Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Euro Area's main stock market index, the EU50, rose to 5684 points on December 2, 2025, gaining 0.27% from the previous session. Over the past month, the index has climbed 0.09% and is up 16.52% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Euro Area. Euro Area Stock Market Index (EU50) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for Euro Area Stock Market Index (EU600) including live quotes, historical charts and news. Euro Area Stock Market Index (EU600) was last updated by Trading Economics this December 2 of 2025.
Facebook
TwitterIn 2025, stock markets in the United States accounted for roughly ** percent of world stocks. The next largest country by stock market share was China, followed by the European Union as a whole. The New York Stock Exchange (NYSE) and the NASDAQ are the largest stock exchange operators worldwide. What is a stock exchange? The first modern publicly traded company was the Dutch East Industry Company, which sold shares to the general public to fund expeditions to Asia. Since then, groups of companies have formed exchanges in which brokers and dealers can come together and make transactions in one space. Stock market indices group companies trading on a given exchange, giving an idea of how they evolve in real time. Appeal of stock ownership Over half of adults in the United States are investing money in the stock market. Stocks are an attractive investment because the possible return is higher than offered by other financial instruments.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for Euro Area Stock Market Index (Euronext 100) including live quotes, historical charts and news. Euro Area Stock Market Index (Euronext 100) was last updated by Trading Economics this December 3 of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Humanity’s role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the ‘anthropocene’, as humans are ‘overwhelming the great forces of nature’. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed ‘manufactured capital’, ‘technomass’, ‘human-made mass’, ‘in-use stocks’ or ‘socioeconomic material stocks’, they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with ‘real’ (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called ‘built structures’) represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extent This subdataset covers the North East CONUS, i.e. CT DC DE MA MD ME NH NJ NY PA RI VA For the remaining CONUS, see the related identifiers. Temporal extent The map is representative for ca. 2018. Data format The data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layers Note that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further information For further information, please see the publication. A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication D. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gomez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, H. Haberl. Weighing the US Economy: Map of Built Structures Unveils Patterns in Human-Dominated Landscapes. In prep Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. Acknowledgments We thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Humanity’s role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the ‘anthropocene’, as humans are ‘overwhelming the great forces of nature’. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed ‘manufactured capital’, ‘technomass’, ‘human-made mass’, ‘in-use stocks’ or ‘socioeconomic material stocks’, they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with ‘real’ (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called ‘built structures’) represent the overwhelming majority of all socioeconomic material stocks.
This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors.
Spatial extent This subdataset covers the South CONUS, i.e.
AL
AR
FL
GA
KY
LA
MS
NC
SC
TN
VA
WV
For the remaining CONUS, see the related identifiers.
Temporal extent The map is representative for ca. 2018.
Data format The data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided.
Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types).
Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e.
t at 10m x 10m
kt at 100m x 100m
Mt at 1km x 1km
Gt at 10km x 10km
For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming.
Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv.
Material layers Note that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers):
A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337.
Further information For further information, please see the publication. A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society.
Publication D. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gomez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, H. Haberl. Weighing the US Economy: Map of Built Structures Unveils Patterns in Human-Dominated Landscapes. In prep
Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404.
Acknowledgments We thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Humanity’s role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the ‘anthropocene’, as humans are ‘overwhelming the great forces of nature’. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed ‘manufactured capital’, ‘technomass’, ‘human-made mass’, ‘in-use stocks’ or ‘socioeconomic material stocks’, they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with ‘real’ (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called ‘built structures’) represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extent This dataset covers the whole CONUS. Due to upload constraints, detailed data were split into 7 regions and were uploaded into sub-repositories - see related identifiers. (This repository holds aggregated values for the whole CONUS) Great Plains Mid West North East Rocky Mountains South South West West Coast Temporal extent The map is representative for ca. 2018. Data format The data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layers Note that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further information For further information, please see the publication. A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication D. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gomez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, H. Haberl. Weighing the US Economy: Map of Built Structures Unveils Patterns in Human-Dominated Landscapes. In prep Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. Acknowledgments We thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC, and Wolfgang Wagner for granting access to preprocessed Sentinel-1 data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Humanity’s role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the ‘anthropocene’, as humans are ‘overwhelming the great forces of nature’. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed ‘manufactured capital’, ‘technomass’, ‘human-made mass’, ‘in-use stocks’ or ‘socioeconomic material stocks’, they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with ‘real’ (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called ‘built structures’) represent the overwhelming majority of all socioeconomic material stocks.
This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors.
Spatial extent
This subdataset covers the Great Plains CONUS, i.e.
For the remaining CONUS, see the related identifiers.
Temporal extent
The map is representative for ca. 2018.
Data format
The data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided.
Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types).
Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e.
For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming.
Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv.
Material layers
Note that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers):
A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337.
Further information
For further information, please see the publication.
A web-visualization of this dataset is available here.
Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society.
Publication
D. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gomez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, H. Haberl. Weighing the US Economy: Map of Built Structures Unveils Patterns in Human-Dominated Landscapes. In prep
Funding
This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404.
Acknowledgments
We thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
France's main stock market index, the FR40, rose to 8121 points on December 2, 2025, gaining 0.29% from the previous session. Over the past month, the index has climbed 0.13% and is up 11.93% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Humanity's role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the 'anthropocene', as humans are 'overwhelming the great forces of nature'. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed 'manufactured capital', 'technomass', 'human-made mass', 'in-use stocks' or 'socioeconomic material stocks', they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with 'real' (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called 'built structures') represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extentThis subdataset covers the South West CONUS, i.e. AZ NM NV TX For the remaining CONUS, see the related identifiers. Temporal extentThe map is representative for ca. 2018. Data formatThe data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layersNote that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further informationFor further information, please see the publication.A web-visualization of this dataset is available here.Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. PublicationD. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gómez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, and H. Haberl (2023): Unveiling patterns in human dominated landscapes through mapping the mass of US built structures. Nature Communications 14, 8014. https://doi.org/10.1038/s41467-023-43755-5 FundingThis research was primarly funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. AcknowledgmentsWe thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Stock Price Time Series for Aedifica. Aedifica is a Regulated Real Estate Company under Belgian law specialised in European healthcare real estate, particularly in elderly care. Aedifica has developed a portfolio of more than 610 sites in Belgium, Germany, the Netherlands, the United Kingdom, Finland, Ireland and Spain, worth nearly Euro 6.2 billion. Aedifica is listed on Euronext Brussels (2006) and Euronext Amsterdam (2019) and is identified by the following ticker symbols: AED; AED:BB (Bloomberg); AOO.BR (Reuters). Since 2020, Aedifica has been part of the BEL 20, Euronext Brussels leading share index. Moreover, since 2023, Aedifica has been part of the BEL ESG, the index tracking companies that perform best on ESG criteria. Aedifica is also included in the EPRA, Stoxx Europe 600 and GPR indices. Aedifica market capitalisation was approx. Euro 3.0 billion as at 25 September 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Humanity’s role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the ‘anthropocene’, as humans are ‘overwhelming the great forces of nature’. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed ‘manufactured capital’, ‘technomass’, ‘human-made mass’, ‘in-use stocks’ or ‘socioeconomic material stocks’, they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with ‘real’ (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called ‘built structures’) represent the overwhelming majority of all socioeconomic material stocks.
This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors.
Spatial extent
This subdataset covers the Mid West CONUS, i.e.
For the remaining CONUS, see the related identifiers.
Temporal extent
The map is representative for ca. 2018.
Data format
The data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided.
Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types).
Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e.
For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming.
Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv.
Material layers
Note that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers):
A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337.
Further information
For further information, please see the publication.
A web-visualization of this dataset is available here.
Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society.
Publication
D. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gomez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, H. Haberl. Weighing the US Economy: Map of Built Structures Unveils Patterns in Human-Dominated Landscapes. In prep
Funding
This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404.
Acknowledgments
We thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Change-In-Cash Time Series for Covivio SA. Thanks to its partnering history, its real estate expertise and its European culture, Covivio is inventing today's user experience and designing tomorrow's city. A preferred real estate player at the European level, Covivio is close to its end users, capturing their aspirations, combining work, travel, living, and co-inventing vibrant spaces. A benchmark in the European real estate market with "23.6 bn in assets, Covivio offers support to companies, hotel brands and territories in their pursuit for attractiveness, transformation and responsible performance. Build sustainable relationships and well-being, is the Covivio's Purpose who expresses its role as a responsible real estate operator to all its stakeholders: customers, shareholders and financial partners, internal teams, local authorities but also to future generations and the planet. Furthermore, its living, dynamic approach opens up exciting projects and career prospects for its teams. Covivio's shares are listed in the Euronext Paris A compartment (FR0000064578 - COV), are admitted to trading on the SRD, and are included in the composition of the MSCI, SBF 120, Euronext IEIF "SIIC France" and CAC Mid100 indices, in the "EPRA" and "GPR 250" benchmark European real estate indices, and in the ESG FTSE4 Good, CAC SBT 1.5°C, DJSI World & Europe, Euronext Vigeo (World 120, Eurozone 120, Europe 120 and France 20), Euronext® CDP Environment France EW, ISS ESG, Ethibel and Gaïa ethical indices and also holds the following awards and ratings: CDP (A-), GRESB (88/100, 5-Star, 100% public disclosure), ISSESG (B-) and MSCI (AAA).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Humanity's role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the 'anthropocene', as humans are 'overwhelming the great forces of nature'. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed 'manufactured capital', 'technomass', 'human-made mass', 'in-use stocks' or 'socioeconomic material stocks', they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with 'real' (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called 'built structures') represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extentThis subdataset covers the Mid West CONUS, i.e. IA IL IN MI MN MO OH WI For the remaining CONUS, see the related identifiers. Temporal extentThe map is representative for ca. 2018. Data formatThe data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layersNote that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further informationFor further information, please see the publication.A web-visualization of this dataset is available here.Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. PublicationD. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gómez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, and H. Haberl (2023): Unveiling patterns in human dominated landscapes through mapping the mass of US built structures. Nature Communications 14, 8014. https://doi.org/10.1038/s41467-023-43755-5 FundingThis research was primarly funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. AcknowledgmentsWe thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany's main stock market index, the DE40, rose to 23722 points on December 2, 2025, gaining 0.56% from the previous session. Over the past month, the index has declined 1.70%, though it remains 18.51% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Germany. Germany Stock Market Index (DE40) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterIn 2024, the price of natural gas in Europe reached 11 constant U.S. dollars per million British thermal units, compared with 2.2 U.S. dollars in the U.S. This was a notable decrease compared to the previous year, which had seen a steep increase in prices due to an energy supply shortage exacerbated by the Russia-Ukraine war. Since 1980, natural gas prices have typically been higher in Europe than in the United States and are expected to remain so for the coming two years. This is due to the U.S. being a significantly larger natural gas producer than Europe. What is natural gas and why is it gaining ground in the energy market? Natural gas is commonly burned in power plants with combustion turbines that generate electricity or used as a heating fuel. Given the fact that the world’s energy demand continues to grow, natural gas was seen by some industry leaders as an acceptable "bridge-fuel" to overcome the use of more emission-intensive energy sources such as coal. Subsequently, natural gas has become the main fuel for electricity generation in the U.S., while the global gas power generation share has reached over 22 percent. How domestic production shapes U.S. natural gas prices The combination of hydraulic fracturing (“fracking”) and horizontal drilling can be regarded as one of the oil and gas industry’s biggest breakthroughs in decades, with the U.S. being the largest beneficiary. This technology has helped the industry release unprecedented quantities of gas from deposits, mainly shale and tar sands that were previously thought either inaccessible or uneconomic. It is forecast that U.S. shale gas production could reach 36 trillion cubic feet in 2050, up from 1.77 trillion cubic feet in 2000.
Facebook
TwitterAs of August 2024, the exchanged traded fund listed in Europe with the highest net inflow was the iShares Core S&P 500 UCITS ETF. From the start of the year up until this point, the ETF recorded more than 10.4 billion U.S. dollars of net inflows, being the difference between investors who purchase shares in the fund and investors who redeem shares in the fund.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Net-Borrowings Time Series for Covivio SA. Thanks to its partnering history, its real estate expertise and its European culture, Covivio is inventing today's user experience and designing tomorrow's city. A preferred real estate player at the European level, Covivio is close to its end users, capturing their aspirations, combining work, travel, living, and co-inventing vibrant spaces. A benchmark in the European real estate market with "23.6 bn in assets, Covivio offers support to companies, hotel brands and territories in their pursuit for attractiveness, transformation and responsible performance. Build sustainable relationships and well-being, is the Covivio's Purpose who expresses its role as a responsible real estate operator to all its stakeholders: customers, shareholders and financial partners, internal teams, local authorities but also to future generations and the planet. Furthermore, its living, dynamic approach opens up exciting projects and career prospects for its teams. Covivio's shares are listed in the Euronext Paris A compartment (FR0000064578 - COV), are admitted to trading on the SRD, and are included in the composition of the MSCI, SBF 120, Euronext IEIF "SIIC France" and CAC Mid100 indices, in the "EPRA" and "GPR 250" benchmark European real estate indices, and in the ESG FTSE4 Good, CAC SBT 1.5°C, DJSI World & Europe, Euronext Vigeo (World 120, Eurozone 120, Europe 120 and France 20), Euronext® CDP Environment France EW, ISS ESG, Ethibel and Gaïa ethical indices and also holds the following awards and ratings: CDP (A-), GRESB (88/100, 5-Star, 100% public disclosure), ISSESG (B-) and MSCI (AAA).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Liabilities-and-Stockholders-Equity Time Series for Aedifica. Aedifica is a Regulated Real Estate Company under Belgian law specialised in European healthcare real estate, particularly in elderly care. Aedifica has developed a portfolio of approx. 615 sites in Belgium, Germany, the Netherlands, the United Kingdom, Finland, Ireland and Spain, worth approx. 6.2 billion. Aedifica has been quoted on Euronext Brussels (regulated market) since 2006 and is identified by the following ticker symbols: AED; AED:BB (Bloomberg); AOO.BR (Reuters). Since 2020, Aedifica has been part of the BEL 20, Euronext Brussels leading share index. Moreover, since 2023, Aedifica has been part of the BEL ESG, the index tracking companies that perform best on ESG criteria. It is also included in the EPRA, Stoxx Europe 600 and GPR indices. Its market capitalisation was approx. 3.0 billion as at 31 October 2025.
Facebook
TwitterThis chart shows a ranking of the top European cosmetics markets between 2014 and 2023, based on their market value in billion euros. According to the source, Germany was the leader of the European market in 2023, with a market value of about 16 billion euros. From 2015 to 2020, the value of the French market remained relatively stable, fluctuating between a market value of 11.3 and 11.5 billion euros, reaching nearly 14 billion euros in 2022.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Euro Area's main stock market index, the EU50, rose to 5684 points on December 2, 2025, gaining 0.27% from the previous session. Over the past month, the index has climbed 0.09% and is up 16.52% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Euro Area. Euro Area Stock Market Index (EU50) - values, historical data, forecasts and news - updated on December of 2025.