29 datasets found
  1. Total population worldwide 1950-2100

    • ai-chatbox.pro
    • statista.com
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Total population worldwide 1950-2100 [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F13342%2Faging-populations%2F%23XgboD02vawLKoDs%2BT%2BQLIV8B6B4Q9itA
    Explore at:
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

  2. Data from: United States annual state-level population estimates from...

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +3more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). United States annual state-level population estimates from colonization to 1999 [Dataset]. https://catalog.data.gov/dataset/united-states-annual-state-level-population-estimates-from-colonization-to-1999-2f176
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Area covered
    United States
    Description

    The U.S. landscape has undergone substantial changes since Europeans first arrived. Many land use changes are attributable to human activity. Historical data concerning these changes are frequently limited and often difficult to develop. Modeling historical land use changes may be necessary. We develop annual population series from first European settlement to 1999 for all 50 states and Washington D.C. for use in modeling land use trends. Extensive research went into developing the historical data. Linear interpolation was used to complete the series after critically evaluating the appropriateness of linear interpolation versus exponential interpolation.

  3. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  4. g

    GeoPostcodes Global Population by ZIP Code Database

    • geopostcodes.com
    csv
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). GeoPostcodes Global Population by ZIP Code Database [Dataset]. https://www.geopostcodes.com/population-by-zip-code/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    GeoPostcodes
    License

    https://www.geopostcodes.com/privacy-policy/https://www.geopostcodes.com/privacy-policy/

    Time period covered
    Jun 27, 2025
    Area covered
    World
    Description

    Comprehensive, annually-updated population datasets at ZIP code and administrative levels for 247 countries, spanning from 1975 to 2030, including historical, current, and projected population figures, enriched with attributes like area size, multilingual support, UNLOCODEs, IATA codes, and time zones.

  5. Κ

    Data from: Public Attitudes towards Immigration, News and Social Media...

    • datacatalogue.sodanet.gr
    csv, pdf, tsv
    Updated Apr 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Κατάλογος Δεδομένων SoDaNet (2024). Public Attitudes towards Immigration, News and Social Media Exposure, and Political Attitudes from a Cross-cultural Perspective: Data from seven European countries, the United States, and Colombia [Dataset]. http://doi.org/10.17903/FK2/JQ5JRI
    Explore at:
    tsv(12171706), pdf(421705), csv(17584912)Available download formats
    Dataset updated
    Apr 3, 2024
    Dataset provided by
    Κατάλογος Δεδομένων SoDaNet
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 2021 - Jun 2021
    Area covered
    Colombia, Austria, Germany, Italy, Spain, Hungary, Sweden, Belgium, United States
    Description

    The data presented in this data project were collected in the context of two H2020 research projects: ‘Enhanced migration measures from a multidimensional perspective’(HumMingBird) and ‘Crises as opportunities: Towards a level telling field on migration and a new narrative of successful integration’(OPPORTUNITIES). The current survey was fielded to investigate the dynamic interplay between media representations of different migrant groups and the governmental and societal (re)actions to immigration. With these data, we provide more insight into these societal reactions by investigating attitudes rooted in values and worldviews. Through an online survey, we collected quantitative data on attitudes towards: Immigrants, Refugees, Muslims, Hispanics, Venezuelans News Media Consumption Trust in News Media and Societal Institutions Frequency and Valence of Intergroup Contact Realistic and Symbolic Intergroup Threat Right-wing Authoritarianism Social Dominance Orientation Political Efficacy Personality Characteristics Perceived COVID-threat, and Socio-demographic Characteristics For the adult population aged 25 to 65 in seven European countries: Austria Belgium Germany Hungary Italy Spain Sweden And for ages ranged from 18 to 65 for: United States of America Colombia The survey in the United States and Colombia was identical to the one in the European countries, although a few extra questions regarding COVID-19 and some region-specific migrant groups (e.g. Venezuelans) were added. We collected the data in cooperation with Bilendi, a Belgian polling agency, and selected the methodology for its cost-effectiveness in cross-country research. Respondents received an e-mail asking them to participate in a survey without specifying the subject matter, which was essential to avoid priming. Three weeks of fieldwork in May and June of 2021 resulted in a dataset of 13,645 respondents (a little over 1500 per country). Sample weights are included in the dataset and can be applied to ensure that the sample is representative for gender and age in each country. The cooperation rate ranged between 12% and 31%, in line with similar online data collections.

  6. d

    Census Microdata Samples Project

    • dknet.org
    • scicrunch.org
    • +1more
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Census Microdata Samples Project [Dataset]. http://identifiers.org/RRID:SCR_008902
    Explore at:
    Dataset updated
    Sep 12, 2024
    Description

    A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219

  7. d

    Country-Level Population and Downscaled Projections Based on the SRES A1,...

    • catalog.data.gov
    • data.nasa.gov
    • +2more
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Country-Level Population and Downscaled Projections Based on the SRES A1, B1, and A2 Scenarios, 1990-2100 [Dataset]. https://catalog.data.gov/dataset/country-level-population-and-downscaled-projections-based-on-the-sres-a1-b1-and-a2-sc-1990
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Description

    The Country-Level Population and Downscaled Projections Based on Special Report on Emissions Scenarios (SRES) A1, B1, and A2 Scenarios, 1990-2100, were adopted in 2000 from population projections realized at the International Institute for Applied Systems Analysis (IIASA) in 1996. The Intergovernmental Panel on Climate Change (IPCC) SRES A1 and B1 scenarios both used the same IIASA "rapid" fertility transition projection, which assumes low fertility and low mortality rates. The SRES A2 scenario used a corresponding IIASA "slow" fertility transition projection (high fertility and high mortality rates). Both IIASA low and high projections are performed for 13 world regions including North Africa, Sub-Saharan Africa, China and Centrally Planned Asia, Pacific Asia, Pacific OECD, Central Asia, Middle East, South Asia, Eastern Europe, European part of the former Soviet Union, Western Europe, Latin America, and North America. This data set is produced and distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  8. d

    Data from: Country-Level Population and Downscaled Projections Based on the...

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Country-Level Population and Downscaled Projections Based on the SRES B2 Scenario, 1990-2100 [Dataset]. https://catalog.data.gov/dataset/country-level-population-and-downscaled-projections-based-on-the-sres-b2-scenario-1990-210
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Description

    The Country-Level Population and Downscaled Projections Based on Special Report on Emissions Scenarios (SRES) B2 Scenario, 1990-2100, were based on the UN 1998 Medium Long Range Projection for the years 1995 to 2100. The official version projects population for 8 regions of the world including Africa, Asia (minus India and China), India, China, Europe, Latin America, Northern America, and Oceania. This data set is produced and distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  9. d

    Loudoun County 2020 Census Population Patterns by Race and Hispanic or...

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated Jan 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loudoun County GIS (2025). Loudoun County 2020 Census Population Patterns by Race and Hispanic or Latino Ethnicity [Dataset]. https://catalog.data.gov/dataset/loudoun-county-2020-census-population-patterns-by-race-and-hispanic-or-latino-ethnicity
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    Loudoun County GIS
    Area covered
    Loudoun County
    Description

    Use this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.

  10. Global patterns of current and future road infrastructure - Supplementary...

    • zenodo.org
    • explore.openaire.eu
    bin, zip
    Updated Apr 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meijer; Meijer; Huijbregts; Huijbregts; Schotten; Schipper; Schipper; Schotten (2022). Global patterns of current and future road infrastructure - Supplementary spatial data [Dataset]. http://doi.org/10.5281/zenodo.6420961
    Explore at:
    zip, binAvailable download formats
    Dataset updated
    Apr 7, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Meijer; Meijer; Huijbregts; Huijbregts; Schotten; Schipper; Schipper; Schotten
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Global patterns of current and future road infrastructure - Supplementary spatial data

    Authors: Johan Meijer, Mark Huijbregts, Kees Schotten, Aafke Schipper

    Research paper summary: Georeferenced information on road infrastructure is essential for spatial planning, socio-economic assessments and environmental impact analyses. Yet current global road maps are typically outdated or characterized by spatial bias in coverage. In the Global Roads Inventory Project we gathered, harmonized and integrated nearly 60 geospatial datasets on road infrastructure into a global roads dataset. The resulting dataset covers 222 countries and includes over 21 million km of roads, which is two to three times the total length in the currently best available country-based global roads datasets. We then related total road length per country to country area, population density, GDP and OECD membership, resulting in a regression model with adjusted R2 of 0.90, and found that that the highest road densities are associated with densely populated and wealthier countries. Applying our regression model to future population densities and GDP estimates from the Shared Socioeconomic Pathway (SSP) scenarios, we obtained a tentative estimate of 3.0–4.7 million km additional road length for the year 2050. Large increases in road length were projected for developing nations in some of the world's last remaining wilderness areas, such as the Amazon, the Congo basin and New Guinea. This highlights the need for accurate spatial road datasets to underpin strategic spatial planning in order to reduce the impacts of roads in remaining pristine ecosystems.

    Contents: The GRIP dataset consists of global and regional vector datasets in ESRI filegeodatabase and shapefile format, and global raster datasets of road density at a 5 arcminutes resolution (~8x8km). The GRIP dataset is mainly aimed at providing a roads dataset that is easily usable for scientific global environmental and biodiversity modelling projects. The dataset is not suitable for navigation. GRIP4 is based on many different sources (including OpenStreetMap) and to the best of our ability we have verified their public availability, as a criteria in our research. The UNSDI-Transportation datamodel was applied for harmonization of the individual source datasets. GRIP4 is provided under a Creative Commons License (CC-0) and is free to use. The GRIP database and future global road infrastructure scenario projections following the Shared Socioeconomic Pathways (SSPs) are described in the paper by Meijer et al (2018). Due to shapefile file size limitations the global file is only available in ESRI filegeodatabase format.

    Regional coding of the other vector datasets in shapefile and ESRI fgdb format:

    • Region 1: North America
    • Region 2: Central and South America
    • Region 3: Africa
    • Region 4: Europe
    • Region 5: Middle East and Central Asia
    • Region 6: South and East Asia
    • Region 7: Oceania

    Road density raster data:

    • Total density, all types combined
    • Type 1 density (highways)
    • Type 2 density (primary roads)
    • Type 3 density (secondary roads)
    • Type 4 density (tertiary roads)
    • Type 5 density (local roads)

    Keyword: global, data, roads, infrastructure, network, global roads inventory project (GRIP), SSP scenarios

  11. Reconstructing the Population Genetic History of the Caribbean

    • plos.figshare.com
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrés Moreno-Estrada; Simon Gravel; Fouad Zakharia; Jacob L. McCauley; Jake K. Byrnes; Christopher R. Gignoux; Patricia A. Ortiz-Tello; Ricardo J. Martínez; Dale J. Hedges; Richard W. Morris; Celeste Eng; Karla Sandoval; Suehelay Acevedo-Acevedo; Paul J. Norman; Zulay Layrisse; Peter Parham; Juan Carlos Martínez-Cruzado; Esteban González Burchard; Michael L. Cuccaro; Eden R. Martin; Carlos D. Bustamante (2023). Reconstructing the Population Genetic History of the Caribbean [Dataset]. http://doi.org/10.1371/journal.pgen.1003925
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Andrés Moreno-Estrada; Simon Gravel; Fouad Zakharia; Jacob L. McCauley; Jake K. Byrnes; Christopher R. Gignoux; Patricia A. Ortiz-Tello; Ricardo J. Martínez; Dale J. Hedges; Richard W. Morris; Celeste Eng; Karla Sandoval; Suehelay Acevedo-Acevedo; Paul J. Norman; Zulay Layrisse; Peter Parham; Juan Carlos Martínez-Cruzado; Esteban González Burchard; Michael L. Cuccaro; Eden R. Martin; Carlos D. Bustamante
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Caribbean
    Description

    The Caribbean basin is home to some of the most complex interactions in recent history among previously diverged human populations. Here, we investigate the population genetic history of this region by characterizing patterns of genome-wide variation among 330 individuals from three of the Greater Antilles (Cuba, Puerto Rico, Hispaniola), two mainland (Honduras, Colombia), and three Native South American (Yukpa, Bari, and Warao) populations. We combine these data with a unique database of genomic variation in over 3,000 individuals from diverse European, African, and Native American populations. We use local ancestry inference and tract length distributions to test different demographic scenarios for the pre- and post-colonial history of the region. We develop a novel ancestry-specific PCA (ASPCA) method to reconstruct the sub-continental origin of Native American, European, and African haplotypes from admixed genomes. We find that the most likely source of the indigenous ancestry in Caribbean islanders is a Native South American component shared among inland Amazonian tribes, Central America, and the Yucatan peninsula, suggesting extensive gene flow across the Caribbean in pre-Columbian times. We find evidence of two pulses of African migration. The first pulse—which today is reflected by shorter, older ancestry tracts—consists of a genetic component more similar to coastal West African regions involved in early stages of the trans-Atlantic slave trade. The second pulse—reflected by longer, younger tracts—is more similar to present-day West-Central African populations, supporting historical records of later transatlantic deportation. Surprisingly, we also identify a Latino-specific European component that has significantly diverged from its parental Iberian source populations, presumably as a result of small European founder population size. We demonstrate that the ancestral components in admixed genomes can be traced back to distinct sub-continental source populations with far greater resolution than previously thought, even when limited pre-Columbian Caribbean haplotypes have survived.

  12. Financing the State: Government Tax Revenue from 1800 to 2012, 31 countries

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Apr 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andersson, Per F.; Brambor, Thomas (2022). Financing the State: Government Tax Revenue from 1800 to 2012, 31 countries [Dataset]. http://doi.org/10.3886/ICPSR38308.v1
    Explore at:
    ascii, r, delimited, spss, stata, sasAvailable download formats
    Dataset updated
    Apr 21, 2022
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Andersson, Per F.; Brambor, Thomas
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38308/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38308/terms

    Time period covered
    1800 - 2012
    Area covered
    Norway, Peru, Belgium, Japan, Venezuela, Austria, Spain, Bolivia, Colombia, New Zealand
    Description

    This dataset presents information on historical central government revenues for 31 countries in Europe and the Americas for the period from 1800 (or independence) to 2012. The countries included are: Argentina, Australia, Austria, Belgium, Bolivia, Brazil, Canada, Chile, Colombia, Denmark, Ecuador, Finland, France, Germany (West Germany between 1949 and 1990), Ireland, Italy, Japan, Mexico, New Zealand, Norway, Paraguay, Peru, Portugal, Spain, Sweden, Switzerland, the Netherlands, the United Kingdom, the United States, Uruguay, and Venezuela. In other words, the dataset includes all South American, North American, and Western European countries with a population of more than one million, plus Australia, New Zealand, Japan, and Mexico. The dataset contains information on the public finances of central governments. To make such information comparable cross-nationally the researchers chose to normalize nominal revenue figures in two ways: (i) as a share of the total budget, and (ii) as a share of total gross domestic product. The total tax revenue of the central state is disaggregated guided by the Government Finance Statistics Manual 2001 of the International Monetary Fund (IMF) which provides a classification of types of revenue, and describes in detail the contents of each classification category. Given the paucity of detailed historical data and the needs of our project, researchers combined some subcategories. First, they were interested in total tax revenue, as well as the shares of total revenue coming from direct and indirect taxes. Further, they measured two sub-categories of direct taxation, namely taxes on property and income. For indirect taxes, they separated excises, consumption, and customs.

  13. Dynamics of Population Aging in Economic Commission for Europe (ECE)...

    • icpsr.umich.edu
    Updated Sep 27, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Economic Commission for Europe. Population Activities Unit (2013). Dynamics of Population Aging in Economic Commission for Europe (ECE) Countries, Census Microdata Samples: Finland, 1990 [Dataset]. http://doi.org/10.3886/ICPSR06797.v1
    Explore at:
    Dataset updated
    Sep 27, 2013
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United Nations Economic Commission for Europe. Population Activities Unit
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/6797/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6797/terms

    Time period covered
    1990
    Area covered
    Finland, Global
    Description

    The main objectives of this data collection effort were to assemble a set of cross-nationally comparable microdata samples for Economic Commission for Europe (ECE) countries based on the 1990 national population and housing censuses in countries of Europe and North America, and to use these samples to study the social and economic conditions of older persons. The samples are designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. The Finland microdata sample contains information on persons aged 50 and over and on the persons who reside with them. Variables included in this dataset provide information on geographic area, type of residency, type of dwelling, household characteristics and demographic characteristics such as age, sex, year of birth, household composition, marital status, number of children, education, income, religion, and occupation.

  14. Average daily time spent on social media worldwide 2012-2025

    • statista.com
    Updated Jun 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average daily time spent on social media worldwide 2012-2025 [Dataset]. https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    How much time do people spend on social media? As of 2025, the average daily social media usage of internet users worldwide amounted to 141 minutes per day, down from 143 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of 3 hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just 2 hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.

  15. u

    Data from: Patterns of Widespread Decline in North American Bumble Bees

    • agdatacommons.nal.usda.gov
    zip
    Updated Feb 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sydney A. Cameron; Jeffrey D. Lozier; James P. Strange; Jonathan B. Koch; Nils Cordes; Leellen F. Solter; Terry L. Griswold (2024). Data from: Patterns of Widespread Decline in North American Bumble Bees [Dataset]. http://doi.org/10.15482/USDA.ADC/1529234
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 8, 2024
    Dataset provided by
    USDA-ARS Pollinating Insect-Biology, Management, Systematics Research
    Authors
    Sydney A. Cameron; Jeffrey D. Lozier; James P. Strange; Jonathan B. Koch; Nils Cordes; Leellen F. Solter; Terry L. Griswold
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Bumble bees (Bombus) are vitally important pollinators of wild plants and agricultural crops worldwide. Fragmentary observations, however, have suggested population declines in several North American species. Despite rising concern over these observations in the United States, highlighted in a recent National Academy of Sciences report, a national assessment of the geographic scope and possible causal factors of bumble bee decline is lacking. Here, we report results of a 3-y interdisciplinary study of changing distributions, population genetic structure, and levels of pathogen infection in bumble bee populations across the United States. We compare current and historical distributions of eight species, compiling a database of >73,000 museum records for comparison with data from intensive nationwide surveys of >16,000 specimens. We show that the relative abundances of four species have declined by up to 96% and that their surveyed geographic ranges have contracted by 23–87%, some within the last 20 y. We also show that declining populations have significantly higher infection levels of the microsporidian pathogen Nosema bombi and lower genetic diversity compared with co-occurring populations of the stable (nondeclining) species. Higher pathogen prevalence and reduced genetic diversity are, thus, realistic predictors of these alarming patterns of decline in North America, although cause and effect remain uncertain. Bumble bees (Bombus) are integral wild pollinators within native plant communities throughout temperate ecosystems, and recent domestication has boosted their economic importance in crop pollination to a level surpassed only by the honey bee. Their robust size, long tongues, and buzz-pollination behavior (high-frequency buzzing to release pollen from flowers) significantly increase the efficiency of pollen transfer in multibillion dollar crops such as tomatoes and berries. Disturbing reports of bumble bee population declines in Europe have recently spilled over into North America, fueling environmental and economic concerns of global decline. However, the evidence for large-scale range reductions across North America is lacking. Many reports of decline are unpublished, and the few published studies are limited to independent local surveys in northern California/southern Oregon, Ontario, Canada, and Illinois. Furthermore, causal factors leading to the alleged decline of bumble bee populations in North America remain speculative. One compelling but untested hypothesis for the cause of decline in the United States entails the spread of a putatively introduced pathogen, Nosema bombi, which is an obligate intracellular microsporidian parasite found commonly in bumble bees throughout Europe but largely unstudied in North America. Pathogenic effects of N. bombi may vary depending on the host species and reproductive caste and include reductions in colony growth and individual life span and fitness. Population genetic factors could also play a role in Bombus population decline. For instance, small effective population sizes and reduced gene flow among fragmented habitats can result in losses of genetic diversity with negative consequences, and the detrimental impacts of these genetic factors can be especially intensified in bees. Population genetic studies of Bombus are rare worldwide. A single study in the United States identified lower genetic diversity and elevated genetic differentiation (FST) among Illinois populations of the putatively declining B. pensylvanicus relative to those of a codistributed stable species. Similar patterns have been observed in comparative studies of some European species, but most investigations have been geographically restricted and based on limited sampling within and among populations. Although the investigations to date have provided important information on the increasing rarity of some bumble bee species in local populations, the different survey protocols and limited geographic scope of these studies cannot fully capture the general patterns necessary to evaluate the underlying processes or overall gravity of declines. Furthermore, valid tests of the N. bombi hypothesis and its risk to populations across North America call for data on its geographic distribution and infection prevalence among species. Likewise, testing the general importance of population genetic factors in bumble bee decline requires genetic comparisons derived from sampling of multiple stable and declining populations on a large geographic scale. From such range-wide comparisons, we provide incontrovertible evidence that multiple Bombus species have experienced sharp population declines at the national level. We also show that declining populations are associated with both high N. bombi infection levels and low genetic diversity. This data was used in the paper "Patterns of widespread decline in North American bumble bees" published in the Proceedings of the National Academy of United States of America. For more information about this dataset contact: Sydney A. Cameron: scameron@life.illinois.edu James Strange: James.Strange@ars.usda.gov Resources in this dataset:Resource Title: Data from: Patterns of Widespread Decline in North American Bumble Bees (Data Dictionary). File Name: meta.xmlResource Description: This is an XML data dictionary for Data from: Patterns of Widespread Decline in North American Bumble Bees.Resource Title: Patterns of Widespread Decline in North American Bumble Bees (DWC Archive). File Name: occurrence.csvResource Description: File modified to remove fields with no recorded values.Resource Title: Patterns of Widespread Decline in North American Bumble Bees (DWC Archive). File Name: dwca-usda-ars-patternsofwidespreaddecline-bumblebees-v1.1.zipResource Description: Data from: Patterns of Widespread Decline in North American Bumble Bees -- this is a Darwin Core Archive file. The Darwin Core Archive is a zip file that contains three documents.

    The occurrence data is stored in the occurrence.txt file. The metadata that describes the columns of this document is called meta.xml. This document is also the data dictionary for this dataset. The metadata that describes the dataset, including author and contact information for this dataset is called eml.xml.

    Find the data files at https://bison.usgs.gov/ipt/resource?r=usda-ars-patternsofwidespreaddecline-bumblebees

  16. g

    Zomerganzen - Summering geese management and population counts in Flanders,...

    • gimi9.com
    Updated Jan 20, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Zomerganzen - Summering geese management and population counts in Flanders, Belgium | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_27d481cd-c219-4ef6-a0c7-1f0f3b69555a/
    Explore at:
    Dataset updated
    Jan 20, 2016
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Flanders, Belgium
    Description

    Zomerganzen - Summering geese management and population counts in Flanders, Belgium is a sampling event dataset published by the Research Institute for Nature and Forest (INBO). The dataset contains over 3,700 sampling events, carried out since 2009, mostly in the months June and July. The data are compiled from different summering geese related projects, but most data were collected through fieldwork within the framework of the EU co-funded Interreg projects INVEXO (http://www.invexo.eu) and RINSE (www.rinse-europe.eu). Since 2015, data collection is funded by INBO. The dataset includes close to 5,000 presence occurrences, as well as over 15,000 absence occurrences. The sampling protocol for the majority of the occurrences are simultaneous counts. Here, the number of individuals of different geese species in a fixed set of areas is determined. Counts are performed within the same weekend to avoid double counting. Simultaneous counts were organised yearly since 2008 and take place the first weekend after July 15, the best period for monitoring the summering population of geese. These counts are performed by professional INBO employees as well as experienced birdwatchers from Natuurpunt using a standardized field protocol. Data are recorded in a citizen science portal (http://waarnemingen.be/waarnemingen_projecten.php?project=231). However, The dataset also comprises opportunistic field observations from the same portal outside this period. Furthermore, data are derived from management actions, such as fertility reduction (egg shaking and pricking), the use of Larsen traps (for Egyptian goose), and the execution of moult captures. Here, the individuals in the dataset were actually removed from the environment. The aim of the data collection is management follow-up and evaluation. Consequently, caution is advised when using these data for trend analysis, distribution range calculation, niche modeling or other. Issues with the dataset can be reported at https://github.com/LifeWatchINBO/data-publication/tree/master/datasets/zomerganzen-events We strongly believe an open attitude is essential for tackling the IAS problem (Groom et al. 2015). To allow anyone to use this dataset, we have released the data to the public domain under a Creative Commons Zero waiver (http://creativecommons.org/publicdomain/zero/1.0/). We would appreciate it however if you read and follow these norms for data use (http://www.inbo.be/en/norms-for-data-use) and provide a link to the original dataset (https://doi.org/10.15468/a5ubtp) whenever possible. If you use these data for a scientific paper, please cite the dataset following the applicable citation norms and/or consider us for co-authorship. We are always interested to know how you have used or visualized the data, or to provide more information, so please contact us via the contact information provided in the metadata, opendata@inbo.be or https://twitter.com/LifeWatchINBO.

  17. g

    Population born in Eastern and Southern Europe (non-EU), Africa, Asia or...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population born in Eastern and Southern Europe (non-EU), Africa, Asia or South America, share (%) | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_http-api-kolada-se-v2-kpi-n01716/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Southern Europe, Africa, Europe, South America, European Union
    Description

    Number of inhabitants born in Eastern and Southern Europe (non-EU), Africa, Asia or South America divided by the total population of the municipality.

  18. B

    International Cigarette Consumption Database v1.3

    • borealisdata.ca
    • search.dataone.org
    Updated Apr 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathieu JP Poirier; G Emmanuel Guindon; Lathika Sritharan; Steven J Hoffman (2022). International Cigarette Consumption Database v1.3 [Dataset]. http://doi.org/10.5683/SP2/AOVUW7
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 21, 2022
    Dataset provided by
    Borealis
    Authors
    Mathieu JP Poirier; G Emmanuel Guindon; Lathika Sritharan; Steven J Hoffman
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.5683/SP2/AOVUW7https://borealisdata.ca/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.5683/SP2/AOVUW7

    Time period covered
    1970 - 2015
    Dataset funded by
    Research Council of Norway
    Canadian Institutes of Health Research
    Description

    This database contains tobacco consumption data from 1970-2015 collected through a systematic search coupled with consultation with country and subject-matter experts. Data quality appraisal was conducted by at least two research team members in duplicate, with greater weight given to official government sources. All data was standardized into units of cigarettes consumed and a detailed accounting of data quality and sourcing was prepared. Data was found for 82 of 214 countries for which searches for national cigarette consumption data were conducted, representing over 95% of global cigarette consumption and 85% of the world’s population. Cigarette consumption fell in most countries over the past three decades but trends in country specific consumption were highly variable. For example, China consumed 2.5 million metric tonnes (MMT) of cigarettes in 2013, more than Russia (0.36 MMT), the United States (0.28 MMT), Indonesia (0.28 MMT), Japan (0.20 MMT), and the next 35 highest consuming countries combined. The US and Japan achieved reductions of more than 0.1 MMT from a decade earlier, whereas Russian consumption plateaued, and Chinese and Indonesian consumption increased by 0.75 MMT and 0.1 MMT, respectively. These data generally concord with modelled country level data from the Institute for Health Metrics and Evaluation and have the additional advantage of not smoothing year-over-year discontinuities that are necessary for robust quasi-experimental impact evaluations. Before this study, publicly available data on cigarette consumption have been limited—either inappropriate for quasi-experimental impact evaluations (modelled data), held privately by companies (proprietary data), or widely dispersed across many national statistical agencies and research organisations (disaggregated data). This new dataset confirms that cigarette consumption has decreased in most countries over the past three decades, but that secular country specific consumption trends are highly variable. The findings underscore the need for more robust processes in data reporting, ideally built into international legal instruments or other mandated processes. To monitor the impact of the WHO Framework Convention on Tobacco Control and other tobacco control interventions, data on national tobacco production, trade, and sales should be routinely collected and openly reported. The first use of this database for a quasi-experimental impact evaluation of the WHO Framework Convention on Tobacco Control is: Hoffman SJ, Poirier MJP, Katwyk SRV, Baral P, Sritharan L. Impact of the WHO Framework Convention on Tobacco Control on global cigarette consumption: quasi-experimental evaluations using interrupted time series analysis and in-sample forecast event modelling. BMJ. 2019 Jun 19;365:l2287. doi: https://doi.org/10.1136/bmj.l2287 Another use of this database was to systematically code and classify longitudinal cigarette consumption trajectories in European countries since 1970 in: Poirier MJ, Lin G, Watson LK, Hoffman SJ. Classifying European cigarette consumption trajectories from 1970 to 2015. Tobacco Control. 2022 Jan. DOI: 10.1136/tobaccocontrol-2021-056627. Statement of Contributions: Conceived the study: GEG, SJH Identified multi-country datasets: GEG, MP Extracted data from multi-country datasets: MP Quality assessment of data: MP, GEG Selection of data for final analysis: MP, GEG Data cleaning and management: MP, GL Internet searches: MP (English, French, Spanish, Portuguese), GEG (English, French), MYS (Chinese), SKA (Persian), SFK (Arabic); AG, EG, BL, MM, YM, NN, EN, HR, KV, CW, and JW (English), GL (English) Identification of key informants: GEG, GP Project Management: LS, JM, MP, SJH, GEG Contacts with Statistical Agencies: MP, GEG, MYS, SKA, SFK, GP, BL, MM, YM, NN, HR, KV, JW, GL Contacts with key informants: GEG, MP, GP, MYS, GP Funding: GEG, SJH SJH: Hoffman, SJ; JM: Mammone J; SRVK: Rogers Van Katwyk, S; LS: Sritharan, L; MT: Tran, M; SAK: Al-Khateeb, S; AG: Grjibovski, A.; EG: Gunn, E; SKA: Kamali-Anaraki, S; BL: Li, B; MM: Mahendren, M; YM: Mansoor, Y; NN: Natt, N; EN: Nwokoro, E; HR: Randhawa, H; MYS: Yunju Song, M; KV: Vercammen, K; CW: Wang, C; JW: Woo, J; MJPP: Poirier, MJP; GEG: Guindon, EG; GP: Paraje, G; GL Gigi Lin Key informants who provided data: Corne van Walbeek (South Africa, Jamaica) Frank Chaloupka (US) Ayda Yurekli (Turkey) Dardo Curti (Uruguay) Bungon Ritthiphakdee (Thailand) Jakub Lobaszewski (Poland) Guillermo Paraje (Chile, Argentina) Key informants who provided useful insights: Carlos Manuel Guerrero López (Mexico) Muhammad Jami Husain (Bangladesh) Nigar Nargis (Bangladesh) Rijo M John (India) Evan Blecher (Nigeria, Indonesia, Philippines, South Africa) Yagya Karki (Nepal) Anne CK Quah (Malaysia) Nery Suarez Lugo (Cuba) Agencies providing assistance: Iranian Tobacco Co. Institut National de la Statistique (Tunisia) HM Revenue & Customs (UK) Eidgenössisches Finanzdepartement EFD/Département...

  19. b

    Gestion des oies d'été et dénombrement des populations en Flandre, Belgique

    • ldf.belgif.be
    Updated Apr 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Gestion des oies d'été et dénombrement des populations en Flandre, Belgique [Dataset]. https://ldf.belgif.be/datagovbe?subject=https%3A%2F%2Fipt.inbo.be%2Fresource%3Fr%3Dzomerganzen-events%23Dataset
    Explore at:
    Dataset updated
    Apr 12, 2021
    Area covered
    Belgium
    Variables measured
    http://publications.europa.eu/resource/authority/data-theme/AGRI, http://publications.europa.eu/resource/authority/data-theme/ENVI
    Description

    Summering geese management and population counts in Flanders, Belgium is a sampling event dataset published by the Research Institute for Nature and Forest (INBO). The dataset contains over 3,700 sampling events, carried out since 2009, mostly in the months June and July. The data are compiled from different summering geese related projects, but most data were collected through fieldwork within the framework of the EU co-funded Interreg projects INVEXO (http://www.invexo.eu) and RINSE (www.rinse-europe.eu). Since 2015, data collection is funded by INBO. The dataset includes close to 5,000 presence occurrences, as well as over 15,000 absence occurrences. The sampling protocol for the majority of the occurrences are simultaneous counts. Here, the number of individuals of different geese species in a fixed set of areas is determined. Counts are performed within the same weekend to avoid double counting. Simultaneous counts were organised yearly since 2008 and take place the first weekend after July 15, the best period for monitoring the summering population of geese. These counts are performed by professional INBO employees as well as experienced birdwatchers from Natuurpunt using a standardized field protocol. Data are recorded in a citizen science portal (http://waarnemingen.be/waarnemingen_projecten.php?project=231). However, The dataset also comprises opportunistic field observations from the same portal outside this period. Furthermore, data are derived from management actions, such as fertility reduction (egg shaking and pricking), the use of Larsen traps (for Egyptian goose), and the execution of moult captures. Here, the individuals in the dataset were actually removed from the environment. The aim of the data collection is management follow-up and evaluation. Consequently, caution is advised when using these data for trend analysis, distribution range calculation, niche modeling or other. Issues with the dataset can be reported at https://github.com/LifeWatchINBO/data-publication/tree/master/datasets/zomerganzen-events We strongly believe an open attitude is essential for tackling the IAS problem (Groom et al. 2015). To allow anyone to use this dataset, we have released the data to the public domain under a Creative Commons Zero waiver (http://creativecommons.org/publicdomain/zero/1.0/). We would appreciate it however if you read and follow these norms for data use (http://www.inbo.be/en/norms-for-data-use) and provide a link to the original dataset (https://doi.org/10.15468/a5ubtp) whenever possible. If you use these data for a scientific paper, please cite the dataset following the applicable citation norms and/or consider us for co-authorship. We are always interested to know how you have used or visualized the data, or to provide more information, so please contact us via the contact information provided in the metadata, opendata@inbo.be or https://twitter.com/LifeWatchINBO.

  20. Z

    Tutorial Data Bundle for PyPSA-Eur: An Open Optimisation Model of the...

    • data.niaid.nih.gov
    Updated Jan 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Schlachtberger (2020). Tutorial Data Bundle for PyPSA-Eur: An Open Optimisation Model of the European Transmission System [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3517920
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Jonas Hörsch
    Tom Brown
    David Schlachtberger
    Fabian Hofmann
    Fabian Neumann
    Description

    PyPSA-Eur is an open model dataset of the European power system at the transmission network level that covers the full ENTSO-E area. It can be built using the code provided at https://github.com/PyPSA/PyPSA-eur.

    It contains alternating current lines at and above 220 kV voltage level and all high voltage direct current lines, substations, an open database of conventional power plants, time series for electrical demand and variable renewable generator availability, and geographic potentials for the expansion of wind and solar power.

    Not all data dependencies are shipped with the code repository, since git is not suited for handling large changing files. Instead we provide separate data bundles to be downloaded and extracted as noted in the documentation.

    This is the lightweight data bundle to be used for the PyPSA-Eur tutorial. It excludes large bathymetry and natural protection area datasets.

    While the code in PyPSA-Eur is released as free software under the GPLv3, different licenses and terms of use apply to the various input data, which are summarised and linked below:

    corine/*

    CORINE Land Cover (CLC) database

    Source: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/

    Extract from Terms of Use:

    Access to data is based on a principle of full, open and free access as established by the Copernicus data and information policy Regulation (EU) No 1159/2013 of 12 July 2013. This regulation establishes registration and licensing conditions for GMES/Copernicus users and can be found here. Free, full and open access to this data set is made on the conditions that:

    When distributing or communicating Copernicus dedicated data and Copernicus service information to the public, users shall inform the public of the source of that data and information.

    Users shall make sure not to convey the impression to the public that the user's activities are officially endorsed by the Union.

    Where that data or information has been adapted or modified, the user shall clearly state this.

    The data remain the sole property of the European Union. Any information and data produced in the framework of the action shall be the sole property of the European Union. Any communication and publication by the beneficiary shall acknowledge that the data were produced “with funding by the European Union”.

    https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012?tab=metadata

    eez/*

    World exclusive economic zones (EEZ)

    Source: http://www.marineregions.org/sources.php#unioneezcountry

    Extract from Terms of Use:

    Marine Regions’ products are licensed under CC-BY-NC-SA. Please contact us for other uses of the Licensed Material beyond license terms. We kindly request our users not to make our products available for download elsewhere and to always refer to marineregions.org for the most up-to-date products and services.

    http://www.marineregions.org/disclaimer.php

    naturalearth/*

    World country shapes

    Source: https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-countries/

    Extract from Terms of Use:

    All versions of Natural Earth raster + vector map data found on this website are in the public domain. You may use the maps in any manner, including modifying the content and design, electronic dissemination, and offset printing. The primary authors, Tom Patterson and Nathaniel Vaughn Kelso, and all other contributors renounce all financial claim to the maps and invites you to use them for personal, educational, and commercial purposes.

    No permission is needed to use Natural Earth. Crediting the authors is unnecessary.

    http://www.naturalearthdata.com/about/terms-of-use/

    NUTS_2013_60M_SH/*

    Europe NUTS3 regions

    Source: https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units

    Extract from Terms of Use:

    In addition to the general copyright and licence policy applicable to the whole Eurostat website, the following specific provisions apply to the datasets you are downloading. The download and usage of these data is subject to the acceptance of the following clauses:

    The Commission agrees to grant the non-exclusive and not transferable right to use and process the Eurostat/GISCO geographical data downloaded from this page (the "data").

    The permission to use the data is granted on condition that: the data will not be used for commercial purposes; the source will be acknowledged. A copyright notice, as specified below, will have to be visible on any printed or electronic publication using the data downloaded from this page.

    https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units

    https://ec.europa.eu/eurostat/about/policies/copyright

    ch_cantons.csv

    Mapping between Swiss Cantons and NUTS3 regions

    Source: https://en.wikipedia.org/wiki/Data_codes_for_Switzerland

    Extract from Terms of Use:

    Creative Commons Attribution-ShareAlike 3.0 Unported License

    https://en.wikipedia.org/wiki/Data_codes_for_Switzerland

    EIA_hydro_generation_2000_2014.csv

    Hydroelectricity generation per country and year

    Source: https://www.eia.gov/beta/international/data/browser/#/?pa=000000000000000000000000000000g&c=1028i008006gg6168g80a4k000e0ag00gg0004g800ho00g8&ct=0&ug=8&tl_id=2-A&vs=INTL.33-12-ALB-BKWH.A&cy=2014&vo=0&v=H&start=2000&end=2016

    Extract from Terms of Use:

    Public domain and use of EIA content: U.S. government publications are in the public domain and are not subject to copyright protection. You may use and/or distribute any of our data, files, databases, reports, graphs, charts, and other information products that are on our website or that you receive through our email distribution service. However, if you use or reproduce any of our information products, you should use an acknowledgment, which includes the publication date, such as: "Source: U.S. Energy Information Administration (Oct 2008)."

    https://www.eia.gov/about/copyrights_reuse.php

    hydro_capacities.csv

    Hydroelectricity generation and storage capacities

    Source:

    A. Kies, K. Chattopadhyay, L. von Bremen, E. Lorenz, D. Heinemann, RESTORE 2050 Work Package Report D12: Simulation of renewable feed-in for power system studies., Tech. rep., RESTORE 2050 (2016).

    B. Pfluger, F. Sensfuß, G. Schubert, J. Leisentritt, Tangible ways towards climate protection in the European Union (EU Long-term scenarios 2050), Fraunhofer ISI. https://www.isi.fraunhofer.de/content/dam/isi/dokumente/ccx/2011/Final_Report_EU-Long-term-scenarios-2050.pdf

    je-e-21.03.02.xls

    Population and GDP data for Swiss Cantons

    Source: https://www.bfs.admin.ch/bfs/en/home/news/whats-new.assetdetail.7786557.html

    Extract from Terms of Use:

    Information on the websites of the Federal Authorities is accessible to the public. Downloading, copying or integrating content (texts, tables, graphics, maps, photos or any other data) does not entail any transfer of rights to the content.

    Copyright and any other rights relating to content available on the websites of the Federal Authorities are the exclusive property of the Federal Authorities or of any other expressly mentioned owners.

    Any reproduction requires the prior written consent of the copyright holder. The source of the content (statistical results) should always be given. Anyone who intends on using statistical results for commercial purposes or gain must obtain an authorisation pursuant to Art. 13 of the Fee Ordinance and is liable to pay an indemnity. Please contact the FSO for this purpose.

    https://www.bfs.admin.ch/bfs/en/home/fso/swiss-federal-statistical-office/terms-of-use.html

    https://www.bfs.admin.ch/bfs/de/home/bfs/oeffentliche-statistik/copyright.html

    nama_10r_3gdp.tsv.gz

    Gross domestic product (GDP) by NUTS3 region

    Source: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_3gdp&lang=

    Extract from Terms of Use:

    Eurostat has a policy of encouraging free re-use of its data, both for non-commercial and commercial purposes. All statistical data, metadata, content of web pages or other dissemination tools, official publications and other documents published on its website, with the exceptions listed below, can be reused without any payment or written licence provided that:

    the source is indicated as Eurostat;

    when re-use involves modifications to the data or text, this must be stated clearly to the end user of the information.

    Exceptions

    The permission granted above does not extend to any material whose copyright is identified as belonging to a third-party, such as photos or illustrations from copyright holders other than the European Union. In these circumstances, authorisation must be obtained from the relevant copyright holder(s).

    Logos and trademarks are excluded from the above mentioned general permission, except if they are redistributed as an integral part of a Eurostat publication and if the publication is redistributed unchanged.

    When reuse involves translations of publications or modifications to the data or text, this must be stated clearly to the end user of the information. A disclaimer regarding the non-responsibility of Eurostat shall be included.

    https://ec.europa.eu/eurostat/about/policies/copyright

    nama_10r_3popgdp.tsv.gz

    Population by NUTS3 region

    Source: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_3popgdp&lang=en

    Extract from Terms of Use:

    Eurostat has a policy of encouraging free re-use of its data, both for non-commercial and commercial purposes. All statistical data, metadata, content of web pages or other dissemination tools, official publications and other documents published on its website, with the exceptions listed below, can be reused without any payment or written licence provided

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista Research Department (2025). Total population worldwide 1950-2100 [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F13342%2Faging-populations%2F%23XgboD02vawLKoDs%2BT%2BQLIV8B6B4Q9itA
Organization logo

Total population worldwide 1950-2100

Explore at:
Dataset updated
Apr 8, 2025
Dataset provided by
Statistahttp://statista.com/
Authors
Statista Research Department
Area covered
World
Description

The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

Search
Clear search
Close search
Google apps
Main menu