31 datasets found
  1. 2012 06: Bay Area Racial Diversity in 2010

    • opendata.mtc.ca.gov
    Updated Jun 25, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTC/ABAG (2012). 2012 06: Bay Area Racial Diversity in 2010 [Dataset]. https://opendata.mtc.ca.gov/documents/MTC::2012-06-bay-area-racial-diversity-in-2010/about
    Explore at:
    Dataset updated
    Jun 25, 2012
    Dataset provided by
    Metropolitan Transportation Commission
    Authors
    MTC/ABAG
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    San Francisco Bay Area
    Description

    Racial diversity is measured by a diversity index that is calculated using United States Census racial and ethnic population characteristics from the PL-94 data file. The diversity index is a quantitative measure of the distribution of the proportion of five major ethnic populations (non-Hispanic White, non-Hispanic Black, Asian and Pacific Islander, Hispanic, and Two or more races). The index ranges from 0 (low diversity meaning only one group is present) to 1 (meaning an equal proportion of all five groups is present). The diversity score for the United States in 2010 is 0.60. The diversity score for the San Francisco Bay Region is 0.84. Within the region, Solano (0.89) and Alameda (0.90) Counties are the most diverse and the remaining North Bay (0.55 - 0.64) Counties are the least diverse.

  2. l

    Census 2021 - Ethnic groups

    • data.leicester.gov.uk
    csv, excel, json
    Updated Jun 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Census 2021 - Ethnic groups [Dataset]. https://data.leicester.gov.uk/explore/dataset/census-2021-leicester-ethnic-groups/
    Explore at:
    csv, json, excelAvailable download formats
    Dataset updated
    Jun 29, 2023
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The census is undertaken by the Office for National Statistics every 10 years and gives us a picture of all the people and households in England and Wales. The most recent census took place in March of 2021.The census asks every household questions about the people who live there and the type of home they live in. In doing so, it helps to build a detailed snapshot of society. Information from the census helps the government and local authorities to plan and fund local services, such as education, doctors' surgeries and roads.Key census statistics for Leicester are published on the open data platform to make information accessible to local services, voluntary and community groups, and residents. There is also a dashboard published showcasing various datasets from the census allowing users to view data for Leicester and compare this with national statistics.Further information about the census and full datasets can be found on the ONS website - https://www.ons.gov.uk/census/aboutcensus/censusproductsEthnicityThis dataset provides Census 2021 estimates that classify usual residents in England and Wales by ethnic group. The estimates are as at Census Day, 21 March 2021.Definition: The ethnic group that the person completing the census feels they belong to. This could be based on their culture, family background, identity or physical appearance.Respondents could choose one out of 19 tick-box response categories, including write-in response options.This dataset includes data relating to Leicester City and England overall.

  3. Breakdown of population in Malaysia 2020-2025, by ethnicity

    • statista.com
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Breakdown of population in Malaysia 2020-2025, by ethnicity [Dataset]. https://www.statista.com/statistics/1017372/malaysia-breakdown-of-population-by-ethnicity/
    Explore at:
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Malaysia
    Description

    In 2025, **** percent of the Malaysian population were classified as Bumiputera, **** percent were classified as ethnic Chinese, and *** percent as ethnic Indians. Those who do not fall under these three main ethnic groups are classified as ‘Other.’ Malaysia is a multi-ethnic and multi-religious society with three main ethnicities and language groups. Who are Malaysia’s Bumiputera? Bumiputera, meaning sons of the soil, is a term used to categorize the Malays, as well as the indigenous peoples of Peninsular Malaysia, also known as "orang asli", and the indigenous peoples of Sabah and Sarawak. As 2024, the Bumiputera share of the population in Sabah was ** percent, while that in Sarawak was **** percent. Thus, the incorporation of the states of Sabah and Sarawak during the formation of Malaysia ensured that the ethnic Malays were able to maintain a majority share of the Malaysian population. Bumiputera privileges and ethnic-based politics The rights and privileges of the Malays and the natives of Sabah and Sarawak are enshrined in Article 153 of Malaysia’s constitution. This translated, in practice, to a policy of affirmative action to improve the economic situation of this particular group, through the New Economic Policy introduced in 1971. 50 years on, it is questionable whether the policy has achieved its aim. Bumiputeras still lag behind the other ethnic two major groups in terms of monthly household income. However, re-thinking this policy will certainly be met by opposition from those who have benefitted from it.

  4. Population Estimates: Estimates by Age Group, Sex, Race, and Hispanic Origin...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Population Estimates: Estimates by Age Group, Sex, Race, and Hispanic Origin [Dataset]. https://catalog.data.gov/dataset/population-estimates-estimates-by-age-group-sex-race-and-hispanic-origin
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin; for the United States, States, Counties; and for Puerto Rico and its Municipios: April 1, 2010 to July 1, 2019 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // Current data on births, deaths, and migration are used to calculate population change since the 2010 Census. An annual time series of estimates is produced, beginning with the census and extending to the vintage year. The vintage year (e.g., Vintage 2019) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the entire estimates series is revised. Additional information, including historical and intercensal estimates, evaluation estimates, demographic analysis, research papers, and methodology is available on website: https://www.census.gov/programs-surveys/popest.html.

  5. Multiple ethnic group households 2011

    • statistics.ukdataservice.ac.uk
    csv, zip
    Updated Sep 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service. (2022). Multiple ethnic group households 2011 [Dataset]. https://statistics.ukdataservice.ac.uk/dataset/multiple-ethnic-group-households-2011
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Sep 20, 2022
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    Northern Ireland Statistics and Research Agency
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service.
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Dataset population: Households

    Multiple ethnic group households

    Multiple ethnic groups classifies households by the diversity in ethnic group of household members in different relationships.

    For example, different ethnic groups between generations or within partnerships.

    For Northern Ireland only, 'Same ethnic group' means within the same ethnic group as defined by the 12-way ethnic classification (White, Chinese, Irish Traveller, Indian, Pakistani, Bangladeshi, Other Asian, Black Caribbean, Black African, Black Other, Mixed, Other).

    'Different ethnic groups within partnerships' includes all households where there are different ethnic groups within partnerships whether or not there are also different ethnic groups between generations.

  6. Vintage 2018 Population Estimates: Demographic Characteristics Estimates by...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Vintage 2018 Population Estimates: Demographic Characteristics Estimates by Age Groups [Dataset]. https://catalog.data.gov/dataset/vintage-2018-population-estimates-demographic-characteristics-estimates-by-age-groups
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.

  7. Race & Ethnicity 2022 (all geographies, statewide)

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    • +4more
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2024). Race & Ethnicity 2022 (all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/b57e042f1c9e49c887d3bb048dd56daa
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. .
    For a deep dive into the data model including every specific metric, see the ACS 2018-2022 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e22Estimate from 2018-22 ACS_m22Margin of Error from 2018-22 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_22Change, 2010-22 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2018-2022). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2018-2022Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/3b86ee614e614199ba66a3ff1ebfe3b5/about

  8. ACS 2020 Race Ethnicity

    • opendata.atlantaregional.com
    • hub.arcgis.com
    Updated Apr 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2022). ACS 2020 Race Ethnicity [Dataset]. https://opendata.atlantaregional.com/maps/a2a9562f602e419e9a52bd9c6297b26c
    Explore at:
    Dataset updated
    Apr 20, 2022
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.

    For a deep dive into the data model including every specific metric, see the ACS 2016-2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e20

    Estimate from 2016-20 ACS

    _m20

    Margin of Error from 2016-20 ACS

    _e10

    2006-10 ACS, re-estimated to 2020 geography

    _m10

    Margin of Error from 2006-10 ACS, re-estimated to 2020 geography

    _e10_20

    Change, 2010-20 (holding constant at 2020 geography)

    Geographies

    AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)

    ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)

    Census Tracts (statewide)

    CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)

    City (statewide)

    City of Atlanta Council Districts (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit STV (subarea of City of Atlanta)

    City of Atlanta Neighborhood Statistical Areas (City of Atlanta)

    County (statewide)

    Georgia House (statewide)

    Georgia Senate (statewide)

    MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)

    Regional Commissions (statewide)

    State of Georgia (statewide)

    Superdistrict (ARC region)

    US Congress (statewide)

    UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)

    WFF = Westside Future Fund (subarea of City of Atlanta)

    ZIP Code Tabulation Areas (statewide)

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2016-2020). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Source: U.S. Census Bureau, Atlanta Regional Commission Date: 2016-2020 Data License: Creative Commons Attribution 4.0 International (CC by 4.0)

    Link to the manifest: https://opendata.atlantaregional.com/documents/GARC::acs-2020-data-manifest/about

  9. a

    Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs) 2020

    • hub.arcgis.com
    • data.lojic.org
    • +1more
    Updated Sep 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs) 2020 [Dataset]. https://hub.arcgis.com/datasets/35798a7569524ae48bd02625af27ba49
    Explore at:
    Dataset updated
    Sep 27, 2023
    Dataset authored and provided by
    Department of Housing and Urban Development
    Area covered
    Description

    To assist communities in identifying racially/ethnically-concentrated areas of poverty (R/ECAPs), HUD has developed a census tract-based definition of R/ECAPs. The definition involves a racial/ethnic concentration threshold and a poverty test. The racial/ethnic concentration threshold is straightforward: R/ECAPs must have a non-white population of 50 percent or more. Regarding the poverty threshold, Wilson (1980) defines neighborhoods of extreme poverty as census tracts with 40 percent or more of individuals living at or below the poverty line. Because overall poverty levels are substantially lower in many parts of the country, HUD supplements this with an alternate criterion. Thus, a neighborhood can be a R/ECAP if it has a poverty rate that exceeds 40% or is three or more times the average tract poverty rate for the metropolitan/micropolitan area, whichever threshold is lower. Census tracts with this extreme poverty that satisfy the racial/ethnic concentration threshold are deemed R/ECAPs. This translates into the following equation: Where i represents census tracts, () is the metropolitan/micropolitan (CBSA) mean tract poverty rate, is the ith tract poverty rate, () is the non-Hispanic white population in tract i, and Pop is the population in tract i.While this definition of R/ECAP works well for tracts in CBSAs, place outside of these geographies are unlikely to have racial or ethnic concentrations as high as 50 percent. In these areas, the racial/ethnic concentration threshold is set at 20 percent. Data Source: Related AFFH-T Local Government, PHA Tables/Maps: Table 4, 7; Maps 1-17.Related AFFH-T State Tables/Maps: Table 4, 7; Maps 1-15, 18.References:Wilson, William J. (1980). The Declining Significance of Race: Blacks and Changing American Institutions. Chicago: University of Chicago Press.To learn more about R/ECAPs visit:https://www.hud.gov/program_offices/fair_housing_equal_opp/affh ; https://www.hud.gov/sites/dfiles/FHEO/documents/AFFH-T-Data-Documentation-AFFHT0006-July-2020.pdf, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Date of Coverage: 2017 - 2021 ACSDate Updated: 10/2023

  10. Race/Ethnicity (by Atlanta City Council District) 2019

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    • +1more
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Race/Ethnicity (by Atlanta City Council District) 2019 [Dataset]. https://gisdata.fultoncountyga.gov/datasets/GARC::race-ethnicity-by-atlanta-city-council-district-2019
    Explore at:
    Dataset updated
    Feb 25, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  11. a

    Esri's Diversity Index - Zip Code (2021)

    • cotgis.hub.arcgis.com
    Updated May 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2022). Esri's Diversity Index - Zip Code (2021) [Dataset]. https://cotgis.hub.arcgis.com/maps/cotgis::esris-diversity-index-zip-code-2021
    Explore at:
    Dataset updated
    May 18, 2022
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    Esri's Diversity Index in 2021 by ZIP Code. The Diversity Index from Esri represents the likelihood that two persons, chosen at random from the same area, belong to different race or ethnic groups. Ethnic diversity, as well as racial diversity, is included in our definition of the Diversity Index. Esri's diversity calculations accommodate up to seven race groups: six single-race groups (White, Black, American Indian, Asian, Pacific Islander, Some Other Race) and one multiple-race group (two or more races). Each race group is divided into two ethnic origins, Hispanic and non-Hispanic. If an area is ethnically diverse, then diversity is compounded. The Diversity Index is available down to the block group level geography. Esri's definition of diversity is two-dimensional and combines racial diversity with ethnic diversity. This measure shows the likelihood that two persons, chosen at random from the same area, belong to different races or ethnic groups. If an area's entire population belongs to one race group and one ethnic group, then an area has zero diversity. The Diversity Index is a continuum that ranges from 0 (no diversity) to 100 (complete diversity), where an area's index tends toward 100 when the population is more evenly divided across race and ethnic groups. If an area's entire population is divided evenly into two race groups and one ethnic group, then the diversity index equals 50. As more race groups are evenly represented in the population, the diversity index increases. Race and Hispanic origin data are reported by the Census Bureau and other agencies as grouped summary data; therefore, in practice, the Diversity Index will not reach the maximum value of 100.For more information on Esri's Diversity Index, view the most recent Technical Paper. See the Diversity layer in ArcGIS Online.PurposeLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Dataset ClassificationLevel 0 – OpenKnown UsesLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Known ErrorsLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Data ContactEsriPublisher ContactInformation Technology DepartmentGIS_IT@tucsonaz.govUpdate FrequencyNo Updates Anticipated.

  12. Race/Ethnicity (by Neighborhood Planning Unit) 2017

    • opendata.atlantaregional.com
    Updated Jun 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2019). Race/Ethnicity (by Neighborhood Planning Unit) 2017 [Dataset]. https://opendata.atlantaregional.com/datasets/b2e62b485b2346fab495136d574e5cec
    Explore at:
    Dataset updated
    Jun 21, 2019
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show population by race/ethnicity and change data by Neighborhood Planning Unit in the Atlanta region. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website. Naming conventions: Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)Suffixes:NoneChange over two periods_eEstimate from most recent ACS_mMargin of Error from most recent ACS_00Decennial 2000 Attributes: SumLevelSummary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)GEOIDCensus tract Federal Information Processing Series (FIPS) code NAMEName of geographic unitPlanning_RegionPlanning region designation for ARC purposesAcresTotal area within the tract (in acres)SqMiTotal area within the tract (in square miles)CountyCounty identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)CountyNameCounty NameTotPop_e# Total population, 2017TotPop_m# Total population, 2017 (MOE)Hisp_e# Hispanic or Latino (of any race), 2017Hisp_m# Hispanic or Latino (of any race), 2017 (MOE)pHisp_e% Hispanic or Latino (of any race), 2017pHisp_m% Hispanic or Latino (of any race), 2017 (MOE)Not_Hisp_e# Not Hispanic or Latino, 2017Not_Hisp_m# Not Hispanic or Latino, 2017 (MOE)pNot_Hisp_e% Not Hispanic or Latino, 2017pNot_Hisp_m% Not Hispanic or Latino, 2017 (MOE)NHWhite_e# Not Hispanic, White alone, 2017NHWhite_m# Not Hispanic, White alone, 2017 (MOE)pNHWhite_e% Not Hispanic, White alone, 2017pNHWhite_m% Not Hispanic, White alone, 2017 (MOE)NHBlack_e# Not Hispanic, Black or African American alone, 2017NHBlack_m# Not Hispanic, Black or African American alone, 2017 (MOE)pNHBlack_e% Not Hispanic, Black or African American alone, 2017pNHBlack_m% Not Hispanic, Black or African American alone, 2017 (MOE)NH_AmInd_e# Not Hispanic, American Indian and Alaska Native alone, 2017NH_AmInd_m# Not Hispanic, American Indian and Alaska Native alone, 2017 (MOE)pNH_AmInd_e% Not Hispanic, American Indian and Alaska Native alone, 2017pNH_AmInd_m% Not Hispanic, American Indian and Alaska Native alone, 2017 (MOE)NH_Asian_e# Not Hispanic, Asian alone, 2017NH_Asian_m# Not Hispanic, Asian alone, 2017 (MOE)pNH_Asian_e% Not Hispanic, Asian alone, 2017pNH_Asian_m% Not Hispanic, Asian alone, 2017 (MOE)NH_PacIsl_e# Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017NH_PacIsl_m# Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017 (MOE)pNH_PacIsl_e% Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017pNH_PacIsl_m% Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017 (MOE)NH_OthRace_e# Not Hispanic, some other race alone, 2017NH_OthRace_m# Not Hispanic, some other race alone, 2017 (MOE)pNH_OthRace_e% Not Hispanic, some other race alone, 2017pNH_OthRace_m% Not Hispanic, some other race alone, 2017 (MOE)NH_TwoRace_e# Not Hispanic, two or more races, 2017NH_TwoRace_m# Not Hispanic, two or more races, 2017 (MOE)pNH_TwoRace_e% Not Hispanic, two or more races, 2017pNH_TwoRace_m% Not Hispanic, two or more races, 2017 (MOE)NH_AsianPI_e# Non-Hispanic Asian or Pacific Islander, 2017NH_AsianPI_m# Non-Hispanic Asian or Pacific Islander, 2017 (MOE)pNH_AsianPI_e% Non-Hispanic Asian or Pacific Islander, 2017pNH_AsianPI_m% Non-Hispanic Asian or Pacific Islander, 2017 (MOE)NH_Other_e# Non-Hispanic other (Native American, other one race, two or more races), 2017NH_Other_m# Non-Hispanic other (Native American, other one race, two or more races), 2017 (MOE)pNH_Other_e% Non-Hispanic other (Native American, other one race, two or more races), 2017pNH_Other_m% Non-Hispanic other (Native American, other one race, two or more races), 2017 (MOE)last_edited_dateLast date the feature was edited by ARC Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2013-2017 For additional information, please visit the Census ACS website.

  13. Descriptive characteristics of the study subjects from each of racial/ethnic...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiaofeng Zhu; Richard S. Cooper (2023). Descriptive characteristics of the study subjects from each of racial/ethnic groups (means±sd) [Dataset]. http://doi.org/10.1371/journal.pone.0001244.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Xiaofeng Zhu; Richard S. Cooper
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Descriptive characteristics of the study subjects from each of racial/ethnic groups (means±sd)

  14. Race/Ethnicity (by Georgia Senate) 2018

    • opendata.atlantaregional.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2020). Race/Ethnicity (by Georgia Senate) 2018 [Dataset]. https://opendata.atlantaregional.com/datasets/GARC::race-ethnicity-by-georgia-senate-2018/about
    Explore at:
    Dataset updated
    Mar 4, 2020
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau.

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Naming conventions:

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% Confidence Interval, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e18

    Estimate from 2014-18 ACS

    _m18

    Margin of Error from 2014-18 ACS

    _00_v18

    Decennial 2000 in 2018 geography boundary

    _00_18

    Change, 2000-18

    _e10_v18

    Estimate from 2006-10 ACS in 2018 geography boundary

    _m10_v18

    Margin of Error from 2006-10 ACS in 2018 geography boundary

    _e10_18

    Change, 2010-18

  15. g

    Live births to Welsh residents by ethnic group and health board providing...

    • statswales.gov.wales
    json
    Updated Aug 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Live births to Welsh residents by ethnic group and health board providing the service [Dataset]. https://statswales.gov.wales/Catalogue/Health-and-Social-Care/NHS-Primary-and-Community-Activity/Maternity/LivebirthstoWelshresidents-by-ethnicgroup-healthboardprovidingtheservice
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 2025
    Area covered
    Wales
    Description

    These statistics are derived from the National Community Child Health Database (NCCHD). This data sources are provided to the Welsh Government by Digital Health and Care Wales (DHCW). The NCCHD was established in 2004 and consists of anonymised records for all children born, resident or treated in Wales and born after 1987. The database brings together data from local Community Child Health System databases which are held by local health boards (LHBs) and its main function is to provide an online record of a child’s health and care from birth to leaving school age. The statistics used in this release are based on the data recorded at birth and shortly after birth. Full details of every data item available in the Maternity Indicators dataset are available through the NHS Wales Data Dictionary: http://www.datadictionary.wales.nhs.uk/#!WordDocuments/datasetstructure20.htm The data dictionary also defines how ethnic groups are classified, namely: White (any white background); Asian (Pakistani, Bangladeshi, Chinese, Indian, any other Asian background); Mixed/multiple (white and Asian, white and black African, white and black Caribbean, any other mixed background); Other (any other ethnic group); Black (African, Caribbean, any other black background).

  16. Means and standard deviations of perceived presence of minority/majority...

    • plos.figshare.com
    xls
    Updated Jun 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eva Moreno-Bella; Clara Kulich; Guillermo B. Willis; Miguel Moya (2023). Means and standard deviations of perceived presence of minority/majority groups in terms of gender and ethnicity in Study 1a and 1b (pooled). [Dataset]. http://doi.org/10.1371/journal.pone.0271356.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 14, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Eva Moreno-Bella; Clara Kulich; Guillermo B. Willis; Miguel Moya
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Means and standard deviations of perceived presence of minority/majority groups in terms of gender and ethnicity in Study 1a and 1b (pooled).

  17. D

    ARCHIVED: COVID-19 Cases by Population Characteristics Over Time

    • data.sfgov.org
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Sep 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ARCHIVED: COVID-19 Cases by Population Characteristics Over Time [Dataset]. https://data.sfgov.org/Health-and-Social-Services/ARCHIVED-COVID-19-Cases-by-Population-Characterist/j7i3-u9ke
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Sep 11, 2023
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    A. SUMMARY This archived dataset includes data for population characteristics that are no longer being reported publicly. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”.

    B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases are from:  * Case interviews  * Laboratories  * Medical providers    These multiple streams of data are merged, deduplicated, and undergo data verification processes.  

    Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups.

    Gender * The City collects information on gender identity using these guidelines.

    Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives.  * This dataset includes data for COVID-19 cases reported in Skilled Nursing Facilities (SNFs) through 12/31/2022, archived on 1/5/2023. These data were identified where “Characteristic_Type” = ‘Skilled Nursing Facility Occupancy’.

    Sexual orientation * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to the California Department of Public Health, Virtual Assistant information gathering beginning December 2021. The Virtual Assistant is only sent to adults who are 18+ years old. https://www.sfdph.org/dph/files/PoliciesProcedures/COM9_SexualOrientationGuidelines.pdf">Learn more about our data collection guidelines pertaining to sexual orientation.

    Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.

    Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures. These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.

    Single Room Occupancy (SRO) tenancy * SRO buildings are defined by the San Francisco Housing Code as having six or more "residential guest rooms" which may be attached to shared bathrooms, kitchens, and living spaces. * The details of a person's living arrangements are verified during case interviews.

    Transmission Type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.

    C. UPDATE PROCESS This dataset has been archived and will no longer update as of 9/11/2023.

    D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).

    This dataset includes many different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of cases on each date.

    New cases are the count of cases within that characteristic group where the positive tests were collected on that specific specimen collection date. Cumulative cases are the running total of all San Francisco cases in that characteristic group up to the specimen collection date listed.

    This data may not be immediately available for recently reported cases. Data updates as more information becomes available.

    To explore data on the total number of cases, use the ARCHIVED: COVID-19 Cases Over Time dataset.

    E. CHANGE LOG

    • 9/11/2023 - data on COVID-19 cases by population characteristics over time are no longer being updated. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”.
    • 6/6/2023 - data on cases by transmission type have been removed. See section ARCHIVED DATA for more detail.
    • 5/16/2023 - data on cases by sexual orientation, comorbidities, homelessness, and single room occupancy have been removed. See section ARCHIVED DATA for more detail.
    • 4/6/2023 - the State implemented system updates to improve the integrity of historical data.
    • 2/21/2023 - system updates to improve reliability and accuracy of cases data were implemented.
    • 1/31/2023 - updated “population_estimate” column to reflect the 2020 Census Bureau American Community Survey (ACS) San Francisco Population estimates.
    • 1/5/2023 - data on SNF cases removed. See section ARCHIVED DATA for more detail.
    • 3/23/2022 - ‘Native American’ changed to ‘American Indian or Alaska Native’ to align with the census.
    • 1/22/2022 - system updates to improve timeliness and accuracy of cases and deaths data were implemented.
    • 7/15/2022 - reinfections added to cases dataset. See section SUMMARY for more information on how reinfections are identified.

  18. Mass shootings in the U.S. by shooter’s race/ethnicity as of August 2025

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Mass shootings in the U.S. by shooter’s race/ethnicity as of August 2025 [Dataset]. https://www.statista.com/statistics/476456/mass-shootings-in-the-us-by-shooter-s-race/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Between 1982 and August 2025, 84 out of the 155 mass shootings in the United States were carried out by white shooters. By comparison, the perpetrator was Black in 26 mass shootings and Latino in 12. When calculated as percentages, this amounts to 54 percent, 17 percent, and eight percent, respectively. Race of mass shooters reflects the U.S. population Broadly speaking, the racial distribution of mass shootings mirrors the racial distribution of the U.S. population as a whole. While a superficial comparison of the statistics seems to suggest African American shooters are over-represented and Latino shooters underrepresented, the fact that the shooter’s race is unclear in around nine percent of cases, along with the different time frames over which these statistics are calculated, means no such conclusions should be drawn. Conversely, looking at the mass shootings in the United States by gender clearly demonstrates that the majority of mass shootings are carried out by men. Mass shootings and mental health With no clear patterns between the socio-economic or cultural background of mass shooters, increasing attention has been placed on mental health. Analysis of the factors Americans considered to be to blame for mass shootings showed 80 percent of people felt the inability of the mental health system to recognize those who pose a danger to others was a significant factor. This concern is not without merit – in over half of the mass shootings since 1982, the shooter showed prior signs of mental health issues, suggesting improved mental health services may help deal with this horrific problem. Mass shootings and guns In the wake of multiple mass shootings, critics have sought to look beyond the issues of shooter identification and their influences by focusing on their access to guns. The majority of mass shootings in the U.S. involve firearms which were obtained legally, reflecting the easy ability of Americans to purchase and carry deadly weapons in public. Gun control takes on a particular significance when the uniquely American phenomenon of school shootings is considered. The annual number of incidents involving firearms at K-12 schools in the U.S. was over 100 in each year since 2018. Conversely, similar incidents in other developed countries exceptionally rare, with only five school shootings in G7 countries other than the U.S. between 2009 and 2018.

  19. D

    2021 Tract-level Indicators of Potential Disadvantage

    • catalog.dvrpc.org
    api, geojson, html +1
    Updated Nov 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DVRPC (2025). 2021 Tract-level Indicators of Potential Disadvantage [Dataset]. https://catalog.dvrpc.org/dataset/2021-tract-level-indicators-of-potential-disadvantage
    Explore at:
    geojson, api, xml, htmlAvailable download formats
    Dataset updated
    Nov 4, 2025
    Dataset provided by
    Delaware Valley Regional Planning Commissionhttps://www.dvrpc.org/
    Authors
    DVRPC
    Description

    Title VI of the Civil Rights Act and the Executive Order on Environmental Justice (#12898) do not provide specific guidance to evaluate EJ issues within a region's transportation planning process. Therefore, MPOs must devise their own methods for ensuring that EJ issues are investigated and evaluated in transportation decision-making. In 2001, DVRPC developed an EJ technical assessment to identify direct and disparate impacts of its plans, programs, and planning process on defined population groups in the Delaware Valley region. This assessment, called the Indicators of Potential Disadvantage Methodology, is utilized in a variety of DVRPC plans and programs. DVRPC currently assesses the following population groups, defined by the U.S. Census Bureau:

    Youth

    Older Adults

    Female

    Racial Minority

    Ethnic Minority

    Foreign-Born

    Disabled

    Limited English Proficiency

    Low-Income Census tables used to gather data from the 2017-2021 American Community Survey 5-Year Estimates Using U.S. Census American Community Survey data, the population groups listed above are identified and located at the census tract level. Data is gathered at the regional level, combining populations from each of the nine counties, for either individuals or households, depending on the indicator. From there, the total number of persons in each demographic group is divided by the appropriate universe (either population or households) for the nine-county region, providing a regional average for that population group. Any census tract that meets or exceeds the regional average level, or threshold, is considered an EJ-sensitive tract for that group. Census tables used to gather data from the 2017-2021 American Community Survey 5-Year Estimates. For more information and for methodology, visit DVRPC's website: https://www.dvrpc.org/GetInvolved/TitleVI/ For technical documentation visit DVRPC's GitHub IPD repo: https://github.com/dvrpc/ipd Source of tract boundaries: US Census Bureau. The TIGER/Line Files Note: Tracts with null values should be symbolized as "Insufficient or No Data". Data Dictionary for Attributes: (Source = DVRPC indicates a calculated field)

    FieldAliasDescriptionSource
    geoid20GEOID20Census tract identifier (text)Census
    statefp20State FIPSFIPS Code for StateCensus
    countyfp20County FIPSFIPS Code for CountyCensus
    name20Tract NumberTract NumberCensus
    d_classDisabled ClassificationClassification of tract's disabled percentage as: well below average, below average, average, above average, or well above averageDVRPC
    d_cntestDisabled Count EstimateEstimated count of disabled populationCensus
    d_cntmoeDisabled Count MOEMargin of error for estimated count of disabled populationCensus
    d_pctestDisabled Percentage EstimateEstimated percentage of disabled populationDVRPC
    d_pctileDisabled PercentileTract's regional percentile for percentage disabledDVRPC
    d_pctmoeDisabled Percentage MOEMargin of error for percentage of disabled populationDVRPC
    d_scoreDisabled ScoreCorresponding numeric score for tract's disabled classification: 0, 1, 2, 3, 4DVRPC
    em_classEthnic Minority ClassificationClassification of tract's Hispanic/Latino percentage as: well below average, below average, average, above average, or well above averageDVRPC
    em_cntestEthnic Minority Count EstimateEstimated count of Hispanic/Latino populationCensus
    em_cntmoeEthnic Minority Count MOEMargin of error for estimated count of Hispanic/Latino populationCensus
    em_pctestEthnic Minority Percentage EstimateEstimated percentage of Hispanic/Latino populationDVRPC
    em_pctileEthnic Minority PercentileTract's regional percentile for percentage Hispanic/LatinoDVRPC
    em_pctmoeEthnic Minority Percentage MOEMargin of error for percentage of Hispanic/Latino populationDVRPC
    em_scoreEthnic Minority ScoreCorresponding numeric score for tract's Hispanic/Latino classification: 0, 1, 2, 3, 4DVRPC
    f_classFemale ClassificationClassification of tract's female percentage as: well below average, below average, average, above average, or well above averageDVRPC
    f_cntestFemale Count EstimateEstimated count of female populationCensus
    f_cntmoeFemale Count MOEMargin of error for estimated count of female populationCensus
    f_pctestFemale Percentage EstimateEstimated percentage of female populationDVRPC
    f_pctileFemale PercentileTract's regional percentile for percentage femaleDVRPC
    f_pctmoeFemale Percentage MOEMargin of error for percentage of female populationDVRPC
    f_scoreFemale ScoreCorresponding numeric score for tract's female classification: 0, 1, 2, 3, 4DVRPC
    fb_classForeign Born ClassificationClassification of tract's foreign born percentage as: well below average, below average, average, above average, or well above averageDVRPC
    fb_cntestForeign Born Count EstimateEstimated count of foreign born populationCensus
    fb_cntmoeForeign Born Count MOEMargin of error for estimated count of foreign born populationCensus
    fb_pctestForeign Born Percentage EstimateEstimated percentage of foreign born populationDVRPC
    fb_pctileForeign Born PercentileTract's regional percentile for percentage foreign bornDVRPC
    fb_pctmoeForeign Born Percentage MOEMargin of error for percentage of foreign born populationDVRPC
    fb_scoreForeign Born ScoreCorresponding numeric score for tract's foreign born classification: 0, 1, 2, 3, 4DVRPC
    lep_classLimited English Proficiency Count EstimateEstimated count of limited english proficiency populationCensus
    lep_cntestLimited English Proficiency Count MOEMargin of error for estimated count of limited english proficiency populationCensus
    lep_cntmoeLimited English Proficiency Percentage EstimateEstimated percentage of limited english proficiency populationDVRPC
    lep_pctestLimited English Proficiency Percentage MOEMargin of error for percentage of limited english proficiency populationDVRPC
    lep_pctileLimited English Proficiency PercentileTract's regional percentile for percentage limited english proficiencyDVRPC
    lep_pctmoeLimited English Proficiency ClassificationClassification of tract's limited english proficiency percentage as: well below average, below average, average, above average, or well above averageDVRPC
    lep_scoreLimited English Proficiency ScoreCorresponding numeric score for tract's limited english proficiency classification: 0, 1, 2, 3, 4DVRPC
    li_classLow Income ClassificationClassification of tract's low income percentage as: well below average, below average, average, above average, or well above averageDVRPC
    li_cntestLow Income Count EstimateEstimated count of low income (below 200% of poverty level) populationCensus
    li_cntmoeLow Income Count MOEMargin of error for estimated count of low income populationCensus
    li_pctestLow Income Percentage EstimateEstimated percentage of low income (below 200% of poverty level) populationDVRPC
    li_pctileLow Income PercentileTract's regional percentile for percentage low incomeDVRPC
    li_pctmoeLow Income Percentage MOEMargin of error for percentage of low income populationDVRPC
    li_scoreLow Income ScoreCorresponding numeric score for tract's low income classification: 0, 1, 2, 3, 4DVRPC
    oa_classOlder Adult ClassificationClassification of tract's older adult percentage as: well below average, below average, average, above average, or well above averageDVRPC
    oa_cntestOlder Adult Count EstimateEstimated count of older adult population (65 years or older)Census
    oa_cntmoeOlder Adult Count MOEMargin of error for estimated count of older adult populationCensus
    oa_pctestOlder Adult Percentage EstimateEstimated percentage of older adult population (65 years or older)DVRPC
    oa_pctileOlder Adult PercentileTract's regional percentile for percentage older adultDVRPC
    oa_pctmoeOlder Adult Percentage MOEMargin of error for percentage of older adult populationDVRPC
    oa_scoreOlder Adult ScoreCorresponding numeric score for tract's older adult classification: 0, 1, 2, 3, 4DVRPC
    rm_classRacial Minority ClassificationClassification of tract's non-white percentage as: well below average, below average, average, above average, or well above averageDVRPC
    rm_cntestRacial Minority Count EstimateEstimated count of non-white populationDVRPC
    rm_cntmoeRacial Minority Count MOEMargin of error for estimated count of non-white populationDVRPC
    rm_pctestRacial Minority Percentage EstimateEstimated percentage of non-white populationDVRPC
    rm_pctileRacial Minority PercentileTract's regional percentile for percentage non-whiteDVRPC
    rm_pctmoeRacial Minority Percentage MOEMargin of error for percentage of non-white populationDVRPC
    rm_scoreRacial Minority ScoreCorresponding numeric score for tract's non-white classification: 0, 1, 2, 3, 4DVRPC
    y_classYouth ClassificationClassification of tract's youth percentage as: well below average, below average, average, above average, or well above averageDVRPC
    y_cntestYouth Count EstimateEstimated count of youth population (under 18 years)Census
    y_cntmoeYouth Count MOEMargin of error for estimated count of youth populationCensus
    y_pctestYouth Percentage EstimateEstimated percentage of youth population (under 18 years)DVRPC
    y_pctileYouth PercentileTract's regional percentile for percentage youthDVRPC
    y_pctmoeYouth Percentage MOEMargin of error for percentage of youth populationDVRPC
    y_scoreYouth ScoreCorresponding numeric score for tract's youth classification: 0, 1, 2, 3, 4DVRPC
    ipd_scoreComposite ScoreOverall score
  20. Additional file 1 of Modeling the longitudinal changes of ancestry diversity...

    • springernature.figshare.com
    xlsx
    Updated Aug 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Frank R. Wendt; Gita A. Pathak; Jacqueline Vahey; Xuejun Qin; Dora Koller; Brenda Cabrera-Mendoza; Angela Haeny; Kelly M. Harrington; Nallakkandi Rajeevan; Linh M. Duong; Daniel F. Levey; Flavio De Angelis; Antonella De Lillo; Tim B. Bigdeli; Saiju Pyarajan; John Michael Gaziano; Joel Gelernter; Mihaela Aslan; Dawn Provenzale; Drew A. Helmer; Elizabeth R. Hauser; Renato Polimanti (2024). Additional file 1 of Modeling the longitudinal changes of ancestry diversity in the Million Veteran Program [Dataset]. http://doi.org/10.6084/m9.figshare.26593676.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 13, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Frank R. Wendt; Gita A. Pathak; Jacqueline Vahey; Xuejun Qin; Dora Koller; Brenda Cabrera-Mendoza; Angela Haeny; Kelly M. Harrington; Nallakkandi Rajeevan; Linh M. Duong; Daniel F. Levey; Flavio De Angelis; Antonella De Lillo; Tim B. Bigdeli; Saiju Pyarajan; John Michael Gaziano; Joel Gelernter; Mihaela Aslan; Dawn Provenzale; Drew A. Helmer; Elizabeth R. Hauser; Renato Polimanti
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Additional file 1: Table S1. Patterns of service era per birth cohort and across all MVP participants stratified by sex and HARE superpopulations. Each row represents a distinct pattern of service across nine service eras; the frequency of each is calculated by birth cohort and for all MVP participants. Service patterns with less than 11 participants were omitted to preserve data privacy of the participant so HARE total population sample sizes are slightly lower than those reported in Table 1. Table S2. Sample size per birth cohort derived from cumulative distribution function of year of birth. Table S3. Mean ancestry proportion of five 1kGP reference populations in all birth cohorts and HARE superpopulations. Two-sided Z-tests were used to compare the statistical difference in means between groups and the corresponding p values reflect this difference. Standardized mean differences reflect the magnitude of effect size difference between two groups. Table S4. Comparison of height across birth cohorts in each MVP HARE superpopulations. Table S5. Metrics for GWAS of height in each ancestry per birth cohort using both methods of population assignment. Heritability, LDSC intercepts, and attenuation ratios were compared across birth cohorts, within each method, using two-sided Z-tests. Multiple testing correction was applied using a false discovery rate of 5%; differences surviving multiple testing correction are highlighted in yellow. Table S6. Metrics for GWAS of height compared across method used to define superpopulations. Two-sided Z-tests were used to compare heritability, LDSC intercepts, and attenuation ratios between HARE and 1kGP+HGDP superpopulation assignments. Multiple testing correction was applied using a false discovery rate of 5%.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
MTC/ABAG (2012). 2012 06: Bay Area Racial Diversity in 2010 [Dataset]. https://opendata.mtc.ca.gov/documents/MTC::2012-06-bay-area-racial-diversity-in-2010/about
Organization logo

2012 06: Bay Area Racial Diversity in 2010

Explore at:
Dataset updated
Jun 25, 2012
Dataset provided by
Metropolitan Transportation Commission
Authors
MTC/ABAG
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Area covered
San Francisco Bay Area
Description

Racial diversity is measured by a diversity index that is calculated using United States Census racial and ethnic population characteristics from the PL-94 data file. The diversity index is a quantitative measure of the distribution of the proportion of five major ethnic populations (non-Hispanic White, non-Hispanic Black, Asian and Pacific Islander, Hispanic, and Two or more races). The index ranges from 0 (low diversity meaning only one group is present) to 1 (meaning an equal proportion of all five groups is present). The diversity score for the United States in 2010 is 0.60. The diversity score for the San Francisco Bay Region is 0.84. Within the region, Solano (0.89) and Alameda (0.90) Counties are the most diverse and the remaining North Bay (0.55 - 0.64) Counties are the least diverse.

Search
Clear search
Close search
Google apps
Main menu