Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Digital Terrain Model (DTM) for Continental Europe was derived using Ensemble Machine Learning (EML) with publicly available Digital Surface Models. EML was trained using GEDI level 2B points (Level 2A; "elev_lowestmode") and ICESat-2 (ATL08; "h_te_mean"). About 9 million points were overlaid vs MERITDEM, AW3D30, GLO-30, EU DEM, GLAD canopy height, tree cover and surface water cover maps. An ensemble prediction model (mlr package in R) was fitted using random forest, Cubist and GLM, and used to predict the most probable terrain height (bare earth).
The predicted elevations are based on the GEDI data hence the reference water surface (WGS84 ellipsoid) is about 43 m higher than the sea water surface for a specific EU country. Before modeling, reference elevations were corrected to the Earth Gravitational Model 2008 (EGM2008) by using the 5-arcdegree resolution correction surface (Pavlis et al, 2012).
Details on the work to create this dataset can be found here:
NOTE:This dataset has been converted from its original units of decimeters to meters to aid comparisons with other datasets in the OpenTopography catalog.
Here we provide a mosaic of the Copernicus DEM 30m for Europe and the corresponding hillshade derived from the GLO-30 public instance of the Copernicus DEM. The CRS is the same as the original Copernicus DEM CRS: EPSG:4326. Note that GLO-30 Public provides limited coverage at 30 meters because a small subset of tiles covering specific countries are not yet released to the public by the Copernicus Programme. Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs.
The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.
The Copernicus DEM for Europe at 30 m in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).
Processing steps: The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in https://gdal.org/drivers/raster/vrt.html format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized: gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt
The pixel values were scaled with 1000 (storing the pixels as integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Overview: The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.
The Copernicus DEM for Europe at 30 arcsec (0:00:30 = 0.0083333333 ~ 1000 meter) in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).
Processing steps: The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in VRT format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized:
gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt
In order to reduce the spatial resolution to 30 arc seconds, weighted resampling was performed in GRASS GIS (using r.resamp.stats -w and the pixel values were scaled with 1000 (storing the pixels as integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.
Projection + EPSG code: Latitude-Longitude/WGS84 (EPSG: 4326)
Spatial extent: north: 82:00:30N south: 18N west: 32:00:30W east: 70E
Spatial resolution: 30 arc seconds (approx. 1000 m)
Pixel values: meters * 1000 (scaled to Integer; example: value 23220 = 23.220 m a.s.l.)
Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)
Original dataset license: https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex.pdf
Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The map is made using the global digital elevation model (DEM) derived from GTOPO30. Note that the values in the file are not the original elevation data. The data has been processed to create an image for presentation purposes streching a predefined colour template over the derived values.
The following text was abstracted from Bruce Gittings' Digital Elevation Data Catalogue: 'http://www.geo.ed.ac.uk/home/ded.html'. The catalogue is a comprehensive source of information on digital elevation data and should be retrieved in its entirety for additional information.
The European 1:1M database now includes the European Union (EU) plus Scandanavia & Eastern Europe. Cost is #355 per small country to #492 for large countries. Prices for the whole of Europe are also available.
Ireland is now part of the Europe 1:1M database, although actually captured at 1:500K and previously named Ireland 1:500K database.
Discounts are normally available for educational establishments. For research and teaching (excluding commercial research) the data can be obtained at very low prices through CHEST at Manchester University Computing Centre (Tel: 061 275 6099). Higher education users in ALL European countries excluding the former Warsaw Pact area (for the time being) may obtain data through CHEST following a new deal.
The EU-DEM is a Digital Surface Model (DSM) representing the first surface as illuminated by the sensors. EU-DEM covers the EEA39 countries and it has been produced by a consortium led by Indra, Intermap edited the EUDEM and AGI provided the water mask. The EU-DEM is a 3D raster dataset with elevations captured at 1 arc second postings (2.78E-4 degrees) or about every 30 meter. It is a hybrid product based on SRTM and ASTER GDEM data fused by a weighted averaging approach. Ownership of EU-DEM belongs to European Commision, DG Enterprise and Industry.
The projection onto an Inspire compliant grid of 25m resolution and the computation of a Slope raster have been performed by the Joint Research Centre of the European Commission (see file documentation/SPEC010_a100421-SLOP.pdf).
The goal of developing HydroSHEDS was to generate key data layers to support regional and global watershed analyses, hydrological modeling, and freshwater conservation planning at a quality, resolution and extent that had previously been unachievable.
Radar data at 250m. All tiles required for a representation of Europe.Property of NASA, downloaded from https://srtm.csi.cgiar.org.Re-projected at the Berlin University of Applied Sciences according to EPSG 102014 (in metres, centred on 10° East).We also offer the data as a tiled imagery layer. Radar-Daten in 250m. Alle Kacheln, die für eine Darstellung von Europa benötigt werden.Eigentum der NASA, runtergeladen von https://srtm.csi.cgiar.org.An der Berliner Hochschule für Technik umprojiziert nach EPSG 102014 (in Meter, zentriert auf 10° Ost).Weiterhin bieten wir die Daten als tiled imagery layer an.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This is a cropped DTM version (with Frame2c) for providing topographic backgrouds on EEA maps. This is a hillshade of global digital elevation model (DEM) with a horizontal grid spacing of 30 arc seconds (approximately 1 kilometer).
This dataset contains the Digital Elevation Model (DEM) for Europe from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database. The data were developed and distributed by processing units. There are 11 processing units for Europe. The distribution files have the number of the processing unit appended to the end of the zip file name (e.g. eu_dem_3_2.zip contains the DEM data for unit 3-2). The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment boundaries. The coverage of the data is global (-180º, 180º, -90º, 90º) with the underlying DEM being a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) and the Shuttle Radar Topography Mission (SRTM). For most of the globe south of 60º North, the raster resolution of the data is 3-arc-seconds, corresponding to the resolution of the SRTM. For the areas North of 60º, the resolution is 7.5-arc-seconds (the smallest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30-arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information.
The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. This DSM is derived from an edited DSM named WorldDEM, where flattening of water bodies and consistent flow of rivers has been included. In addition, editing of shore- and coastlines, special features such as airports, and implausible terrain structures has also been applied.
The WorldDEM product is based on the radar satellite data acquired during the TanDEM-X Mission, which is funded by a Public Private Partnership between the German State, represented by the German Aerospace Centre (DLR) and Airbus Defence and Space. OpenTopography is providing access to the global GLO-90 Defence Gridded Elevation Data (DGED) 2023_1 version of the data hosted by ESA via the PRISM service. Details on the Copernicus DSM can be found on this ESA site.
Important Note: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.World Topographic Map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes cities, water features, physiographic features, contours, parks, landmarks, highways, roads, railways, airports, and administrative boundaries, overlaid on shaded relief imagery for added context.This basemap is compiled from a variety of authoritative sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), HERE, and Esri. Data for select areas is sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view. Additionally, data for the World Topographic Map is provided by the GIS community through the Community Maps Program. View the list of Contributors for the World Topographic Map.CoverageThe map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Africa, Australia and New Zealand; Europe and Russia; India; most of the Middle East; Pacific Island nations; Alaska; Canada; Mexico; South America and Central America. Coverage is available down to ~1:2k and ~1:1k in select urban areas.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop you can see topographic citations. Citations returned apply only to the available map at that location and scale.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer in a web map, see this Topographic basemap.
A 'Digital Elevation Model (DEM)' is a 3D approximation of the terrain's surface created from elevation data. The term 'Digital Surface Model (DSM)' represents the earth's surface and includes all objects including e.g. forests, buildings. The Digital Elevation Model over Europe from the GMES Reference Data Access project (EU-DEM) is a Digital Surface Model (DSM) representing the first surface as illuminated by the sensors. EU-DEM covers the 39 member and cooperating countries of EEA. The EU-DEM is a hybrid product based on SRTM and ASTER GDEM data fused by a weighted averaging approach. Different products have been derived from the EU-DEM, including raster’s of the slope, terrain aspect and hillshade. The different products are made available in both full-European coverage as in a set of 25 tiles covering 1000x1000km each. The EU-DEM map shows a colour shaded relief image over Europe, which has been created by EEA using a hillshade dataset derived from the ETRS89-LAEA version of EU-DEM. As this data cannot be used for analysis purposes (and that there are some known artefacts West of Norway), the downloadable data are single band raster’s with values relating to the actual elevation. The datasets are encoded as GeoTIFF with LZW compression (tiles) or DEFLATE compression (European mosaics as single files). The Web maps include WFS, WMS and WCS services. The EU-DEM statistical validation documents a relatively unbiased (-0.56 meters) overall vertical accuracy of 2.9 meters RMSE, which is fully within the contractual specification of 7m RMSE and the full report can be found at [1].
[1] https://cws-download.eea.europa.eu/in-situ/eudem/Report-EU-DEM-statistical-validation-August2014.pdf
Spatial coverage index compiled by East View Geospatial of set "Germany 1:50,000 Scale Topographic Maps (M745)". Source data from DMG (publisher). Type: Topographic. Scale: 1:50,000. Region: Europe.
The goal of developing HydroSHEDS was to generate key data layers to support regional and global watershed analyses, hydrological modeling, and freshwater conservation planning at a quality, resolution and extent that had previously been unachievable.
Spatial coverage index compiled by East View Geospatial of set "Romania 1:50,000 Scale Topographic Maps (CNC)". Source data from CNC (publisher). Type: Topographic. Scale: 1:50,000. Region: Europe.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Digital Elevation Model (DEM) market is experiencing robust growth, projected to reach $669.8 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 6.4% from 2025 to 2033. This expansion is fueled by increasing demand across diverse sectors. The Planning & Construction industry leverages DEMs for accurate site analysis, project planning, and infrastructure development. Similarly, the Air Traffic Routes & Navigation sector utilizes DEMs for precise flight path modeling and safety enhancement. Meteorological services rely on DEMs for accurate weather forecasting and climate modeling, significantly improving prediction accuracy. Furthermore, the Geological Exploration industry utilizes DEMs for terrain analysis, aiding in the identification of potential mineral deposits and efficient resource management. The market's segmentation also includes Digital Surface Models (DSMs) and Digital Terrain Models (DTMs), offering tailored solutions for specific applications. The growth trajectory is further bolstered by advancements in data acquisition technologies, such as LiDAR and satellite imagery, improving DEM accuracy and resolution. This, coupled with increasing accessibility to high-performance computing, is streamlining DEM generation and processing, making the technology more readily available and cost-effective for a wider range of users. The market's geographical distribution is diverse, with North America, Europe, and Asia Pacific representing significant market shares. While specific regional breakdowns require further data, the continued technological advancements and expanding applications across industries suggest a positive outlook for the entire forecast period. Key players in the market, including Harris MapMart, National Map, and AltaLIS, are actively innovating and expanding their offerings to cater to the growing demand. The market's future growth hinges on ongoing technological improvements, expanding application domains, and the increasing integration of DEM data into various decision-making processes. Continued government investment in infrastructure projects and initiatives promoting improved mapping and geospatial data utilization will further drive market expansion.
Spatial coverage index compiled by East View Geospatial of set "Sweden 1:50,000 Scale Topographic Maps". Source data from LMV (publisher). Type: Topographic. Scale: 1:50,000. Region: Europe.
This is an extract of the global digital elevation model (DEM) derived from GTOPO30. Several resolutions are available: 30 arc seconds (approximately 1 km2), 3 km2 and 9 km2, including a model of hillshading.
[Summary provided by the European Environment Agency.]
https://services.cuzk.gov.cz/registry/codelist/ConditionsApplyingToAccessAndUse/copyrighthttps://services.cuzk.gov.cz/registry/codelist/ConditionsApplyingToAccessAndUse/copyright
The T layer represents topographical information, i.e. the slope angle calculated from GTOPO30 1 km resolution elevation data, classified using class breaks proposed by the HOVER project
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Digital Terrain Model (DTM) for Continental Europe was derived using Ensemble Machine Learning (EML) with publicly available Digital Surface Models. EML was trained using GEDI level 2B points (Level 2A; "elev_lowestmode") and ICESat-2 (ATL08; "h_te_mean"). About 9 million points were overlaid vs MERITDEM, AW3D30, GLO-30, EU DEM, GLAD canopy height, tree cover and surface water cover maps. An ensemble prediction model (mlr package in R) was fitted using random forest, Cubist and GLM, and used to predict the most probable terrain height (bare earth).
The predicted elevations are based on the GEDI data hence the reference water surface (WGS84 ellipsoid) is about 43 m higher than the sea water surface for a specific EU country. Before modeling, reference elevations were corrected to the Earth Gravitational Model 2008 (EGM2008) by using the 5-arcdegree resolution correction surface (Pavlis et al, 2012).
Details on the work to create this dataset can be found here:
NOTE:This dataset has been converted from its original units of decimeters to meters to aid comparisons with other datasets in the OpenTopography catalog.