-freeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every 10 minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimates by traffic segments gives observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for a relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. Speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.

  14. d

    Chicago Traffic Tracker - Historical Congestion Estimates by Region -...

    • catalog.data.gov
    • data.cityofchicago.org
    Updated Nov 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Chicago Traffic Tracker - Historical Congestion Estimates by Region - 2018-Current [Dataset]. https://catalog.data.gov/dataset/chicago-traffic-tracker-historical-congestion-estimates-by-region-2018-current
    Explore at:
    Dataset updated
    Nov 22, 2025
    Dataset provided by
    data.cityofchicago.org
    Area covered
    Chicago
    Description

    This dataset contains the historical estimated congestion for the 29 traffic regions, starting in approximately March 2018. Older records are in https://data.cityofchicago.org/d/emtn-qqdi. The most recent estimates for each segment are in https://data.cityofchicago.org/d/t2qc-9pjd. The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (non-freeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every 10 minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimates by traffic segments gives observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for a relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. Speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions. Current estimates of traffic congestion by region are available at http://bit.ly/103beCf.

  15. G

    Traffic flow

    • open.canada.ca
    • catalogue.arctic-sdi.org
    csv, geojson, gpkg +5
    Updated Nov 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government and Municipalities of Québec (2025). Traffic flow [Dataset]. https://open.canada.ca/data/en/dataset/c77c495a-2a4c-447e-9184-25722289007f
    Explore at:
    geojson, gpkg, shp, wfs, html, pdf, csv, wmsAvailable download formats
    Dataset updated
    Nov 26, 2025
    Dataset provided by
    Government and Municipalities of Québec
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Linear network representing the estimated traffic flows for roads and highways managed by the Ministry of Transport and Sustainable Mobility (MTMD). These flows are obtained using a statistical estimation method applied to data from more than 4,500 collection sites spread over the main roads of Quebec. It includes DJMA (annual average daily flow), DJME (summer average daily flow), DJME (summer average daily flow (June, July, August, September) and DJMH (average daily winter flow (December, January, February, March) as well as other traffic data. It is important to note that these values are calculated for total traffic directions. Interactive map: Some files are accessible by querying an à la carte traffic section with a click (the file links are displayed in the descriptive table that is displayed upon click): • Historical aggregate data (PDF) • Annual reports for permanent sites (PDF and Excel) • Hourly data (hourly average per weekday per month) (Excel) This third party metadata element was translated using an automated translation tool (Amazon Translate).

  16. Data from: Analysis of the Quantitative Impact of Social Networks General...

    • figshare.com
    • produccioncientifica.ucm.es
    doc
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
    Explore at:
    docAvailable download formats
    Dataset updated
    Oct 14, 2022
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
    Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

    Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

  17. amazon-webtraffic-datasets

    • kaggle.com
    zip
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BHARATH Kumar B.U (2025). amazon-webtraffic-datasets [Dataset]. https://www.kaggle.com/datasets/bharathkumarbu/amazon-webtraffic-datasets
    Explore at:
    zip(69058 bytes)Available download formats
    Dataset updated
    Jun 14, 2025
    Authors
    BHARATH Kumar B.U
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains meticulously cleaned and structured web traffic data collected across multiple websites, including Amazon platforms and services like Amazon Prime, AWS, and AWS Support. It spans various traffic sources, user devices, key actions, and engagement metrics, making it a powerful resource for digital marketing analysis, customer behavior modeling, and time series forecasting.

    Ideal for:

    Web traffic analysis Conversion rate optimization Bounce rate analysis User segmentation Predictive modeling and machine learning 📌 Dataset Features: Rows: 2006 Columns: 18

    Date Range: Starts from January 1st, 2019 (Exact end date can be inferred from the dataset)

    🔍 Columns Overview: Country: Country of user origin

    Timestamp: Full timestamp of the visit Device Category: Type of device (Desktop, Mobile, Tablet) Key Actions: User actions like Purchase, Sign Up, Subscribe Page Path: Visited page (e.g., /home, /contact) Source: Traffic source (e.g., organic search, social media) Avg Session Duration: Duration of session in seconds Bounce Rate: % of single-page sessions Conversions: Number of conversions New Users: Number of new users in session Page Views: Total page views Returning Users: Count of returning users Unique Page Views: Unique page views Average time on home page (min): Self-explanatory Website: Name of the specific Amazon service or domain Date, Time, Day: Parsed date and time information

    📊 Potential Use Cases: Machine Learning: Predicting bounce rate, conversion likelihood, or segmenting user behavior. Business Intelligence: Dashboards for performance analysis by device, source, or day. Time Series Forecasting: Analyze traffic patterns over time. A/B Testing: Benchmarking traffic changes across page paths or traffic sources.

  18. d

    Average Daily Traffic Counts - 2006

    • catalog.data.gov
    • chicago.gov
    • +1more
    Updated Aug 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). Average Daily Traffic Counts - 2006 [Dataset]. https://catalog.data.gov/dataset/average-daily-traffic-counts
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    This dataset is historical. For recent data, we recommend using https://chicagotraffictracker.com. -- Average Daily Traffic (ADT) counts are analogous to a census count of vehicles on city streets. These counts provide a close approximation to the actual number of vehicles passing through a given location on an average weekday. Since it is not possible to count every vehicle on every city street, sample counts are taken along larger streets to get an estimate of traffic on half-mile or one-mile street segments. ADT counts are used by city planners, transportation engineers, real-estate developers, marketers and many others for myriad planning and operational purposes. Data Owner: Transportation. Time Period: 2006. Frequency: A citywide count is taken approximately every 10 years. A limited number of traffic counts will be taken and added to the list periodically. Related Applications: Traffic Information Interactive Map (http://webapps.cityofchicago.org/traffic/).

  19. c

    Google Analytics www cityofrochester gov

    • data.cityofrochester.gov
    Updated Dec 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2021). Google Analytics www cityofrochester gov [Dataset]. https://data.cityofrochester.gov/datasets/google-analytics-www-cityofrochester-gov/about
    Explore at:
    Dataset updated
    Dec 11, 2021
    Dataset authored and provided by
    Open_Data_Admin
    Description

    Data dictionary: Page_Title: Title of webpage used for pages of the website www.cityofrochester.gov Pageviews: Total number of pages viewed over the course of the calendar year listed in the year column. Repeated views of a single page are counted. Unique_Pageviews: Unique Pageviews - The number of sessions during which a specified page was viewed at least once. A unique pageview is counted for each URL and page title combination. Avg_Time: Average amount of time users spent looking at a specified page or screen. Entrances: The number of times visitors entered the website through a specified page.Bounce_Rate: " A bounce is a single-page session on your site. In Google Analytics, a bounce is calculated specifically as a session that triggers only a single request to the Google Analytics server, such as when a user opens a single page on your site and then exits without triggering any other requests to the Google Analytics server during that session. Bounce rate is single-page sessions on a page divided by all sessions that started with that page, or the percentage of all sessions on your site in which users viewed only a single page and triggered only a single request to the Google Analytics server. These single-page sessions have a session duration of 0 seconds since there are no subsequent hits after the first one that would let Google Analytics calculate the length of the session. "Exit_Rate: The number of exits from a page divided by the number of pageviews for the page. This is inclusive of sessions that started on different pages, as well as “bounce” sessions that start and end on the same page. For all pageviews to the page, Exit Rate is the percentage that were the last in the session. Year: Calendar year over which the data was collected. Data reflects the counts for each metric from January 1st through December 31st.

  20. C

    Competitive Analysis of Industry Rivals Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Competitive Analysis of Industry Rivals Report [Dataset]. https://www.archivemarketresearch.com/reports/competitive-analysis-of-industry-rivals-38541
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Competitive Analysis of Industry Rivals The market for competitive analysis is expected to grow significantly over the forecast period, driven by increasing need for businesses to understand their competitive landscape. Key players in the market include BuiltWith, WooRank, SEMrush, Google, SpyFu, Owletter, SimilarWeb, Moz, SunTec Data, and TrendSource. These companies offer a range of services to help businesses track their competitors' online performance, including website traffic, social media engagement, and search engine rankings. Some of the key trends driving the growth of the market include the increasing adoption of digital marketing by businesses, the growing importance of social media, and the increasing availability of data and analytics tools. The market is segmented by type, application, and region. In terms of type, the market is divided into product analysis, traffic analytics, sales analytics, and others. In terms of application, the market is divided into SMEs and large enterprises. In terms of region, the market is divided into North America, South America, Europe, Middle East & Africa, and Asia Pacific. The North American region is expected to dominate the market during the forecast period, due to the presence of a large number of established players in the market. The Asia Pacific region is expected to grow at the highest CAGR during the forecast period, due to the increasing adoption of digital marketing by businesses in the region. This report provides a comprehensive analysis of the industry rivals, encompassing their concentration, product insights, regional trends, and key industry developments.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.cityofchicago.org (2025). Chicago Traffic Tracker - Congestion Estimates by Segments [Dataset]. https://catalog.data.gov/dataset/chicago-traffic-tracker-congestion-estimates-by-segments

Chicago Traffic Tracker - Congestion Estimates by Segments

Explore at:
Dataset updated
Nov 29, 2025
Dataset provided by
data.cityofchicago.org
Area covered
Chicago
Description

This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. For a more detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab. The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (nonfreeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every ten minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimate by traffic segments gives the observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.

Search
Clear search
Close search
Google apps
Main menu