Facebook
TwitterThis dataset contains Race/Ethinicty codes. It is used to enter in patient demographics information.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Comparing NHS England SNOMED code mapping with how individuals self-identified their ethnicity in Census 2021.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ethnic codes as defined by the Health Management Information System.
Facebook
TwitterThis layer shows the population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2018-2022ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data table was downloaded and joined with Zip Code boundaries in the City of Tempe.Date of Census update: December 15, 2023National Figures: data.census.gov
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Zenodo entry details the methodology for extracting and reconciling ethnicity data from the Clinical Practice Research Datalink (CPRD), incorporating both General Practitioner (GP) and Hospital Episode Statistics (HES) sources. The approach aims to resolve discrepancies between these sources and provide a standardized single ethnicity value per patient, categorized into 6 and 12 levels according to NHS coding guidelines.
Ethnicity data from the CPRD are recorded in multiple formats. This study harmonizes these data to achieve consistent ethnicity classification across patient records, following a hierarchal reconciliation protocol prioritizing hospital data over GP records.
Ethnicity Levels: Ethnicity data are processed to conform to two levels of granularity:
Source Data Mapping:
Algorithm (AIM-CISC):
Unique Patient Identifiers: Each patient is represented once in hospital data, ensuring a single source of truth for hospital-based ethnicities. This simplifies reconciliation with GP data when discrepancies arise.
Instances were noted where multiple Medcodes map back to a single SNOMED code, highlighting the importance of careful data cross-referencing. For example, two different Medcodes represent the New Zealand European ethnicity, which both map back to the identical SNOMED code.
Facebook
TwitterThis dataset includes race/ethnicity of newly Medi-Cal eligible individuals who identified their race/ethnicity as Hispanic, White, Other Asian or Pacific Islander, Black, Chinese, Filipino, Vietnamese, Asian Indian, Korean, Alaskan Native or American Indian, Japanese, Cambodian, Samoan, Laotian, Hawaiian, Guamanian, Amerasian, or Other, by reporting period. The race/ethnicity data is from the Medi-Cal Eligibility Data System (MEDS) and includes eligible individuals without prior Medi-Cal Eligibility. This dataset is part of the public reporting requirements set forth in California Welfare and Institutions Code 14102.5.
Facebook
Twitter"""
This dataset provides a detailed breakdown of demographic information for counties across the United States, derived from the U.S. Census Bureau's 2023 American Community Survey (ACS). The data includes population counts by gender, race, and ethnicity, alongside unique identifiers for each county using State and County FIPS codes.
The dataset includes the following columns: - County: Name of the county. - State: Name of the state the county belongs to. - State FIPS Code: Federal Information Processing Standard (FIPS) code for the state. - County FIPS Code: FIPS code for the county. - FIPS: Combined State and County FIPS codes, a unique identifier for each county. - Total Population: Total population in the county. - Male Population: Number of males in the county. - Female Population: Number of females in the county. - Total Race Responses: Total race-related responses recorded in the survey. - White Alone: Number of individuals identifying as White alone. - Black or African American Alone: Number of individuals identifying as Black or African American alone. - Hispanic or Latino: Number of individuals identifying as Hispanic or Latino.
NAME field for clarity.This dataset is highly versatile and suitable for: - Demographic Analysis: - Analyze population distribution by gender, race, and ethnicity. - Geographic Studies: - Use FIPS codes to map counties geographically. - Data Visualizations: - Create visual insights into demographic trends across counties.
Special thanks to the U.S. Census Bureau for making this data publicly available and to the Kaggle community for fostering a collaborative space for data analysis and exploration. """
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Table contains count and percent distribution of county residents by racial/ethnic categories. Data are summarized at county, city, zip code and census tract of residence. Data are presented for zip codes (ZCTAs) fully within the county. People of color category includes people who identify as Latino, African American, American Indian/Alaska Native, Asian, Pacific Islander, or multi-race. Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-year estimates, Table B03002; data accessed on April 11, 2022 from https://api.census.gov. The 2020 Decennial geographies are used for data summarization.METADATA:notes (String): Lists table title, notes, sourcesgeolevel (String): Level of geographyGEOID (String): Geography IDNAME (String): Name of geographyt_pop (Numeric): Total populationAfrican_American_NH (Numeric): Number of non-Hispanic African Americansp_African_American_NH (Numeric): Percent of non-Hispanic African AmericansAsian_NH (Numeric): Number of non-Hispanic Asiansp_Asian_NH (Numeric): Percent of non-Hispanic AsiansLatino (Numeric): Number of Latinosp_Latino (Numeric): Percent of LatinosWhite_NH (Numeric): Number of non-Hispanic Whitep_White_NH (Numeric): Percent of non-Hispanic Whitepeople_of_color2 (Numeric): Number of people of colorp_poc2 (Numeric): Percent of people of color
Facebook
TwitterThis layer shows population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2016-2020ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data table downloaded and joined with Zip Code boundaries in the City of Tempe.Date of Census update: March 17, 2022National Figures: data.census.gov
Facebook
TwitterTIGER, TIGER/Line, and Census TIGER are registered trademarks of the Bureau of the Census. The Redistricting Census 2000 TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER data base. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on January 1, 2000 legal boundaries. A complete set of Redistricting Census 2000 TIGER/Line files includes all counties and statistically equivalent entities in the United States and Puerto Rico. The Redistricting Census 2000 TIGER/Line files will not include files for the Island Areas. The Census TIGER data base represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The Redistricting Census 2000 TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries. The Redistricting Census 2000 TIGER/Line files do NOT contain the ZIP Code Tabulation Areas (ZCTAs) and the address ranges are of approximately the same vintage as those appearing in the 1999 TIGER/Line files. That is, the Census Bureau is producing the Redistricting Census 2000 TIGER/Line files in advance of the computer processing that will ensure that the address ranges in the TIGER/Line files agree with the final Master Address File (MAF) used for tabulating Census 2000. The files contain information distributed over a series of record types for the spatial objects of a county. There are 17 record types, including the basic data record, the shape coordinate points, and geographic codes that can be used with appropriate software to prepare maps. Other geographic information contained in the files includes attributes such as feature identifiers/census feature class codes (CFCC) used to differentiate feature types, address ranges and ZIP Codes, codes for legal and statistical entities, latitude/longitude coordinates of linear and point features, landmark point features, area landmarks, key geographic features, and area boundaries. The Redistricting Census 2000 TIGER/Line data dictionary contains a complete list of all the fields in the 17 record types.
Facebook
TwitterAutoTrain Dataset for project: ethnicity-test_v003
Dataset Description
This dataset has been automatically processed by AutoTrain for project ethnicity-test_v003.
Languages
The BCP-47 code for the dataset's language is unk.
Dataset Structure
Data Instances
A sample from this dataset looks as follows: [ { "image": "<512x512 RGB PIL image>", "target": 1 }, { "image": "<512x512 RGB PIL image>", "target": 3 }]… See the full description on the dataset page: https://huggingface.co/datasets/cledoux42/autotrain-data-ethnicity-test_v003.
Facebook
TwitterCode lists for ethnicity and the conditions considered in our study.
Facebook
TwitterA. SUMMARY This dataset includes San Francisco COVID-19 tests by race/ethnicity and by date. This dataset represents the daily count of tests collected, and the breakdown of test results (positive, negative, or indeterminate). Tests in this dataset include all those collected from persons who listed San Francisco as their home address at the time of testing. It also includes tests that were collected by San Francisco providers for persons who were missing a locating address. This dataset does not include tests for residents listing a locating address outside of San Francisco, even if they were tested in San Francisco.
The data were de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected). If a person tested multiple times on the same date, only one test is included from that date. When there are multiple tests on the same date, a positive result, if one exists, will always be selected as the record for the person. If a PCR and antigen test are taken on the same day, the PCR test will supersede. If a person tests multiple times on the same day and the results are all the same (e.g. all negative or all positive) then the first test done is selected as the record for the person.
The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco.
When a person gets tested for COVID-19, they may be asked to report information about themselves. One piece of information that might be requested is a person's race and ethnicity. These data are often incomplete in the laboratory and provider reports of the test results sent to the health department. The data can be missing or incomplete for several possible reasons:
• The person was not asked about their race and ethnicity.
• The person was asked, but refused to answer.
• The person answered, but the testing provider did not include the person's answers in the reports.
• The testing provider reported the person's answers in a format that could not be used by the health department.
For any of these reasons, a person's race/ethnicity will be recorded in the dataset as “Unknown.”
B. NOTE ON RACE/ETHNICITY The different values for Race/Ethnicity in this dataset are "Asian;" "Black or African American;" "Hispanic or Latino/a, all races;" "American Indian or Alaska Native;" "Native Hawaiian or Other Pacific Islander;" "White;" "Multi-racial;" "Other;" and “Unknown."
The Race/Ethnicity categorization increases data clarity by emulating the methodology used by the U.S. Census in the American Community Survey. Specifically, persons who identify as "Asian," "Black or African American," "American Indian or Alaska Native," "Native Hawaiian or Other Pacific Islander," "White," "Multi-racial," or "Other" do NOT include any person who identified as Hispanic/Latino at any time in their testing reports that either (1) identified them as SF residents or (2) as someone who tested without a locating address by an SF provider. All persons across all races who identify as Hispanic/Latino are recorded as “"Hispanic or Latino/a, all races." This categorization increases data accuracy by correcting the way “Other” persons were counted. Previously, when a person reported “Other” for Race/Ethnicity, they would be recorded “Unknown.” Under the new categorization, they are counted as “Other” and are distinct from “Unknown.”
If a person records their race/ethnicity as “Asian,” “Black or African American,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” “White,” or “Other” for their first COVID-19 test, then this data will not change—even if a different race/ethnicity is reported for this person for any future COVID-19 test. There are two exceptions to this rule. The first exception is if a person’s race/ethnicity value i
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Dataset Card for SwitchLingua_text
🚀 News
[19/09/2025] SwitchLingua: The First Large-Scale Multilingual and Multi-Ethnic Code-Switching Dataset is accepted by NeurIPS 2025! [30/05/2024] The manuscript can be found on arXiv.
Dataset Summary
SwitchLingua is a comprehensive multilingual and multicultural code-switching dataset designed to advance research in automatic speech recognition, natural language processing, and conversational AI. The textual data for… See the full description on the dataset page: https://huggingface.co/datasets/Shelton1013/SwitchLingua_text.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show population by race/ethnicity and change data by Zip Code Tabulation Area in the Atlanta region. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website. Naming conventions: Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)Suffixes:NoneChange over two periods_eEstimate from most recent ACS_mMargin of Error from most recent ACS_00Decennial 2000 Attributes: SumLevelSummary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)GEOIDCensus tract Federal Information Processing Series (FIPS) code NAMEName of geographic unitPlanning_RegionPlanning region designation for ARC purposesAcresTotal area within the tract (in acres)SqMiTotal area within the tract (in square miles)CountyCounty identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)CountyNameCounty NameTotPop_e# Total population, 2017TotPop_m# Total population, 2017 (MOE)Hisp_e# Hispanic or Latino (of any race), 2017Hisp_m# Hispanic or Latino (of any race), 2017 (MOE)pHisp_e% Hispanic or Latino (of any race), 2017pHisp_m% Hispanic or Latino (of any race), 2017 (MOE)Not_Hisp_e# Not Hispanic or Latino, 2017Not_Hisp_m# Not Hispanic or Latino, 2017 (MOE)pNot_Hisp_e% Not Hispanic or Latino, 2017pNot_Hisp_m% Not Hispanic or Latino, 2017 (MOE)NHWhite_e# Not Hispanic, White alone, 2017NHWhite_m# Not Hispanic, White alone, 2017 (MOE)pNHWhite_e% Not Hispanic, White alone, 2017pNHWhite_m% Not Hispanic, White alone, 2017 (MOE)NHBlack_e# Not Hispanic, Black or African American alone, 2017NHBlack_m# Not Hispanic, Black or African American alone, 2017 (MOE)pNHBlack_e% Not Hispanic, Black or African American alone, 2017pNHBlack_m% Not Hispanic, Black or African American alone, 2017 (MOE)NH_AmInd_e# Not Hispanic, American Indian and Alaska Native alone, 2017NH_AmInd_m# Not Hispanic, American Indian and Alaska Native alone, 2017 (MOE)pNH_AmInd_e% Not Hispanic, American Indian and Alaska Native alone, 2017pNH_AmInd_m% Not Hispanic, American Indian and Alaska Native alone, 2017 (MOE)NH_Asian_e# Not Hispanic, Asian alone, 2017NH_Asian_m# Not Hispanic, Asian alone, 2017 (MOE)pNH_Asian_e% Not Hispanic, Asian alone, 2017pNH_Asian_m% Not Hispanic, Asian alone, 2017 (MOE)NH_PacIsl_e# Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017NH_PacIsl_m# Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017 (MOE)pNH_PacIsl_e% Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017pNH_PacIsl_m% Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017 (MOE)NH_OthRace_e# Not Hispanic, some other race alone, 2017NH_OthRace_m# Not Hispanic, some other race alone, 2017 (MOE)pNH_OthRace_e% Not Hispanic, some other race alone, 2017pNH_OthRace_m% Not Hispanic, some other race alone, 2017 (MOE)NH_TwoRace_e# Not Hispanic, two or more races, 2017NH_TwoRace_m# Not Hispanic, two or more races, 2017 (MOE)pNH_TwoRace_e% Not Hispanic, two or more races, 2017pNH_TwoRace_m% Not Hispanic, two or more races, 2017 (MOE)NH_AsianPI_e# Non-Hispanic Asian or Pacific Islander, 2017NH_AsianPI_m# Non-Hispanic Asian or Pacific Islander, 2017 (MOE)pNH_AsianPI_e% Non-Hispanic Asian or Pacific Islander, 2017pNH_AsianPI_m% Non-Hispanic Asian or Pacific Islander, 2017 (MOE)NH_Other_e# Non-Hispanic other (Native American, other one race, two or more races), 2017NH_Other_m# Non-Hispanic other (Native American, other one race, two or more races), 2017 (MOE)pNH_Other_e% Non-Hispanic other (Native American, other one race, two or more races), 2017pNH_Other_m% Non-Hispanic other (Native American, other one race, two or more races), 2017 (MOE)last_edited_dateLast date the feature was edited by ARC Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2013-2017 For additional information, please visit the Census ACS website.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
Facebook
Twitterhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
The following data set is information obtained about counties in the United States from 2010 through 2019 through the United States Census Bureau. Information described in the data includes the age distributions, the education levels, employment statistics, ethnicity percents, houseold information, income, and other miscellneous statistics. (Values are denoted as -1, if the data is not available)
| Key | List of... | Comment | Example Value |
|---|---|---|---|
| County | String | County name | "Abbeville County" |
| State | String | State name | "SC" |
| Age.Percent 65 and Older | Float | Estimated percentage of population whose ages are equal or greater than 65 years old are produced for the United States states and counties as well as for the Commonwealth of Puerto Rico and its municipios (county-equivalents for Puerto Rico). | 22.4 |
| Age.Percent Under 18 Years | Float | Estimated percentage of population whose ages are under 18 years old are produced for the United States states and counties as well as for the Commonwealth of Puerto Rico and its municipios (county-equivalents for Puerto Rico). | 19.8 |
| Age.Percent Under 5 Years | Float | Estimated percentage of population whose ages are under 5 years old are produced for the United States states and counties as well as for the Commonwealth of Puerto Rico and its municipios (county-equivalents for Puerto Rico). | 4.7 |
| Education.Bachelor's Degree or Higher | Float | Percentage for the people who attended college but did not receive a degree and people who received an associate's bachelor's master's or professional or doctorate degree. These data include only persons 25 years old and over. The percentages are obtained by dividing the counts of graduates by the total number of persons 25 years old and over. Tha data is collected from 2015 to 2019. | 15.6 |
| Education.High School or Higher | Float | Percentage of people whose highest degree was a high school diploma or its equivalent people who attended college but did not receive a degree and people who received an associate's bachelor's master's or professional or doctorate degree. These data include only persons 25 years old and over. The percentages are obtained by dividing the counts of graduates by the total number of persons 25 years old and over. Tha data is collected from 2015 to 2019 | 81.7 |
| Employment.Nonemployer Establishments | Integer | An establishment is a single physical location at which business is conducted or where services or industrial operations are performed. It is not necessarily identical with a company or enterprise which may consist of one establishment or more. The data was collected from 2018. | 1416 |
| Ethnicities.American Indian and Alaska Native Alone | Float | Estimated percentage of population having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment. This category includes people who indicate their race as "American Indian or Alaska Native" or report entries such as Navajo Blackfeet Inupiat Yup'ik or Central American Indian groups or South American Indian groups. | 0.3 |
| Ethnicities.Asian Alone | Float | Estimated percentage of population having origins in any of the original peoples of the Far East Southeast Asia or the Indian subcontinent including for example Cambodia China India Japan Korea Malaysia Pakistan the Philippine Islands Thailand and Vietnam. This includes people who reported detailed Asian responses such as: "Asian Indian " "Chinese " "Filipino " "Korean " "Japanese " "Vietnamese " and "Other Asian" or provide other detailed Asian responses. | 0.4 |
| Ethnicities.Black Alone | Float | Estimated percentage of population having origins in any of the Black racial groups of Africa. It includes people who indicate their race as "Black or African American " or report entries such as African American Kenyan Nigerian or Haitian. | 27.6 |
| Ethnicities.Hispanic or Latino | Float |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
s
Significance flag for change: 1 = statistically significant with a 90% Confidence Interval, 0 = not statistically significant, blank = cannot be computed
Suffixes:
_e18
Estimate from 2014-18 ACS
_m18
Margin of Error from 2014-18 ACS
_00_v18
Decennial 2000 in 2018 geography boundary
_00_18
Change, 2000-18
_e10_v18
Estimate from 2006-10 ACS in 2018 geography boundary
_m10_v18
Margin of Error from 2006-10 ACS in 2018 geography boundary
_e10_18
Change, 2010-18
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In order to replicate the results in this study you require Stata 12 or higher versions and the provided data and do files. Download the do file and the data file into one directory, unzip the data file into that same directory, enter your working directory in the do file, and execute the code in Stata. When using the data, please cite: Nils-Christian Bormann, Lars-Erik Cederman & Manuel Vogt (2015). "Language, Religion, and Ethnic Civil War." Online first in Journal of Conflict Resolution. Abstract: Are certain ethnic cleavages more conflict-prone than others? While only few scholars focus on the contents of ethnicity, most of those who do argue that political violence is more likely to occur along religious divisions than linguistic ones. We challenge this claim by analyzing the path from linguistic differences to ethnic civil war along three theoretical steps: (1) the perception of grievances by group members, (2) rebel mobilization, and (3) government accommodation of rebel demands. Our argument is tested with a new data set of ethnic cleavages that records multiple linguistic and religious segments for ethnic groups from 1946 to 2009. Adopting a relational perspective, we assess ethnic differences between potential challengers and the politically dominant group in each country. Our findings indicate that intrastate conflict is more likely within linguistic dyads than among religious ones. Moreover, we find no support for the thesis that Muslim groups are particularly conflict-prone. http://jcr.sagepub.com/content/early/2015/08/24/0022002715600755.abstract
Facebook
TwitterThis layer shows the population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2019-2023ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data table was downloaded and joined with Zip Code boundaries in the City of Tempe.Date of Census update: December 12, 2024National Figures: data.census.gov
Facebook
TwitterThis dataset contains Race/Ethinicty codes. It is used to enter in patient demographics information.