The 2016 Ethiopia Demographic and Health Survey (EDHS) is the fourth Demographic and Health Survey conducted in Ethiopia. It was implemented by the Central Statistical Agency (CSA) at the request of the Federal Ministry of Health (FMoH). The primary objective of the 2016 EDHS is to provide up-to-date estimates of key demographic and health indicators. The EDHS provides a comprehensive overview of population, maternal, and child health issues in Ethiopia. More specifically, the 2016 EDHS: - Collected data at the national level that allowed calculation of key demographic indicators, particularly fertility and under-5 and adult mortality rates - Explored the direct and indirect factors that determine levels and trends of fertility and child mortality ? Measured levels of contraceptive knowledge and practice - Collected data on key aspects of family health, including immunisation coverage among children, prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery - Obtained data on child feeding practices, including breastfeeding - Collected anthropometric measures to assess the nutritional status of children under age 5, women age 15-49, and men age 15-59 - Conducted haemoglobin testing on eligible children age 6-59 months, women age 15-49, and men age 15-59 to provide information on the prevalence of anaemia in these groups - Collected data on knowledge and attitudes of women and men about sexually transmitted diseases and HIV/AIDS and evaluated potential exposure to the risk of HIV infection by exploring high-risk behaviours and condom use - Conducted HIV testing of dried blood spot (DBS) samples collected from women age 15-49 and men age 15-59 to provide information on the prevalence of HIV among adults of reproductive age - Collected data on the prevalence of injuries and accidents among all household members - Collected data on knowledge and prevalence of fistula and female genital mutilation or cutting (FGM/C) among women age 15-49 and their daughters age 0-14 - Obtained data on women’s experience of emotional, physical, and sexual violence.
National
The survey covered all de jure household members (usual residents), women age 15-49 years and men age 15-59 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2016 EDHS is the Ethiopia Population and Housing Census (PHC), which was conducted in 2007 by the Ethiopia Central Statistical Agency. The census frame is a complete list of 84,915 enumeration areas (EAs) created for the 2007 PHC. An EA is a geographic area covering on average 181 households. The sampling frame contains information about the EA location, type of residence (urban or rural), and estimated number of residential households. With the exception of EAs in six zones of the Somali region, each EA has accompanying cartographic materials. These materials delineate geographic locations, boundaries, main access, and landmarks in or outside the EA that help identify the EA. In Somali, a cartographic frame was used in three zones where sketch maps delineating the EA geographic boundaries were available for each EA; in the remaining six zones, satellite image maps were used to provide a map for each EA.
Administratively, Ethiopia is divided into nine geographical regions and two administrative cities. The sample for the 2016 EDHS was designed to provide estimates of key indicators for the country as a whole, for urban and rural areas separately, and for each of the nine regions and the two administrative cities.
The 2016 EDHS sample was stratified and selected in two stages. Each region was stratified into urban and rural areas, yielding 21 sampling strata. Samples of EAs were selected independently in each stratum in two stages. Implicit stratification and proportional allocation were achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units in different levels, and by using a probability proportional to size selection at the first stage of sampling.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Five questionnaires were used for the 2016 EDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Health Facility Questionnaire. These questionnaires, based on the DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Ethiopia. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. After all questionnaires were finalised in English, they were translated into Amarigna, Tigrigna, and Oromiffa.
All electronic data files for the 2016 EDHS were transferred via IFSS to the CSA central office in Addis Ababa, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of openended questions; it also required generating a file for the list of children for whom a vaccination card was not seen by the interviewers and whose vaccination records had to be checked at health facilities. The data were processed by two individuals who took part in the main fieldwork training; they were supervised by two senior staff from CSA. Data editing was accomplished using CSPro software. During the duration of fieldwork, tables were generated to check various data quality parameters and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in January 2016 and completed in August 2016.
A total of 18,008 households were selected for the sample, of which 17,067 were occupied. Of the occupied households, 16,650 were successfully interviewed, yielding a response rate of 98%.
In the interviewed households, 16,583 eligible women were identified for individual interviews. Interviews were completed with 15,683 women, yielding a response rate of 95%. A total of 14,795 eligible men were identified in the sampled households and 12,688 were successfully interviewed, yielding a response rate of 86%. Although overall there was little variation in response rates according to residence, response rates among men were higher in rural than in urban areas.
The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding the questions by either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2016 Ethiopia DHS (EDHS) to minimise this type of error, non-sampling errors are impossible to avoid and are difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2016 EDHS is only one of many samples that could have been selected from the same population, by using the same design and the expected size. Each of those samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (such as mean or percentage), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2016 EDHS sample is the result of a multi-stage stratified design and, consequently, it was necessary to use more complex formulae. Sampling errors are computed in either ISSA or SAS, with programs developed by ICF International. These programs use the Taylor linearisation method of variance estimation for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar
The 2019 Ethiopia Mini Demographic and Health Survey (EMDHS) is a nationwide survey with a nationally representative sample of 9,150 selected households. All women age 15-49 who were usual members of the selected households and those who spent the night before the survey in the selected households were eligible to be interviewed in the survey. In the selected households, all children under age 5 were eligible for height and weight measurements. The survey was designed to produce reliable estimates of key indicators at the national level as well as for urban and rural areas and each of the 11 regions in Ethiopia.
The primary objective of the 2019 EMDHS is to provide up-to-date estimates of key demographic and health indicators. Specifically, the main objectives of the survey are: ▪ To collect high-quality data on contraceptive use; maternal and child health; infant, child, and neonatal mortality levels; child nutrition; and other health issues relevant to achievement of the Sustainable Development Goals (SDGs) ▪ To collect information on health-related matters such as breastfeeding, maternal and child care (antenatal, delivery, and postnatal), children’s immunizations, and childhood diseases ▪ To assess the nutritional status of children under age 5 by measuring weight and height
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49 and all children aged 0-5 resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2019 EMDHS is a frame of all census enumeration areas (EAs) created for the 2019 Ethiopia Population and Housing Census (EPHC) and conducted by the Central Statistical Agency (CSA). The census frame is a complete list of the 149,093 EAs created for the 2019 EPHC. An EA is a geographic area covering an average of 131 households. The sampling frame contains information about EA location, type of residence (urban or rural), and estimated number of residential households.
Administratively, Ethiopia is divided into nine geographical regions and two administrative cities. The sample for the 2019 EMDHS was designed to provide estimates of key indicators for the country as a whole, for urban and rural areas separately, and for each of the nine regions and the two administrative cities.
The 2019 EMDHS sample was stratified and selected in two stages. Each region was stratified into urban and rural areas, yielding 21 sampling strata. Samples of EAs were selected independently in each stratum in two stages. Implicit stratification and proportional allocation were achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units in different levels, and by using a probability proportional to size selection at the first stage of sampling.
To ensure that survey precision was comparable across regions, sample allocation was done through an equal allocation wherein 25 EAs were selected from eight regions. However, 35 EAs were selected from each of the three larger regions: Amhara, Oromia, and the Southern Nations, Nationalities, and Peoples’ Region (SNNPR).
In the first stage, a total of 305 EAs (93 in urban areas and 212 in rural areas) were selected with probability proportional to EA size (based on the 2019 EPHC frame) and with independent selection in each sampling stratum. A household listing operation was carried out in all selected EAs from January through April 2019. The resulting lists of households served as a sampling frame for the selection of households in the second stage. Some of the selected EAs for the 2019 EMDHS were large, with more than 300 households. To minimise the task of household listing, each large EA selected for the 2019 EMDHS was segmented. Only one segment was selected for the survey, with probability proportional to segment size. Household listing was conducted only in the selected segment; that is, a 2019 EMDHS cluster is either an EA or a segment of an EA.
In the second stage of selection, a fixed number of 30 households per cluster were selected with an equal probability systematic selection from the newly created household listing. All women age 15-49 who were either permanent residents of the selected households or visitors who slept in the household the night before the survey were eligible to be interviewed. In all selected households, height and weight measurements were collected from children age 0-59 months, and women age 15-49 were interviewed using the Woman’s Questionnaire.
For further details on sample selection, see Appendix A of the final report.
Computer Assisted Personal Interview [capi]
Five questionnaires were used for the 2019 EMDHS: (1) the Household Questionnaire, (2) the Woman’s Questionnaire, (3) the Anthropometry Questionnaire, (4) the Health Facility Questionnaire, and (5) the Fieldworker’s Questionnaire. These questionnaires, based on The DHS Program’s standard questionnaires, were adapted to reflect the population and health issues relevant to Ethiopia. They were shortened substantially to collect data on indicators of particular relevance to Ethiopia and donors to child health programmes.
All electronic data files were transferred via the secure internet file streaming system (IFSS) to the EPHI central office in Addis Ababa, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. The data were processed by EPHI staff members and an ICF consultant who took part in the main fieldwork training. They were supervised remotely by staff from The DHS Program. Data editing was accomplished using CSPro System software. During the fieldwork, field-check tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing, double data entry from both the anthropometry and health facility questionnaires, and data processing were initiated in April 2019 and completed in July 2019.
A total of 9,150 households were selected for the sample, of which 8,794 were occupied. Of the occupied households, 8,663 were successfully interviewed, yielding a response rate of 99%.
In the interviewed households, 9,012 eligible women were identified for individual interviews; interviews were completed with 8,885 women, yielding a response rate of 99%. Overall, there was little variation in response rates according to residence; however, rates were slightly higher in rural than in urban areas.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2019 Ethiopia Mini Demographic and Health Survey (EMDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2019 EMDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2019 EMDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic and Health Survey, 2016 - Ethiopia
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Random effects analysis for advanced-age pregnancy in Ethiopia based on Ethiopia demographic health survey 2016.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The individual level characteristics of 6–23 months age children in Ethiopia, EDHS 2016(n = 2919).
Woman, Birth, Child, Birth, Man, Household Member
Women age 15-49, Births, Children age 0-4, Men age 15-59, All persons
Demographic and Household Survey [hh/dhs]
MICRODATA SOURCE: Central Statistical Agency [Ethiopia] and ICF.
SAMPLE UNIT: Woman SAMPLE SIZE: 15683
SAMPLE UNIT: Birth SAMPLE SIZE: 41392
SAMPLE UNIT: Child SAMPLE SIZE: 10641
SAMPLE UNIT: Man SAMPLE SIZE: 12688
SAMPLE UNIT: Member SAMPLE SIZE: 75224
Face-to-face [f2f]
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundOnly 40% of World Health Assembly member states achieved 90% national full vaccination coverage in 2015. In the African region, 79% of the countries had not achieved the target in 2015. In Ethiopia, only 39% of children 12–23 months of age were fully vaccinated. Though different studies were conducted in Ethiopia, they were limited in scope and used single level analysis. Therefore, this study aimed to assess individual and community level factors associated with full immunization among children 12–23 months of age in Ethiopia.MethodsThe data was obtained from Ethiopia Demographic and Health Survey 2016, conducted from January 2016 to June 2016. The sample was taken using two stage stratified sampling. In stage one, 645 Enumeration Areas and in stage two 28 households per Enumeration Area were selected systematically. Weighted sample of 1929 children 12–23 months of age were included in the study. Data was extracted from http://www.DHSprogram.com. Multilevel logistic regression was employed. Akaike Information Criteria was used to select best fit model.ResultsMother’s education, husband employment, mother’s religion, mother’s antenatal care visit, presence of vaccination document, region and community antenatal care utilization were significantly associated with children full vaccination. The odds of full vaccination were 2.5 [AOR = 2.48 95% CI: 1.35, 4.56] and 1.6 [AOR = 1.58 95% CI: 1.1, 2.28] times higher in children of mothers with secondary or higher and primary education respectively than children of mothers with no education.ConclusionThis study showed that children full vaccination is affected both by the individual and community level factors. Therefore, efforts to increase children full vaccination status need to target both at individual and community level.
The 2019 Ethiopia Mini Demographic and Health Survey (EMDHS) is the second Mini Demographic and Health Survey conducted in Ethiopia. The Ethiopian Public Health Institute (EPHI) implemented the survey at the request of the Federal Ministry of Health (FMoH). Data collection took place from March 21, 2019, to June 28, 2019.
Financial support for the 2019 EMDHS was provided by the government of Ethiopia, the World Bank via the Ministry of Finance and Economic Development’s Enhancing Shared Prosperity through Equitable Services (ESPES) and Promoting Basic Services (PBS) projects, the United Nations Children’s Fund (UNICEF), and the United States Agency for International Development (USAID). ICF provided technical assistance through The DHS Program, which is funded by USAID and offers support and technical assistance for the implementation of population and health surveys in countries worldwide.
SURVEY OBJECTIVES The primary objective of the 2019 EMDHS is to provide up-to-date estimates of key demographic and health indicators. Specifically, the main objectives of the survey are: - To collect high-quality data on contraceptive use; maternal and child health; infant, child, and neonatal mortality levels; child nutrition; and other health issues relevant to achievement of the Sustainable Development Goals (SDGs) - To collect information on health-related matters such as breastfeeding, maternal and child care (antenatal, delivery, and postnatal), children’s immunisations, and childhood diseases - To assess the nutritional status of children under age 5 by measuring weight and height
Four full-scale DHS surveys were conducted in 2000, 2005, 2011, and 2016. The first Ethiopia Mini-DHS, or EMDHS, was conducted in 2014. The 2019 EMDHS provides valuable information on trends in key demographic and health indicators over time. The information collected through the 2019 EMDHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country's population.
National coverage
Households Women age 15-49 Children age 0-59 months
Household members Woman aged 15-49 years Children aged 0-59 months
Sample survey data [ssd]
The sampling frame used for the 2019 EMDHS is a frame of all census enumeration areas (EAs) created for the 2019 Ethiopia Population and Housing Census (EPHC) and conducted by the Central Statistical Agency (CSA). The census frame is a complete list of the 149,093 EAs created for the 2019 EPHC. An EA is a geographic area covering an average of 131 households. The sampling frame contains information about EA location, type of residence (urban or rural), and estimated number of residential households.
Administratively, Ethiopia is divided into nine geographical regions and two administrative cities. The sample for the 2019 EMDHS was designed to provide estimates of key indicators for the country as a whole, for urban and rural areas separately, and for each of the nine regions and the two administrative cities.
The 2019 EMDHS sample was stratified and selected in two stages. Each region was stratified into urban and rural areas, yielding 21 sampling strata. Samples of EAs were selected independently in each stratum in two stages. Implicit stratification and proportional allocation were achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units in different levels, and by using a probability proportional to size selection at the first stage of sampling.
To ensure that survey precision was comparable across regions, sample allocation was done through an equal allocation wherein 25 EAs were selected from eight regions. However, 35 EAs were selected from each of the three larger regions: Amhara, Oromia, and the Southern Nations, Nationalities, and Peoples’ Region (SNNPR).
In the first stage, a total of 305 EAs (93 in urban areas and 212 in rural areas) were selected with probability proportional to EA size (based on the 2019 EPHC frame) and with independent selection in each sampling stratum. A household listing operation was carried out in all selected EAs from January through April 2019. The resulting lists of households served as a sampling frame for the selection of households in the second stage. Some of the selected EAs for the 2019 EMDHS were large, with more than 300 households. To minimise the task of household listing, each large EA selected for the 2019 EMDHS was segmented. Only one segment was selected for the survey, with probability proportional to segment size. Household listing was conducted only in the selected segment; that is, a 2019 EMDHS cluster is either an EA or a segment of an EA.
In the second stage of selection, a fixed number of 30 households per cluster were selected with an equal probability systematic selection from the newly created household listing. All women age 15-49 who were either permanent residents of the selected households or visitors who slept in the household the night before the survey were eligible to be interviewed. In all selected households, height and weight measurements were collected from children age 0-59 months, and women age 15-49 were interviewed using the Woman’s Questionnaire.
Computer Assisted Personal Interview [capi]
Five questionnaires were used for the 2019 EMDHS: (1) the Household Questionnaire, (2) the Woman’s Questionnaire, (3) the Anthropometry Questionnaire, (4) the Health Facility Questionnaire, and (5) the Fieldworker’s Questionnaire. These questionnaires, based on The DHS Program’s standard questionnaires, were adapted to reflect the population and health issues relevant to Ethiopia. They were shortened substantially to collect data on indicators of particular relevance to Ethiopia and donors to child health programmes.
Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. After the questionnaires were finalised in English, they were translated into Amarigna, Tigrigna, and Afaan Oromo.
The Household Questionnaire was used to list all of the usual members of and visitors to selected households. Basic demographic information was collected on the characteristics of each person listed, including his or her age, sex, education, and relationship to the head of the household. The data on age and sex of household members obtained in the Household Questionnaire were used to identify women who were eligible for individual interviews. The Household Questionnaire was also used to collect information on characteristics of the household’s dwelling unit, such as source of water, type of toilet facilities, materials used for the floor of the dwelling unit, and ownership of various durable goods.
The Woman’s Questionnaire was used to collect information from all eligible women age 15-49. These women were asked questions on the following main topics: background characteristics, reproduction, contraception, pregnancy and postnatal care, child nutrition, childhood immunisations, and health facility information.
In the Anthropometry Questionnaire, height and weight measurements were recorded for eligible children age 0-59 months in all interviewed households.
The Health Facility Questionnaire was used to record vaccination information for all children without a vaccination card seen during the mother’s interview.
The Fieldworker’s Questionnaire collected background information about interviewers and other fieldworkers who participated in the 2019 EMDHS data collection.
All electronic data files were transferred via the secure internet file streaming system (IFSS) to the EPHI central office in Addis Ababa, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. The data were processed by EPHI staff members and an ICF consultant who took part in the main fieldwork training. They were supervised remotely by staff from The DHS Program. Data editing was accomplished using CSPro System software. During the fieldwork, field-check tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing, double data entry from both the anthropometry and health facility questionnaires, and data processing were initiated in April 2019 and completed in July 2019.
A total of 9,150 households were selected for the sample, of which 8,794 were occupied. Of the occupied households, 8,663 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 9,012 eligible women were identified for individual interviews; interviews were completed with 8,885 women, yielding a response rate of 99%. Overall, there was little variation in response rates according to residence; however, rates were slightly higher in rural than in urban areas.
Determinants of age at first marriage among married women in rural ethiopia using 2016 ethiopian demographic health survey data Age at first marriage is of interest because it determines the duration of such an exposure hence it affects fertility levels and population growth especially in countries where the use of contraceptives is low This study aimed to investigate demographic and socioeconomic factors affecting age at first marriage in Ethiopian women The data source used for the analy
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Individual and community-level variances for multilevel random intercept Logit models predicting feeding 6–23 months age children with minimum acceptable diet in Ethiopia 2016.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background characteristics of the study population, Ethiopia Demographic and Health Survey 2016.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The household income index of the different cluster numbers in Ethiopia from the Demographic Health Survey , 2016 - from Low income per household to High household income per cluster - at a resolution of about 5000 metres
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Minimum meal frequency, Dietary diversity and minimum acceptable practice among children 6–13 months of age in Ethiopia, 2016 (n = 2919).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Community characteristics of women dropped out from maternal service care, Ethiopia Demographic and Health Survey, 2016.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ethiopia ET: Women Who were First Married by Age 18: % of Women Aged 20-24 data was reported at 40.300 % in 2016. This records a decrease from the previous number of 41.200 % for 2011. Ethiopia ET: Women Who were First Married by Age 18: % of Women Aged 20-24 data is updated yearly, averaging 45.150 % from Dec 2000 (Median) to 2016, with 4 observations. The data reached an all-time high of 49.200 % in 2005 and a record low of 40.300 % in 2016. Ethiopia ET: Women Who were First Married by Age 18: % of Women Aged 20-24 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ethiopia – Table ET.World Bank: Population and Urbanization Statistics. Women who were first married by age 18 refers to the percentage of women ages 20-24 who were first married by age 18.; ; Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), AIDS Indicator Surveys(AIS), Reproductive Health Survey(RHS), and other household surveys.; ;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundUtilization of modern contraceptives is a common healthcare challenge in Ethiopia. Prevalence of modern contraception utilization is varying across different regions. Therefore, this study aimed to investigate Geographic weighted regression analysis of hotspots of modern contraceptive utilization and its associated factors in Ethiopia, using Ethiopian Demographic and Health Survey 2016 data.MethodsBased on the 2016 Ethiopian Demographic Health Survey data, a total weighted sample of 8,673 women was included in this study. For the Geographic Weighted Regression analysis, Arc-GIS version 10.7 and SaTScan version 9.6, statistical software was used. Spatial regression was done to identify factors associated with the hotspots of modern contraceptive utilization and model comparison was carried out using adjusted R2 and AICc. Variables with a p-value < 0.25 in the bi-variable analysis were considered for the multivariable analysis. Multilevel robust Poisson regression analysis was fitted for associated factors since the prevalence of modern contraceptive was >10%. In the multilevel robust Poisson regression analysis, the adjusted prevalence ratio with the 95% confidence interval was reported to declare the statistical significance and strength of association.ResultThe prevalence of modern contraceptive utilization in Ethiopia was 37.25% (95% CI: 36.23%, 38.27%). Most of the hotspot areas were located in Oromia and Amhara regions, followed by the SNNPR region and Addis Ababa City administration. Single Women, poor Women, and more fertility preference were significant predictors of hotspots areas of modern contraceptive utilization. In the multivariable multilevel robust Poisson regression analysis, Women aged 25–34 years (APR = 0.88, 95% CI: 0.79, 0.98), 35–49 years (APR = 0.71, 95% CI: 0.61, 0.83), married marital status (APR = 2.59, 95% CI: 2.18, 3.08), Others religions (APR = 0.76, 95% CI: 0.65, 0.89), number of children 1–4 (APR = 1.18, 95% CI: 1.02, 1.37), no more fertility preference (APR = 1.21, 95% CI: 1.11, 1.32), Afar, Somali, Harari, and Dire Dawa: (APR = 0.42, 95% CI: 0.27, 0.67), (APR = 0.06, 95% CI: 0.03, 0.12), (APR = 0.78, 95% CI: 0.62, 0.98), and (APR = 0.75, 95% CI: 0.58, 0.98), respectively. Amhara region (APR = 1.34, 95% CI: 1.13, 1.57), rural residence (APR = 0.80, 95% CI: 0.67, 0.95) High community wealth index (APR = 0.78, 95% CI: 0.67, 0.91) were significantly associated with modern contraceptive utilization.Conclusion and recommendationThere were significant spatial variations of factors affecting modern contraceptive use across regions in Ethiopia. Therefore, public health interventions targeting areas with low modern contraceptive utilization will help to increase modern contraception use considering significant factors at individual and community levels.The detailed map of modern contraceptive use cold spots among reproductive age group and its predictors could assist program planners and decision-makers to design targeted public health interventions.Government of Ethiopia must develop more geographic targeted strategies for improving socioeconomic status of women and availability & accessibility of health facilities in rural areas of the countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ethiopia ET: Unmet Need for Contraception: % of Married Women Aged 15-49 data was reported at 22.800 % in 2017. This records an increase from the previous number of 22.300 % for 2016. Ethiopia ET: Unmet Need for Contraception: % of Married Women Aged 15-49 data is updated yearly, averaging 24.400 % from Dec 2000 (Median) to 2017, with 7 observations. The data reached an all-time high of 36.600 % in 2000 and a record low of 22.300 % in 2016. Ethiopia ET: Unmet Need for Contraception: % of Married Women Aged 15-49 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ethiopia – Table ET.World Bank: Health Statistics. Unmet need for contraception is the percentage of fertile, married women of reproductive age who do not want to become pregnant and are not using contraception.; ; Household surveys, including Demographic and Health Surveys and Multiple Indicator Cluster Surveys. Largely compiled by United Nations Population Division.; Weighted Average; Unmet need for contraception measures the capacity women have in achieving their desired family size and birth spacing. Many couples in developing countries want to limit or postpone childbearing but are not using effective contraception. These couples have an unmet need for contraception. Common reasons are lack of knowledge about contraceptive methods and concerns about possible side effects.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The poverty headcount in Ethiopia is falling. The share of the population below the national poverty line decreased from 30 percent in 2011 to 24 percent in 2016. This decrease was achieved in spite of the fact that the 2015-16 survey was conducted during the severe El-Nino drought. The observed reduction in poverty is robust to the use of alternative deflators. The fall in the poverty headcount was driven mainly by Ethiopia’s strong economic growth over that period. This poverty assessment focuses on the evolution of poverty and other social indicators in Ethiopia between 2011 and 2016. It uses data from a variety of sources, mainly the Household Consumption and Expenditure Survey (HCES), the Welfare Monitoring Surveys (WMS), the Ethiopia Socioeconomic Survey (ESS) and the Demographic and Health Surveys (DHS), to observe trends in monetary and non-monetary dimensions of living standards and to examine the drivers of these trends, with a special focus on government programs. The aim of the poverty assessment is to provide policymakers and development partners with information and analysis that can be used to improve the effectiveness of their poverty reduction and social programs.
This survey was conducted as part of a review of the different civil service reform tools in Ethiopia, to assess what has been achieved, and what to consider next. The review aimed to take stock of what has been done, identify remaining and potential new challenges, and draw lessons, as well as suggest recommendations on how to move further ahead in the coming years to foster a fair, responsible, efficient, ethical, and transparent civil service. A survey of civil servants at the Federal, Regional and Woreda levels was implemented that focused on five sectors, namely, agriculture, education, health, revenue administration, and trade.
The aim of the Ethiopia Civil Servant Survey was to gather micro-level data on the perceptions and experiences of civil servants, and on the key restraints to civil servants performing their duties to the best of their abilities, and to the provision of public goods. This civil servant survey aimed to contribute to the development of diagnostic tools which would allow to better understand the incentive environments which lead to different types of behavior and the determinants of service delivery in the civil service.
At the Federal level 330 individuals were planned to be interviewed; 550 at the Region level (Harar, Afar, SNNPR, Oromiya, Amhara, Dire Dawa, Addis Ababa, Benishangul, Somali, Tigray, Gambella); and 1615 at the Woreda (66 Woredas) level. Within each region 50 individuals were targeted to be interviewed, except in Addis Ababa, where the target was 40 due to not having an agriculture bureau, and except in Oromiya, where, due to additional funds becoming available, the target became 60. Within each Woreda, 25 individuals were planned to be sampled.
Public servants, including managers and non-managers at the Federal, Regional and Woreda levels.
Aggregate data [agg]
To provide a large sample for statistical analysis, while remaining within budget, the Ethiopian civil servants survey focused on the three major policy making tiers of government: Federal; Regional; and Woreda. The Ministry of Public Sector and Human Resource Development identified the 5 core sectors that the survey should include: agriculture, education, health, revenue, and trade. The decision was made then to plan to interview a sufficient number of individuals from each of those tiers and allocate the remaining funds to Woreda-level interviews. With this methodology, with the funds available, 70 Woredas were included in the target sample at the planning stage. At the Federal level 330 individuals were planned to be interviewed; 550 at the Region level; and 1615 at the Woreda level. Within each region 50 individuals were targeted to be interviewed, except in Addis Ababa, where the target was 40 due to not having an agriculture bureau, and except in Oromiya, where, due to additional funds becoming available, the target became 60. Within each Woreda, 25 individuals were planned to be sampled.
Stratified randomization was conducted to select 70 Woredas from the 9 regional states in a way that is proportional to the size of the region (in terms of number of Woredas as per the 2007 census). However, 4 Woredas were dropped due to security challenges.
Computer Assisted Personal Interview [capi]
The survey questionnaire comprises following modules: 1- Cover page, 2- Demographic and work history information, 3- Management practices, 4- Turnover, 5- Recruitment and selection, 6- Attitude, 7- Time use and bottlenecks, 8- Information, 9- Information technology, 10- Stakeholder engagement, 11- Reforms, and 12- Woreda and city benchmarking.
The questionnaire was prepared in English and Amharic.
Response rate was 88%.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ethiopia ET: Women Who Believe a Husband is Justified in Beating His Wife: When She Refuses Sex with Him data was reported at 34.700 % in 2016. This records a decrease from the previous number of 38.600 % for 2011. Ethiopia ET: Women Who Believe a Husband is Justified in Beating His Wife: When She Refuses Sex with Him data is updated yearly, averaging 41.450 % from Dec 2000 (Median) to 2016, with 4 observations. The data reached an all-time high of 50.900 % in 2000 and a record low of 34.700 % in 2016. Ethiopia ET: Women Who Believe a Husband is Justified in Beating His Wife: When She Refuses Sex with Him data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ethiopia – Table ET.World Bank: Health Statistics. Percentage of women ages 15-49 who believe a husband/partner is justified in hitting or beating his wife/partner when she refuses sex with him.; ; Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), and other surveys: STATcompiler (http://www.statcompiler.com/) as of November 22, 2016, UNICEF global databases (http://www.data.unicef.org/) as of November 2015. MICS Compiler (http://www.micscompiler.org/) as of June 12, 2016.; ;
The 2016 Ethiopia Demographic and Health Survey (EDHS) is the fourth Demographic and Health Survey conducted in Ethiopia. It was implemented by the Central Statistical Agency (CSA) at the request of the Federal Ministry of Health (FMoH). The primary objective of the 2016 EDHS is to provide up-to-date estimates of key demographic and health indicators. The EDHS provides a comprehensive overview of population, maternal, and child health issues in Ethiopia. More specifically, the 2016 EDHS: - Collected data at the national level that allowed calculation of key demographic indicators, particularly fertility and under-5 and adult mortality rates - Explored the direct and indirect factors that determine levels and trends of fertility and child mortality ? Measured levels of contraceptive knowledge and practice - Collected data on key aspects of family health, including immunisation coverage among children, prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery - Obtained data on child feeding practices, including breastfeeding - Collected anthropometric measures to assess the nutritional status of children under age 5, women age 15-49, and men age 15-59 - Conducted haemoglobin testing on eligible children age 6-59 months, women age 15-49, and men age 15-59 to provide information on the prevalence of anaemia in these groups - Collected data on knowledge and attitudes of women and men about sexually transmitted diseases and HIV/AIDS and evaluated potential exposure to the risk of HIV infection by exploring high-risk behaviours and condom use - Conducted HIV testing of dried blood spot (DBS) samples collected from women age 15-49 and men age 15-59 to provide information on the prevalence of HIV among adults of reproductive age - Collected data on the prevalence of injuries and accidents among all household members - Collected data on knowledge and prevalence of fistula and female genital mutilation or cutting (FGM/C) among women age 15-49 and their daughters age 0-14 - Obtained data on women’s experience of emotional, physical, and sexual violence.
National
The survey covered all de jure household members (usual residents), women age 15-49 years and men age 15-59 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2016 EDHS is the Ethiopia Population and Housing Census (PHC), which was conducted in 2007 by the Ethiopia Central Statistical Agency. The census frame is a complete list of 84,915 enumeration areas (EAs) created for the 2007 PHC. An EA is a geographic area covering on average 181 households. The sampling frame contains information about the EA location, type of residence (urban or rural), and estimated number of residential households. With the exception of EAs in six zones of the Somali region, each EA has accompanying cartographic materials. These materials delineate geographic locations, boundaries, main access, and landmarks in or outside the EA that help identify the EA. In Somali, a cartographic frame was used in three zones where sketch maps delineating the EA geographic boundaries were available for each EA; in the remaining six zones, satellite image maps were used to provide a map for each EA.
Administratively, Ethiopia is divided into nine geographical regions and two administrative cities. The sample for the 2016 EDHS was designed to provide estimates of key indicators for the country as a whole, for urban and rural areas separately, and for each of the nine regions and the two administrative cities.
The 2016 EDHS sample was stratified and selected in two stages. Each region was stratified into urban and rural areas, yielding 21 sampling strata. Samples of EAs were selected independently in each stratum in two stages. Implicit stratification and proportional allocation were achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units in different levels, and by using a probability proportional to size selection at the first stage of sampling.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Five questionnaires were used for the 2016 EDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Health Facility Questionnaire. These questionnaires, based on the DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Ethiopia. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. After all questionnaires were finalised in English, they were translated into Amarigna, Tigrigna, and Oromiffa.
All electronic data files for the 2016 EDHS were transferred via IFSS to the CSA central office in Addis Ababa, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of openended questions; it also required generating a file for the list of children for whom a vaccination card was not seen by the interviewers and whose vaccination records had to be checked at health facilities. The data were processed by two individuals who took part in the main fieldwork training; they were supervised by two senior staff from CSA. Data editing was accomplished using CSPro software. During the duration of fieldwork, tables were generated to check various data quality parameters and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in January 2016 and completed in August 2016.
A total of 18,008 households were selected for the sample, of which 17,067 were occupied. Of the occupied households, 16,650 were successfully interviewed, yielding a response rate of 98%.
In the interviewed households, 16,583 eligible women were identified for individual interviews. Interviews were completed with 15,683 women, yielding a response rate of 95%. A total of 14,795 eligible men were identified in the sampled households and 12,688 were successfully interviewed, yielding a response rate of 86%. Although overall there was little variation in response rates according to residence, response rates among men were higher in rural than in urban areas.
The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding the questions by either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2016 Ethiopia DHS (EDHS) to minimise this type of error, non-sampling errors are impossible to avoid and are difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2016 EDHS is only one of many samples that could have been selected from the same population, by using the same design and the expected size. Each of those samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (such as mean or percentage), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2016 EDHS sample is the result of a multi-stage stratified design and, consequently, it was necessary to use more complex formulae. Sampling errors are computed in either ISSA or SAS, with programs developed by ICF International. These programs use the Taylor linearisation method of variance estimation for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar