39 datasets found
  1. Standard populations dataset

    • kaggle.com
    Updated Mar 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthias Kleine (2023). Standard populations dataset [Dataset]. https://www.kaggle.com/datasets/matthiaskleine/standard-populations-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 12, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Matthias Kleine
    Description

    Do you know further standard populations?

    If you know any further standard populations worth integrating in this dataset, please let me know in the discussion part. I would be happy to integrate further data to make this dataset more useful for everybody.

    German "Federal Health Monitoring System" about 'standard populations':

    "Standard populations are "artificial populations" with fictitious age structures, that are used in age standardization as uniform basis for the calculation of comparable measures for the respective reference population(s).

    Use: Age standardizations based on a standard population are often used at cancer registries to compare morbidity or mortality rates. If there are different age structures in populations of different regions or in a population in one region over time, the comparability of their mortality or morbidity rates is only limited. For interregional or inter-temporal comparisons, therefore, an age standardization is necessary. For this purpose the age structure of a reference population, the so-called standard population, is assumed for the study population. The age specific mortality or morbidity rates of the study population are weighted according to the age structure of the standard population. Selection of a standard population:

    Which standard population is used for comparison basically, does not matter. It is important, however, that

    1. the demographic structure of the standard population is not too dissimilar to that of the reference population and
    2. the comparable rates refer to the same standard."

    Aim of this dataset

    The aim of this dataset is to provide a variety of the most commonly used 'standard populations'.

    Currently, two files with 22 standard populations are provided: - standard_populations_20_age_groups.csv - 20 age groups: '0', '01-04', '05-09', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85-89', '90+' - 7 standard populations: 'Standard population Germany 2011', 'Standard population Germany 1987', 'Standard population of Europe 2013', 'Standard population Old Laender 1987', 'Standard population New Laender 1987', 'New standard population of Europe', 'World standard population' - source: German Federal Health Monitoring System

    • standard_populations_19_age_groups.csv
      • 19 age groups: '0', '01-04', '05-09', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85+'
      • 15 standard populations: '1940 U.S. Std Million', '1950 U.S. Std Million', '1960 U.S. Std Million', '1970 U.S. Std Million', '1980 U.S. Std Million', '1990 U.S. Std Million', '1991 Canadian Std Million', '1996 Canadian Std Million', '2000 U.S. Std Million', '2000 U.S. Std Population (Census P25-1130)', '2011 Canadian Standard Population', 'European (EU-27 plus EFTA 2011-2030) Std Million', 'European (Scandinavian 1960) Std Million', 'World (Segi 1960) Std Million', 'World (WHO 2000-2025) Std Million'
      • source: National Institutes of Health, National Cancer Institute, Surveillance, Epidemiology, and End Results Program

    Terms of use

    No restrictions are known to the author. Standard populations are published by different organisations for public usage.

  2. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +1more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  3. Total population worldwide 1950-2100

    • ai-chatbox.pro
    • statista.com
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Total population worldwide 1950-2100 [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F13342%2Faging-populations%2F%23XgboD02vawLKoDs%2BT%2BQLIV8B6B4Q9itA
    Explore at:
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

  4. g

    GeoPostcodes Global Population by ZIP Code Database

    • geopostcodes.com
    csv
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). GeoPostcodes Global Population by ZIP Code Database [Dataset]. https://www.geopostcodes.com/population-by-zip-code/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    GeoPostcodes
    License

    https://www.geopostcodes.com/privacy-policy/https://www.geopostcodes.com/privacy-policy/

    Time period covered
    Jun 27, 2025
    Area covered
    World
    Description

    Comprehensive, annually-updated population datasets at ZIP code and administrative levels for 247 countries, spanning from 1975 to 2030, including historical, current, and projected population figures, enriched with attributes like area size, multilingual support, UNLOCODEs, IATA codes, and time zones.

  5. d

    Country-Level Population and Downscaled Projections Based on the SRES A1,...

    • catalog.data.gov
    • earthdata.nasa.gov
    • +1more
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Country-Level Population and Downscaled Projections Based on the SRES A1, B1, and A2 Scenarios, 1990-2100 [Dataset]. https://catalog.data.gov/dataset/country-level-population-and-downscaled-projections-based-on-the-sres-a1-b1-and-a2-sc-1990
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Description

    The Country-Level Population and Downscaled Projections Based on Special Report on Emissions Scenarios (SRES) A1, B1, and A2 Scenarios, 1990-2100, were adopted in 2000 from population projections realized at the International Institute for Applied Systems Analysis (IIASA) in 1996. The Intergovernmental Panel on Climate Change (IPCC) SRES A1 and B1 scenarios both used the same IIASA "rapid" fertility transition projection, which assumes low fertility and low mortality rates. The SRES A2 scenario used a corresponding IIASA "slow" fertility transition projection (high fertility and high mortality rates). Both IIASA low and high projections are performed for 13 world regions including North Africa, Sub-Saharan Africa, China and Centrally Planned Asia, Pacific Asia, Pacific OECD, Central Asia, Middle East, South Asia, Eastern Europe, European part of the former Soviet Union, Western Europe, Latin America, and North America. This data set is produced and distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  6. Data from: United States annual state-level population estimates from...

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +4more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). United States annual state-level population estimates from colonization to 1999 [Dataset]. https://catalog.data.gov/dataset/united-states-annual-state-level-population-estimates-from-colonization-to-1999-2f176
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Area covered
    United States
    Description

    The U.S. landscape has undergone substantial changes since Europeans first arrived. Many land use changes are attributable to human activity. Historical data concerning these changes are frequently limited and often difficult to develop. Modeling historical land use changes may be necessary. We develop annual population series from first European settlement to 1999 for all 50 states and Washington D.C. for use in modeling land use trends. Extensive research went into developing the historical data. Linear interpolation was used to complete the series after critically evaluating the appropriateness of linear interpolation versus exponential interpolation.

  7. C

    2011 Census: International comparisons - Population by gender and age group...

    • ckan.mobidatalab.eu
    csv, json
    Updated Apr 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technological and Digital Innovation Department (2023). 2011 Census: International comparisons - Population by gender and age group in large cities (> 700,000 inhab.) [Dataset]. https://ckan.mobidatalab.eu/dataset/ds346-population-population-gender-age-class-international-comparison-2011c
    Explore at:
    csv(93566), json(252278)Available download formats
    Dataset updated
    Apr 23, 2023
    Dataset provided by
    Technological and Digital Innovation Department
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Number of population by gender and age recorded in the latest census in Milan and in 43 other European and US cities with a population of more than 700,000 inhabitants. The data has been harmonized from two international sources: * a) Eurostat - Census hub 2011 * b) US Census Bureau - American fact finder. For some cities the data is provided in rounded form, for this reason the total population may differ from the sum by gender and age.

  8. s

    Census Microdata Samples Project

    • scicrunch.org
    • dknet.org
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Census Microdata Samples Project [Dataset]. http://identifiers.org/RRID:SCR_008902
    Explore at:
    Description

    A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219

  9. g

    Population born in Eastern and Southern Europe (non-EU), Africa, Asia or...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population born in Eastern and Southern Europe (non-EU), Africa, Asia or South America, share (%) | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_http-api-kolada-se-v2-kpi-n01716/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Africa, Europe, Southern Europe, South America, European Union
    Description

    Number of inhabitants born in Eastern and Southern Europe (non-EU), Africa, Asia or South America divided by the total population of the municipality.

  10. Κ

    Data from: Public Attitudes towards Immigration, News and Social Media...

    • datacatalogue.sodanet.gr
    csv, pdf, tsv
    Updated Apr 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Κατάλογος Δεδομένων SoDaNet (2024). Public Attitudes towards Immigration, News and Social Media Exposure, and Political Attitudes from a Cross-cultural Perspective: Data from seven European countries, the United States, and Colombia [Dataset]. http://doi.org/10.17903/FK2/JQ5JRI
    Explore at:
    tsv(12171706), pdf(421705), csv(17584912)Available download formats
    Dataset updated
    Apr 3, 2024
    Dataset provided by
    Κατάλογος Δεδομένων SoDaNet
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 2021 - Jun 2021
    Area covered
    Austria, Colombia, Belgium, Germany, Italy, Hungary, Sweden, Spain, United States
    Description

    The data presented in this data project were collected in the context of two H2020 research projects: ‘Enhanced migration measures from a multidimensional perspective’(HumMingBird) and ‘Crises as opportunities: Towards a level telling field on migration and a new narrative of successful integration’(OPPORTUNITIES). The current survey was fielded to investigate the dynamic interplay between media representations of different migrant groups and the governmental and societal (re)actions to immigration. With these data, we provide more insight into these societal reactions by investigating attitudes rooted in values and worldviews. Through an online survey, we collected quantitative data on attitudes towards: Immigrants, Refugees, Muslims, Hispanics, Venezuelans News Media Consumption Trust in News Media and Societal Institutions Frequency and Valence of Intergroup Contact Realistic and Symbolic Intergroup Threat Right-wing Authoritarianism Social Dominance Orientation Political Efficacy Personality Characteristics Perceived COVID-threat, and Socio-demographic Characteristics For the adult population aged 25 to 65 in seven European countries: Austria Belgium Germany Hungary Italy Spain Sweden And for ages ranged from 18 to 65 for: United States of America Colombia The survey in the United States and Colombia was identical to the one in the European countries, although a few extra questions regarding COVID-19 and some region-specific migrant groups (e.g. Venezuelans) were added. We collected the data in cooperation with Bilendi, a Belgian polling agency, and selected the methodology for its cost-effectiveness in cross-country research. Respondents received an e-mail asking them to participate in a survey without specifying the subject matter, which was essential to avoid priming. Three weeks of fieldwork in May and June of 2021 resulted in a dataset of 13,645 respondents (a little over 1500 per country). Sample weights are included in the dataset and can be applied to ensure that the sample is representative for gender and age in each country. The cooperation rate ranged between 12% and 31%, in line with similar online data collections.

  11. d

    Loudoun County 2020 Census Population Patterns by Race and Hispanic or...

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated Jan 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loudoun County GIS (2025). Loudoun County 2020 Census Population Patterns by Race and Hispanic or Latino Ethnicity [Dataset]. https://catalog.data.gov/dataset/loudoun-county-2020-census-population-patterns-by-race-and-hispanic-or-latino-ethnicity
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    Loudoun County GIS
    Area covered
    Loudoun County
    Description

    Use this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.

  12. o

    Current Population Survey: Annual Demographic File, 1969

    • explore.openaire.eu
    • icpsr.umich.edu
    Updated Jun 28, 1984
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau Of The Census (1984). Current Population Survey: Annual Demographic File, 1969 [Dataset]. http://doi.org/10.3886/icpsr07560.v1
    Explore at:
    Dataset updated
    Jun 28, 1984
    Authors
    United States. Bureau Of The Census
    Description

    (1) This hierarchical file contains 202,112 records. There are approximately 157 variables and two record types: family and person. Family records contain approximately 58 variables, and person records contain approximately 99 variables. (2) Each family and person record contains a weight, which must be used in any analysis. (3) This data file was obtained from the Data Program and Library Service (DPLS), University of Wisconsin. Some data management operations intended to store the data more efficiently were performed by DPLS. That organization also revised the original Census Bureau documentation. (4) The codebook is provided by ICPSR as a Portable Document Format (PDF) file. The PDF file format was developed by Adobe Systems Incorporated and can be accessed using PDF reader software, such as the Adobe Acrobat Reader. Information on how to obtain a copy of the Acrobat Reader is provided on the ICPSR Web site. This data collection supplies standard monthly labor force data as well as supplemental data on work experience, income, and migration. Comprehensive information is given on the employment status, occupation, and industry of persons 14 years old and older. Additional data are available concerning weeks worked and hours per week worked, reason not working full-time, total income and income components, and residence. Information on demographic characteristics, such as age, sex, race, educational attainment, marital status, veteran status, household relationship, and Hispanic origin, is available for each person in the household enumerated. Persons in the civilian noninstitutional population of the United States living in households and members of the armed forces living in civilian housing units in 1969. Datasets: DS1: Current Population Survey: Annual Demographic File, 1969 A national probability sample was used in selecting housing units.

  13. d

    Data from: Country-Level Population and Downscaled Projections Based on the...

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Country-Level Population and Downscaled Projections Based on the SRES B2 Scenario, 1990-2100 [Dataset]. https://catalog.data.gov/dataset/country-level-population-and-downscaled-projections-based-on-the-sres-b2-scenario-1990-210
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Description

    The Country-Level Population and Downscaled Projections Based on Special Report on Emissions Scenarios (SRES) B2 Scenario, 1990-2100, were based on the UN 1998 Medium Long Range Projection for the years 1995 to 2100. The official version projects population for 8 regions of the world including Africa, Asia (minus India and China), India, China, Europe, Latin America, Northern America, and Oceania. This data set is produced and distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  14. o

    Latin America and the Caribbean 100m Population

    • explore.openaire.eu
    • eprints.soton.ac.uk
    Updated Jan 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Worldpop (2016). Latin America and the Caribbean 100m Population [Dataset]. http://doi.org/10.5258/soton/wp00138
    Explore at:
    Dataset updated
    Jan 1, 2016
    Authors
    Worldpop
    Area covered
    Latin America, Caribbean
    Description

    DATA DESCRIPTION: Version 2.0 estimates of total number of people per grid square for five timepoints between 2000 and 2020 at five year intervals; national totals have been adjusted to match UN Population Division estimates for each time point(1) REGION: Latin America and the Caribbean SPATIAL RESOLUTION: 0.00833333 decimal degrees (approx 1km at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - LAC_PPP_2010_adj_v2.tif = Latin America and the Caribbean (LAC) population dataset presenting people per pixel (PPP) for 2010, adjusted to match UN national estimates (adj), dataset version 2.0 (v2) DATASET CONSTRUCTION DETAILS: This dataset is a mosaic of all WorldPop country level LAC datasets resampled to 1km resolution. The continental grouping of countries honours the macro geographical classification developed and maintained by the United Nations Statistics Division(2). For countries within each continental group which have not been mapped by WorldPop, GPWv4 1km population count data(3) was used to complete the mosaic. Full details of WorldPop population mapping methodologies are described here: www.worldpop.org.uk/data/methods/ DATE OF PRODUCTION: November 2016 Also included: (i) csv table describing the data source of the modelled population data for each country dataset (either WorldPop or GPWv4) which featured in the continental raster mosaic. _ (1) United Nations Population Division, WorldPopulation Prospects, 2015 Revision. http://esa.un.org/wpp/ (2) United Nations Statistics Division. http://unstats.un.org/unsd/methods/m49/m49regin.htm (3) Center for International Earth Science Information Network - CIESIN - Columbia University. 2016. Gridded Population of the World, Version 4 (GPWv4): Population Count. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4X63JVC. Accessed 30 Sept 2016

  15. o

    Data from: Census of Population, 1910 [United States]: Oversample of...

    • explore.openaire.eu
    • icpsr.umich.edu
    Updated Dec 4, 1990
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    S. Philip Morgan; Douglas Ewbank (1990). Census of Population, 1910 [United States]: Oversample of Black-headed Households [Dataset]. http://doi.org/10.3886/icpsr09453
    Explore at:
    Dataset updated
    Dec 4, 1990
    Authors
    S. Philip Morgan; Douglas Ewbank
    Area covered
    United States
    Description

    Designed to facilitate analysis of the status of Blacks around the turn of the century, this oversample of Black-headed households in the United States was drawn from the 1910 manuscript census schedules. The sample complements the 1/250 Public Use Sample of the 1910 census manuscripts collected by Samuel H. Preston at the University of Pennsylvania: CENSUS OF POPULATION, 1910 [UNITED STATES]: PUBLIC USE SAMPLE (ICPSR 9166). Part 1, Household Records, contains a record for each household selected in the sample and supplies variables describing the location, type, and composition of the households. Part 2, Individual Records, contains a record for each individual residing in the sampled households and includes information on demographic characteristics, occupation, literacy, nativity, ethnicity, and fertility. Manuscript census records for 1910 from counties with at least 10 percent of the population African-American (Negro, Black, or Mulatto) located in nine states where a large number of counties had at least this same proportion of African-Americans (Maryland, Virginia, North Carolina, Florida, Kentucky, Tennessee, Arkansas, Louisiana, and Texas). The four states with the largest population of Blacks (South Carolina, Alabama, Mississippi, and Georgia) were excluded from the oversample because the 1/250 Public Use Sample (referred to above) provided sufficient cases for most analyses. Sampling was carried out using computer software that randomly selected households based on the manuscript census microfilm reel number, sequence, and page and line number, with two different sampling fractions. Counties in Maryland, Kentucky, and Texas were sampled using a 0.01 sampling fraction, while a 0.005 sampling fraction was employed in Virginia, North Carolina, Florida, Tennessee, and Arkansas. In Louisiana, both fractions were utilized to test optimum sampling fractions. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Created variable labels and/or value labels.. The data contain blanks and alphabetic characters. This oversample can be combined with the 1/250 Public Use Sample by differential weighting of households (or individuals) by county of enumeration as described in the User's Guide. Datasets: DS0: Study-Level Files DS1: Household Records DS2: Individual Records

  16. Reconstructing the Population Genetic History of the Caribbean

    • plos.figshare.com
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrés Moreno-Estrada; Simon Gravel; Fouad Zakharia; Jacob L. McCauley; Jake K. Byrnes; Christopher R. Gignoux; Patricia A. Ortiz-Tello; Ricardo J. Martínez; Dale J. Hedges; Richard W. Morris; Celeste Eng; Karla Sandoval; Suehelay Acevedo-Acevedo; Paul J. Norman; Zulay Layrisse; Peter Parham; Juan Carlos Martínez-Cruzado; Esteban González Burchard; Michael L. Cuccaro; Eden R. Martin; Carlos D. Bustamante (2023). Reconstructing the Population Genetic History of the Caribbean [Dataset]. http://doi.org/10.1371/journal.pgen.1003925
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Andrés Moreno-Estrada; Simon Gravel; Fouad Zakharia; Jacob L. McCauley; Jake K. Byrnes; Christopher R. Gignoux; Patricia A. Ortiz-Tello; Ricardo J. Martínez; Dale J. Hedges; Richard W. Morris; Celeste Eng; Karla Sandoval; Suehelay Acevedo-Acevedo; Paul J. Norman; Zulay Layrisse; Peter Parham; Juan Carlos Martínez-Cruzado; Esteban González Burchard; Michael L. Cuccaro; Eden R. Martin; Carlos D. Bustamante
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Caribbean
    Description

    The Caribbean basin is home to some of the most complex interactions in recent history among previously diverged human populations. Here, we investigate the population genetic history of this region by characterizing patterns of genome-wide variation among 330 individuals from three of the Greater Antilles (Cuba, Puerto Rico, Hispaniola), two mainland (Honduras, Colombia), and three Native South American (Yukpa, Bari, and Warao) populations. We combine these data with a unique database of genomic variation in over 3,000 individuals from diverse European, African, and Native American populations. We use local ancestry inference and tract length distributions to test different demographic scenarios for the pre- and post-colonial history of the region. We develop a novel ancestry-specific PCA (ASPCA) method to reconstruct the sub-continental origin of Native American, European, and African haplotypes from admixed genomes. We find that the most likely source of the indigenous ancestry in Caribbean islanders is a Native South American component shared among inland Amazonian tribes, Central America, and the Yucatan peninsula, suggesting extensive gene flow across the Caribbean in pre-Columbian times. We find evidence of two pulses of African migration. The first pulse—which today is reflected by shorter, older ancestry tracts—consists of a genetic component more similar to coastal West African regions involved in early stages of the trans-Atlantic slave trade. The second pulse—reflected by longer, younger tracts—is more similar to present-day West-Central African populations, supporting historical records of later transatlantic deportation. Surprisingly, we also identify a Latino-specific European component that has significantly diverged from its parental Iberian source populations, presumably as a result of small European founder population size. We demonstrate that the ancestral components in admixed genomes can be traced back to distinct sub-continental source populations with far greater resolution than previously thought, even when limited pre-Columbian Caribbean haplotypes have survived.

  17. u

    Data from: Patterns of Widespread Decline in North American Bumble Bees

    • agdatacommons.nal.usda.gov
    zip
    Updated Feb 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sydney A. Cameron; Jeffrey D. Lozier; James P. Strange; Jonathan B. Koch; Nils Cordes; Leellen F. Solter; Terry L. Griswold (2024). Data from: Patterns of Widespread Decline in North American Bumble Bees [Dataset]. http://doi.org/10.15482/USDA.ADC/1529234
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 8, 2024
    Dataset provided by
    USDA-ARS Pollinating Insect-Biology, Management, Systematics Research
    Authors
    Sydney A. Cameron; Jeffrey D. Lozier; James P. Strange; Jonathan B. Koch; Nils Cordes; Leellen F. Solter; Terry L. Griswold
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Bumble bees (Bombus) are vitally important pollinators of wild plants and agricultural crops worldwide. Fragmentary observations, however, have suggested population declines in several North American species. Despite rising concern over these observations in the United States, highlighted in a recent National Academy of Sciences report, a national assessment of the geographic scope and possible causal factors of bumble bee decline is lacking. Here, we report results of a 3-y interdisciplinary study of changing distributions, population genetic structure, and levels of pathogen infection in bumble bee populations across the United States. We compare current and historical distributions of eight species, compiling a database of >73,000 museum records for comparison with data from intensive nationwide surveys of >16,000 specimens. We show that the relative abundances of four species have declined by up to 96% and that their surveyed geographic ranges have contracted by 23–87%, some within the last 20 y. We also show that declining populations have significantly higher infection levels of the microsporidian pathogen Nosema bombi and lower genetic diversity compared with co-occurring populations of the stable (nondeclining) species. Higher pathogen prevalence and reduced genetic diversity are, thus, realistic predictors of these alarming patterns of decline in North America, although cause and effect remain uncertain. Bumble bees (Bombus) are integral wild pollinators within native plant communities throughout temperate ecosystems, and recent domestication has boosted their economic importance in crop pollination to a level surpassed only by the honey bee. Their robust size, long tongues, and buzz-pollination behavior (high-frequency buzzing to release pollen from flowers) significantly increase the efficiency of pollen transfer in multibillion dollar crops such as tomatoes and berries. Disturbing reports of bumble bee population declines in Europe have recently spilled over into North America, fueling environmental and economic concerns of global decline. However, the evidence for large-scale range reductions across North America is lacking. Many reports of decline are unpublished, and the few published studies are limited to independent local surveys in northern California/southern Oregon, Ontario, Canada, and Illinois. Furthermore, causal factors leading to the alleged decline of bumble bee populations in North America remain speculative. One compelling but untested hypothesis for the cause of decline in the United States entails the spread of a putatively introduced pathogen, Nosema bombi, which is an obligate intracellular microsporidian parasite found commonly in bumble bees throughout Europe but largely unstudied in North America. Pathogenic effects of N. bombi may vary depending on the host species and reproductive caste and include reductions in colony growth and individual life span and fitness. Population genetic factors could also play a role in Bombus population decline. For instance, small effective population sizes and reduced gene flow among fragmented habitats can result in losses of genetic diversity with negative consequences, and the detrimental impacts of these genetic factors can be especially intensified in bees. Population genetic studies of Bombus are rare worldwide. A single study in the United States identified lower genetic diversity and elevated genetic differentiation (FST) among Illinois populations of the putatively declining B. pensylvanicus relative to those of a codistributed stable species. Similar patterns have been observed in comparative studies of some European species, but most investigations have been geographically restricted and based on limited sampling within and among populations. Although the investigations to date have provided important information on the increasing rarity of some bumble bee species in local populations, the different survey protocols and limited geographic scope of these studies cannot fully capture the general patterns necessary to evaluate the underlying processes or overall gravity of declines. Furthermore, valid tests of the N. bombi hypothesis and its risk to populations across North America call for data on its geographic distribution and infection prevalence among species. Likewise, testing the general importance of population genetic factors in bumble bee decline requires genetic comparisons derived from sampling of multiple stable and declining populations on a large geographic scale. From such range-wide comparisons, we provide incontrovertible evidence that multiple Bombus species have experienced sharp population declines at the national level. We also show that declining populations are associated with both high N. bombi infection levels and low genetic diversity. This data was used in the paper "Patterns of widespread decline in North American bumble bees" published in the Proceedings of the National Academy of United States of America. For more information about this dataset contact: Sydney A. Cameron: scameron@life.illinois.edu James Strange: James.Strange@ars.usda.gov Resources in this dataset:Resource Title: Data from: Patterns of Widespread Decline in North American Bumble Bees (Data Dictionary). File Name: meta.xmlResource Description: This is an XML data dictionary for Data from: Patterns of Widespread Decline in North American Bumble Bees.Resource Title: Patterns of Widespread Decline in North American Bumble Bees (DWC Archive). File Name: occurrence.csvResource Description: File modified to remove fields with no recorded values.Resource Title: Patterns of Widespread Decline in North American Bumble Bees (DWC Archive). File Name: dwca-usda-ars-patternsofwidespreaddecline-bumblebees-v1.1.zipResource Description: Data from: Patterns of Widespread Decline in North American Bumble Bees -- this is a Darwin Core Archive file. The Darwin Core Archive is a zip file that contains three documents.

    The occurrence data is stored in the occurrence.txt file. The metadata that describes the columns of this document is called meta.xml. This document is also the data dictionary for this dataset. The metadata that describes the dataset, including author and contact information for this dataset is called eml.xml.

    Find the data files at https://bison.usgs.gov/ipt/resource?r=usda-ars-patternsofwidespreaddecline-bumblebees

  18. Financing the State: Government Tax Revenue from 1800 to 2012, 31 countries

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Apr 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andersson, Per F.; Brambor, Thomas (2022). Financing the State: Government Tax Revenue from 1800 to 2012, 31 countries [Dataset]. http://doi.org/10.3886/ICPSR38308.v1
    Explore at:
    ascii, r, delimited, spss, stata, sasAvailable download formats
    Dataset updated
    Apr 21, 2022
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Andersson, Per F.; Brambor, Thomas
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38308/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38308/terms

    Time period covered
    1800 - 2012
    Area covered
    Norway, Venezuela, Spain, Peru, Austria, Colombia, Japan, Belgium, Bolivia, New Zealand
    Description

    This dataset presents information on historical central government revenues for 31 countries in Europe and the Americas for the period from 1800 (or independence) to 2012. The countries included are: Argentina, Australia, Austria, Belgium, Bolivia, Brazil, Canada, Chile, Colombia, Denmark, Ecuador, Finland, France, Germany (West Germany between 1949 and 1990), Ireland, Italy, Japan, Mexico, New Zealand, Norway, Paraguay, Peru, Portugal, Spain, Sweden, Switzerland, the Netherlands, the United Kingdom, the United States, Uruguay, and Venezuela. In other words, the dataset includes all South American, North American, and Western European countries with a population of more than one million, plus Australia, New Zealand, Japan, and Mexico. The dataset contains information on the public finances of central governments. To make such information comparable cross-nationally the researchers chose to normalize nominal revenue figures in two ways: (i) as a share of the total budget, and (ii) as a share of total gross domestic product. The total tax revenue of the central state is disaggregated guided by the Government Finance Statistics Manual 2001 of the International Monetary Fund (IMF) which provides a classification of types of revenue, and describes in detail the contents of each classification category. Given the paucity of detailed historical data and the needs of our project, researchers combined some subcategories. First, they were interested in total tax revenue, as well as the shares of total revenue coming from direct and indirect taxes. Further, they measured two sub-categories of direct taxation, namely taxes on property and income. For indirect taxes, they separated excises, consumption, and customs.

  19. b

    Zomerganzen - Summering geese management and population counts in Flanders,...

    • data.biodiversity.be
    Updated Aug 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Zomerganzen - Summering geese management and population counts in Flanders, Belgium - Dataset - Belgian biodiversity data portal [Dataset]. https://data.biodiversity.be/dataset/2b2bf993-fc91-4d29-ae0b-9940b97e3232
    Explore at:
    Dataset updated
    Aug 20, 2024
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Flanders, Belgium
    Description

    Zomerganzen - Summering geese management and population counts in Flanders, Belgium is a sampling event dataset published by the Research Institute for Nature and Forest (INBO). The dataset contains over 3,700 sampling events, carried out since 2009, mostly in the months June and July. The data are compiled from different summering geese related projects, but most data were collected through fieldwork within the framework of the EU co-funded Interreg projects INVEXO (http://www.invexo.eu) and RINSE (www.rinse-europe.eu). Since 2015, data collection is funded by INBO. The dataset includes close to 5,000 presence occurrences, as well as over 15,000 absence occurrences. The sampling protocol for the majority of the occurrences are simultaneous counts. Here, the number of individuals of different geese species in a fixed set of areas is determined. Counts are performed within the same weekend to avoid double counting. Simultaneous counts were organised yearly since 2008 and take place the first weekend after July 15, the best period for monitoring the summering population of geese. These counts are performed by professional INBO employees as well as experienced birdwatchers from Natuurpunt using a standardized field protocol. Data are recorded in a citizen science portal (http://waarnemingen.be/waarnemingen_projecten.php?project=231). However, The dataset also comprises opportunistic field observations from the same portal outside this period. Furthermore, data are derived from management actions, such as fertility reduction (egg shaking and pricking), the use of Larsen traps (for Egyptian goose), and the execution of moult captures. Here, the individuals in the dataset were actually removed from the environment. The aim of the data collection is management follow-up and evaluation. Consequently, caution is advised when using these data for trend analysis, distribution range calculation, niche modeling or other. Issues with the dataset can be reported at https://github.com/LifeWatchINBO/data-publication/tree/master/datasets/zomerganzen-events We strongly believe an open attitude is essential for tackling the IAS problem (Groom et al. 2015). To allow anyone to use this dataset, we have released the data to the public domain under a Creative Commons Zero waiver (http://creativecommons.org/publicdomain/zero/1.0/). We would appreciate it however if you read and follow these norms for data use (http://www.inbo.be/en/norms-for-data-use) and provide a link to the original dataset (https://doi.org/10.15468/a5ubtp) whenever possible. If you use these data for a scientific paper, please cite the dataset following the applicable citation norms and/or consider us for co-authorship. We are always interested to know how you have used or visualized the data, or to provide more information, so please contact us via the contact information provided in the metadata, opendata@inbo.be or https://twitter.com/LifeWatchINBO.

  20. d

    TagX Web Browsing clickstream Data - 300K Users North America, EU - GDPR -...

    • datarade.ai
    .json, .csv, .xls
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TagX (2024). TagX Web Browsing clickstream Data - 300K Users North America, EU - GDPR - CCPA Compliant [Dataset]. https://datarade.ai/data-products/tagx-web-browsing-clickstream-data-300k-users-north-america-tagx
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    TagX
    Area covered
    United States
    Description

    TagX Web Browsing Clickstream Data: Unveiling Digital Behavior Across North America and EU Unique Insights into Online User Behavior TagX Web Browsing clickstream Data offers an unparalleled window into the digital lives of 1 million users across North America and the European Union. This comprehensive dataset stands out in the market due to its breadth, depth, and stringent compliance with data protection regulations. What Makes Our Data Unique?

    Extensive Geographic Coverage: Spanning two major markets, our data provides a holistic view of web browsing patterns in developed economies. Large User Base: With 300K active users, our dataset offers statistically significant insights across various demographics and user segments. GDPR and CCPA Compliance: We prioritize user privacy and data protection, ensuring that our data collection and processing methods adhere to the strictest regulatory standards. Real-time Updates: Our clickstream data is continuously refreshed, providing up-to-the-minute insights into evolving online trends and user behaviors. Granular Data Points: We capture a wide array of metrics, including time spent on websites, click patterns, search queries, and user journey flows.

    Data Sourcing: Ethical and Transparent Our web browsing clickstream data is sourced through a network of partnered websites and applications. Users explicitly opt-in to data collection, ensuring transparency and consent. We employ advanced anonymization techniques to protect individual privacy while maintaining the integrity and value of the aggregated data. Key aspects of our data sourcing process include:

    Voluntary user participation through clear opt-in mechanisms Regular audits of data collection methods to ensure ongoing compliance Collaboration with privacy experts to implement best practices in data anonymization Continuous monitoring of regulatory landscapes to adapt our processes as needed

    Primary Use Cases and Verticals TagX Web Browsing clickstream Data serves a multitude of industries and use cases, including but not limited to:

    Digital Marketing and Advertising:

    Audience segmentation and targeting Campaign performance optimization Competitor analysis and benchmarking

    E-commerce and Retail:

    Customer journey mapping Product recommendation enhancements Cart abandonment analysis

    Media and Entertainment:

    Content consumption trends Audience engagement metrics Cross-platform user behavior analysis

    Financial Services:

    Risk assessment based on online behavior Fraud detection through anomaly identification Investment trend analysis

    Technology and Software:

    User experience optimization Feature adoption tracking Competitive intelligence

    Market Research and Consulting:

    Consumer behavior studies Industry trend analysis Digital transformation strategies

    Integration with Broader Data Offering TagX Web Browsing clickstream Data is a cornerstone of our comprehensive digital intelligence suite. It seamlessly integrates with our other data products to provide a 360-degree view of online user behavior:

    Social Media Engagement Data: Combine clickstream insights with social media interactions for a holistic understanding of digital footprints. Mobile App Usage Data: Cross-reference web browsing patterns with mobile app usage to map the complete digital journey. Purchase Intent Signals: Enrich clickstream data with purchase intent indicators to power predictive analytics and targeted marketing efforts. Demographic Overlays: Enhance web browsing data with demographic information for more precise audience segmentation and targeting.

    By leveraging these complementary datasets, businesses can unlock deeper insights and drive more impactful strategies across their digital initiatives. Data Quality and Scale We pride ourselves on delivering high-quality, reliable data at scale:

    Rigorous Data Cleaning: Advanced algorithms filter out bot traffic, VPNs, and other non-human interactions. Regular Quality Checks: Our data science team conducts ongoing audits to ensure data accuracy and consistency. Scalable Infrastructure: Our robust data processing pipeline can handle billions of daily events, ensuring comprehensive coverage. Historical Data Availability: Access up to 24 months of historical data for trend analysis and longitudinal studies. Customizable Data Feeds: Tailor the data delivery to your specific needs, from raw clickstream events to aggregated insights.

    Empowering Data-Driven Decision Making In today's digital-first world, understanding online user behavior is crucial for businesses across all sectors. TagX Web Browsing clickstream Data empowers organizations to make informed decisions, optimize their digital strategies, and stay ahead of the competition. Whether you're a marketer looking to refine your targeting, a product manager seeking to enhance user experience, or a researcher exploring digital trends, our cli...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Matthias Kleine (2023). Standard populations dataset [Dataset]. https://www.kaggle.com/datasets/matthiaskleine/standard-populations-dataset
Organization logo

Standard populations dataset

Collection of world wide standard populations used for age standardization

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Mar 12, 2023
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Matthias Kleine
Description

Do you know further standard populations?

If you know any further standard populations worth integrating in this dataset, please let me know in the discussion part. I would be happy to integrate further data to make this dataset more useful for everybody.

German "Federal Health Monitoring System" about 'standard populations':

"Standard populations are "artificial populations" with fictitious age structures, that are used in age standardization as uniform basis for the calculation of comparable measures for the respective reference population(s).

Use: Age standardizations based on a standard population are often used at cancer registries to compare morbidity or mortality rates. If there are different age structures in populations of different regions or in a population in one region over time, the comparability of their mortality or morbidity rates is only limited. For interregional or inter-temporal comparisons, therefore, an age standardization is necessary. For this purpose the age structure of a reference population, the so-called standard population, is assumed for the study population. The age specific mortality or morbidity rates of the study population are weighted according to the age structure of the standard population. Selection of a standard population:

Which standard population is used for comparison basically, does not matter. It is important, however, that

  1. the demographic structure of the standard population is not too dissimilar to that of the reference population and
  2. the comparable rates refer to the same standard."

Aim of this dataset

The aim of this dataset is to provide a variety of the most commonly used 'standard populations'.

Currently, two files with 22 standard populations are provided: - standard_populations_20_age_groups.csv - 20 age groups: '0', '01-04', '05-09', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85-89', '90+' - 7 standard populations: 'Standard population Germany 2011', 'Standard population Germany 1987', 'Standard population of Europe 2013', 'Standard population Old Laender 1987', 'Standard population New Laender 1987', 'New standard population of Europe', 'World standard population' - source: German Federal Health Monitoring System

  • standard_populations_19_age_groups.csv
    • 19 age groups: '0', '01-04', '05-09', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85+'
    • 15 standard populations: '1940 U.S. Std Million', '1950 U.S. Std Million', '1960 U.S. Std Million', '1970 U.S. Std Million', '1980 U.S. Std Million', '1990 U.S. Std Million', '1991 Canadian Std Million', '1996 Canadian Std Million', '2000 U.S. Std Million', '2000 U.S. Std Population (Census P25-1130)', '2011 Canadian Standard Population', 'European (EU-27 plus EFTA 2011-2030) Std Million', 'European (Scandinavian 1960) Std Million', 'World (Segi 1960) Std Million', 'World (WHO 2000-2025) Std Million'
    • source: National Institutes of Health, National Cancer Institute, Surveillance, Epidemiology, and End Results Program

Terms of use

No restrictions are known to the author. Standard populations are published by different organisations for public usage.

Search
Clear search
Close search
Google apps
Main menu