57 datasets found
  1. T

    Euro Area Stock Market Index (EU50) Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Euro Area Stock Market Index (EU50) Data [Dataset]. https://tradingeconomics.com/euro-area/stock-market
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1986 - Dec 2, 2025
    Area covered
    Euro Area
    Description

    Euro Area's main stock market index, the EU50, rose to 5684 points on December 2, 2025, gaining 0.27% from the previous session. Over the past month, the index has climbed 0.09% and is up 16.52% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Euro Area. Euro Area Stock Market Index (EU50) - values, historical data, forecasts and news - updated on December of 2025.

  2. T

    Euro Area Stock Market Index (EU600) - Index Price | Live Quote | Historical...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Feb 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). Euro Area Stock Market Index (EU600) - Index Price | Live Quote | Historical Chart | Trading Economics [Dataset]. https://tradingeconomics.com/stoxx:ind
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Feb 24, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Dec 2, 2025
    Description

    Prices for Euro Area Stock Market Index (EU600) including live quotes, historical charts and news. Euro Area Stock Market Index (EU600) was last updated by Trading Economics this December 2 of 2025.

  3. Countries with largest stock markets globally 2025

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with largest stock markets globally 2025 [Dataset]. https://www.statista.com/statistics/710680/global-stock-markets-by-country/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Worldwide
    Description

    In 2025, stock markets in the United States accounted for roughly ** percent of world stocks. The next largest country by stock market share was China, followed by the European Union as a whole. The New York Stock Exchange (NYSE) and the NASDAQ are the largest stock exchange operators worldwide. What is a stock exchange? The first modern publicly traded company was the Dutch East Industry Company, which sold shares to the general public to fund expeditions to Asia. Since then, groups of companies have formed exchanges in which brokers and dealers can come together and make transactions in one space. Stock market indices group companies trading on a given exchange, giving an idea of how they evolve in real time. Appeal of stock ownership Over half of adults in the United States are investing money in the stock market. Stocks are an attractive investment because the possible return is higher than offered by other financial instruments.

  4. T

    Euro Area Stock Market Index (Euronext 100) - Index Price | Live Quote |...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Nov 8, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2015). Euro Area Stock Market Index (Euronext 100) - Index Price | Live Quote | Historical Chart | Trading Economics [Dataset]. https://tradingeconomics.com/n100:ind
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Nov 8, 2015
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Dec 3, 2025
    Area covered
    Euro Area
    Description

    Prices for Euro Area Stock Market Index (Euronext 100) including live quotes, historical charts and news. Euro Area Stock Market Index (Euronext 100) was last updated by Trading Economics this December 3 of 2025.

  5. Material stock map of CONUS - North East

    • data.europa.eu
    • data.niaid.nih.gov
    unknown
    Updated Jul 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2023). Material stock map of CONUS - North East [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-8163583?locale=es
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Jul 19, 2023
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Humanity’s role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the ‘anthropocene’, as humans are ‘overwhelming the great forces of nature’. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed ‘manufactured capital’, ‘technomass’, ‘human-made mass’, ‘in-use stocks’ or ‘socioeconomic material stocks’, they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with ‘real’ (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called ‘built structures’) represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extent This subdataset covers the North East CONUS, i.e. CT DC DE MA MD ME NH NJ NY PA RI VA For the remaining CONUS, see the related identifiers. Temporal extent The map is representative for ca. 2018. Data format The data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layers Note that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further information For further information, please see the publication. A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication D. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gomez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, H. Haberl. Weighing the US Economy: Map of Built Structures Unveils Patterns in Human-Dominated Landscapes. In prep Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. Acknowledgments We thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.

  6. Z

    Material stock map of CONUS - South

    • data.niaid.nih.gov
    • data.europa.eu
    Updated Jul 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Frantz; Franz Schug; Dominik Wiedenhofer; André Baumgart; Doris Virág; Sam Cooper; Camila Gomez-Medina; Fabian Lehmann; Thomas Udelhoven; Sebastian van der Linden; Patrick Hostert; Helmut Haberl (2023). Material stock map of CONUS - South [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6873597
    Explore at:
    Dataset updated
    Jul 25, 2023
    Dataset provided by
    University of Greifswald
    University of Natural Resources and Life Sciences
    Humboldt-Universität zu Berlin
    University of Wisconsin
    Trier University
    Authors
    David Frantz; Franz Schug; Dominik Wiedenhofer; André Baumgart; Doris Virág; Sam Cooper; Camila Gomez-Medina; Fabian Lehmann; Thomas Udelhoven; Sebastian van der Linden; Patrick Hostert; Helmut Haberl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Humanity’s role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the ‘anthropocene’, as humans are ‘overwhelming the great forces of nature’. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed ‘manufactured capital’, ‘technomass’, ‘human-made mass’, ‘in-use stocks’ or ‘socioeconomic material stocks’, they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with ‘real’ (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called ‘built structures’) represent the overwhelming majority of all socioeconomic material stocks.

    This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors.

    Spatial extent This subdataset covers the South CONUS, i.e.

    AL

    AR

    FL

    GA

    KY

    LA

    MS

    NC

    SC

    TN

    VA

    WV

    For the remaining CONUS, see the related identifiers.

    Temporal extent The map is representative for ca. 2018.

    Data format The data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided.

    Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types).

    Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e.

    t at 10m x 10m

    kt at 100m x 100m

    Mt at 1km x 1km

    Gt at 10km x 10km

    For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming.

    Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv.

    Material layers Note that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers):

    A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337.

    Further information For further information, please see the publication. A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society.

    Publication D. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gomez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, H. Haberl. Weighing the US Economy: Map of Built Structures Unveils Patterns in Human-Dominated Landscapes. In prep

    Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404.

    Acknowledgments We thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.

  7. Material stock map of CONUS

    • data.europa.eu
    unknown
    Updated Jul 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2022). Material stock map of CONUS [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-6873743?locale=de
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Jul 21, 2022
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Humanity’s role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the ‘anthropocene’, as humans are ‘overwhelming the great forces of nature’. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed ‘manufactured capital’, ‘technomass’, ‘human-made mass’, ‘in-use stocks’ or ‘socioeconomic material stocks’, they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with ‘real’ (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called ‘built structures’) represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extent This dataset covers the whole CONUS. Due to upload constraints, detailed data were split into 7 regions and were uploaded into sub-repositories - see related identifiers. (This repository holds aggregated values for the whole CONUS) Great Plains Mid West North East Rocky Mountains South South West West Coast Temporal extent The map is representative for ca. 2018. Data format The data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layers Note that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further information For further information, please see the publication. A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication D. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gomez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, H. Haberl. Weighing the US Economy: Map of Built Structures Unveils Patterns in Human-Dominated Landscapes. In prep Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. Acknowledgments We thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC, and Wolfgang Wagner for granting access to preprocessed Sentinel-1 data.

  8. Material stock map of CONUS - Great Plains

    • zenodo.org
    • data.niaid.nih.gov
    • +2more
    zip
    Updated Jul 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Frantz; David Frantz; Franz Schug; Franz Schug; Dominik Wiedenhofer; Dominik Wiedenhofer; André Baumgart; André Baumgart; Doris Virág; Doris Virág; Sam Cooper; Sam Cooper; Camila Gomez-Medina; Camila Gomez-Medina; Fabian Lehmann; Fabian Lehmann; Thomas Udelhoven; Thomas Udelhoven; Sebastian van der Linden; Sebastian van der Linden; Patrick Hostert; Patrick Hostert; Helmut Haberl; Helmut Haberl (2023). Material stock map of CONUS - Great Plains [Dataset]. http://doi.org/10.5281/zenodo.8167633
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 20, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    David Frantz; David Frantz; Franz Schug; Franz Schug; Dominik Wiedenhofer; Dominik Wiedenhofer; André Baumgart; André Baumgart; Doris Virág; Doris Virág; Sam Cooper; Sam Cooper; Camila Gomez-Medina; Camila Gomez-Medina; Fabian Lehmann; Fabian Lehmann; Thomas Udelhoven; Thomas Udelhoven; Sebastian van der Linden; Sebastian van der Linden; Patrick Hostert; Patrick Hostert; Helmut Haberl; Helmut Haberl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Humanity’s role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the ‘anthropocene’, as humans are ‘overwhelming the great forces of nature’. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed ‘manufactured capital’, ‘technomass’, ‘human-made mass’, ‘in-use stocks’ or ‘socioeconomic material stocks’, they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with ‘real’ (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called ‘built structures’) represent the overwhelming majority of all socioeconomic material stocks.

    This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors.

    Spatial extent
    This subdataset covers the Great Plains CONUS, i.e.

    • KS
    • ND
    • NE
    • OK
    • SD

    For the remaining CONUS, see the related identifiers.

    Temporal extent
    The map is representative for ca. 2018.

    Data format
    The data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided.

    Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types).

    Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e.

    • t at 10m x 10m
    • kt at 100m x 100m
    • Mt at 1km x 1km
    • Gt at 10km x 10km

    For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming.

    Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv.

    Material layers
    Note that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers):

    A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337.

    Further information
    For further information, please see the publication.
    A web-visualization of this dataset is available here.
    Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society.

    Publication
    D. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gomez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, H. Haberl. Weighing the US Economy: Map of Built Structures Unveils Patterns in Human-Dominated Landscapes. In prep

    Funding
    This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404.

    Acknowledgments
    We thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.

  9. T

    France Stock Market Index (FR40) Data

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). France Stock Market Index (FR40) Data [Dataset]. https://tradingeconomics.com/france/stock-market
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 9, 1987 - Dec 2, 2025
    Area covered
    France
    Description

    France's main stock market index, the FR40, rose to 8121 points on December 2, 2025, gaining 0.29% from the previous session. Over the past month, the index has climbed 0.13% and is up 11.93% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on December of 2025.

  10. Material stock map of CONUS - South West

    • data.europa.eu
    unknown
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2025). Material stock map of CONUS - South West [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-6873600?locale=da
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Humanity's role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the 'anthropocene', as humans are 'overwhelming the great forces of nature'. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed 'manufactured capital', 'technomass', 'human-made mass', 'in-use stocks' or 'socioeconomic material stocks', they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with 'real' (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called 'built structures') represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extentThis subdataset covers the South West CONUS, i.e. AZ NM NV TX For the remaining CONUS, see the related identifiers. Temporal extentThe map is representative for ca. 2018. Data formatThe data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layersNote that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further informationFor further information, please see the publication.A web-visualization of this dataset is available here.Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. PublicationD. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gómez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, and H. Haberl (2023): Unveiling patterns in human dominated landscapes through mapping the mass of US built structures. Nature Communications 14, 8014. https://doi.org/10.1038/s41467-023-43755-5 FundingThis research was primarly funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. AcknowledgmentsWe thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.

  11. m

    Aedifica - Stock Price Series

    • macro-rankings.com
    csv, excel
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings, Aedifica - Stock Price Series [Dataset]. https://www.macro-rankings.com/markets/stocks/aed-br
    Explore at:
    excel, csvAvailable download formats
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    belgium
    Description

    Stock Price Time Series for Aedifica. Aedifica is a Regulated Real Estate Company under Belgian law specialised in European healthcare real estate, particularly in elderly care. Aedifica has developed a portfolio of more than 610 sites in Belgium, Germany, the Netherlands, the United Kingdom, Finland, Ireland and Spain, worth nearly Euro 6.2 billion. Aedifica is listed on Euronext Brussels (2006) and Euronext Amsterdam (2019) and is identified by the following ticker symbols: AED; AED:BB (Bloomberg); AOO.BR (Reuters). Since 2020, Aedifica has been part of the BEL 20, Euronext Brussels leading share index. Moreover, since 2023, Aedifica has been part of the BEL ESG, the index tracking companies that perform best on ESG criteria. Aedifica is also included in the EPRA, Stoxx Europe 600 and GPR indices. Aedifica market capitalisation was approx. Euro 3.0 billion as at 25 September 2025.

  12. Material stock map of CONUS - Mid West

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jul 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Frantz; David Frantz; Franz Schug; Franz Schug; Dominik Wiedenhofer; Dominik Wiedenhofer; André Baumgart; André Baumgart; Doris Virág; Doris Virág; Sam Cooper; Sam Cooper; Camila Gomez-Medina; Camila Gomez-Medina; Fabian Lehmann; Fabian Lehmann; Thomas Udelhoven; Thomas Udelhoven; Sebastian van der Linden; Sebastian van der Linden; Patrick Hostert; Patrick Hostert; Helmut Haberl; Helmut Haberl (2023). Material stock map of CONUS - Mid West [Dataset]. http://doi.org/10.5281/zenodo.8167817
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 20, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    David Frantz; David Frantz; Franz Schug; Franz Schug; Dominik Wiedenhofer; Dominik Wiedenhofer; André Baumgart; André Baumgart; Doris Virág; Doris Virág; Sam Cooper; Sam Cooper; Camila Gomez-Medina; Camila Gomez-Medina; Fabian Lehmann; Fabian Lehmann; Thomas Udelhoven; Thomas Udelhoven; Sebastian van der Linden; Sebastian van der Linden; Patrick Hostert; Patrick Hostert; Helmut Haberl; Helmut Haberl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Humanity’s role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the ‘anthropocene’, as humans are ‘overwhelming the great forces of nature’. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed ‘manufactured capital’, ‘technomass’, ‘human-made mass’, ‘in-use stocks’ or ‘socioeconomic material stocks’, they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with ‘real’ (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called ‘built structures’) represent the overwhelming majority of all socioeconomic material stocks.

    This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors.

    Spatial extent
    This subdataset covers the Mid West CONUS, i.e.

    • IA
    • IL
    • IN
    • MI
    • MN
    • MO
    • OH
    • WI

    For the remaining CONUS, see the related identifiers.

    Temporal extent
    The map is representative for ca. 2018.

    Data format
    The data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided.

    Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types).

    Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e.

    • t at 10m x 10m
    • kt at 100m x 100m
    • Mt at 1km x 1km
    • Gt at 10km x 10km

    For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming.

    Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv.

    Material layers
    Note that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers):

    A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337.

    Further information
    For further information, please see the publication.
    A web-visualization of this dataset is available here.
    Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society.

    Publication
    D. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gomez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, H. Haberl. Weighing the US Economy: Map of Built Structures Unveils Patterns in Human-Dominated Landscapes. In prep

    Funding
    This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404.

    Acknowledgments
    We thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.

  13. m

    Covivio SA - Change-In-Cash

    • macro-rankings.com
    csv, excel
    Updated May 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Covivio SA - Change-In-Cash [Dataset]. https://www.macro-rankings.com/markets/stocks/cov-pa/cashflow-statement/change-in-cash
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    May 20, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    france
    Description

    Change-In-Cash Time Series for Covivio SA. Thanks to its partnering history, its real estate expertise and its European culture, Covivio is inventing today's user experience and designing tomorrow's city. A preferred real estate player at the European level, Covivio is close to its end users, capturing their aspirations, combining work, travel, living, and co-inventing vibrant spaces. A benchmark in the European real estate market with "23.6 bn in assets, Covivio offers support to companies, hotel brands and territories in their pursuit for attractiveness, transformation and responsible performance. Build sustainable relationships and well-being, is the Covivio's Purpose who expresses its role as a responsible real estate operator to all its stakeholders: customers, shareholders and financial partners, internal teams, local authorities but also to future generations and the planet. Furthermore, its living, dynamic approach opens up exciting projects and career prospects for its teams. Covivio's shares are listed in the Euronext Paris A compartment (FR0000064578 - COV), are admitted to trading on the SRD, and are included in the composition of the MSCI, SBF 120, Euronext IEIF "SIIC France" and CAC Mid100 indices, in the "EPRA" and "GPR 250" benchmark European real estate indices, and in the ESG FTSE4 Good, CAC SBT 1.5°C, DJSI World & Europe, Euronext Vigeo (World 120, Eurozone 120, Europe 120 and France 20), Euronext® CDP Environment France EW, ISS ESG, Ethibel and Gaïa ethical indices and also holds the following awards and ratings: CDP (A-), GRESB (88/100, 5-Star, 100% public disclosure), ISSESG (B-) and MSCI (AAA).

  14. Material stock map of CONUS - Mid West

    • data.europa.eu
    unknown
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2025). Material stock map of CONUS - Mid West [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-6873591?locale=da
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Humanity's role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the 'anthropocene', as humans are 'overwhelming the great forces of nature'. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed 'manufactured capital', 'technomass', 'human-made mass', 'in-use stocks' or 'socioeconomic material stocks', they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with 'real' (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called 'built structures') represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extentThis subdataset covers the Mid West CONUS, i.e. IA IL IN MI MN MO OH WI For the remaining CONUS, see the related identifiers. Temporal extentThe map is representative for ca. 2018. Data formatThe data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layersNote that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further informationFor further information, please see the publication.A web-visualization of this dataset is available here.Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. PublicationD. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gómez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, and H. Haberl (2023): Unveiling patterns in human dominated landscapes through mapping the mass of US built structures. Nature Communications 14, 8014. https://doi.org/10.1038/s41467-023-43755-5 FundingThis research was primarly funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. AcknowledgmentsWe thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.

  15. T

    Germany Stock Market Index (DE40) Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Germany Stock Market Index (DE40) Data [Dataset]. https://tradingeconomics.com/germany/stock-market
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 30, 1987 - Dec 2, 2025
    Area covered
    Germany
    Description

    Germany's main stock market index, the DE40, rose to 23722 points on December 2, 2025, gaining 0.56% from the previous session. Over the past month, the index has declined 1.70%, though it remains 18.51% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Germany. Germany Stock Market Index (DE40) - values, historical data, forecasts and news - updated on December of 2025.

  16. Natural gas commodity prices in Europe and the U.S. 1980-2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Natural gas commodity prices in Europe and the U.S. 1980-2024 [Dataset]. https://www.statista.com/statistics/252791/natural-gas-prices/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States, Europe
    Description

    In 2024, the price of natural gas in Europe reached 11 constant U.S. dollars per million British thermal units, compared with 2.2 U.S. dollars in the U.S. This was a notable decrease compared to the previous year, which had seen a steep increase in prices due to an energy supply shortage exacerbated by the Russia-Ukraine war. Since 1980, natural gas prices have typically been higher in Europe than in the United States and are expected to remain so for the coming two years. This is due to the U.S. being a significantly larger natural gas producer than Europe. What is natural gas and why is it gaining ground in the energy market? Natural gas is commonly burned in power plants with combustion turbines that generate electricity or used as a heating fuel. Given the fact that the world’s energy demand continues to grow, natural gas was seen by some industry leaders as an acceptable "bridge-fuel" to overcome the use of more emission-intensive energy sources such as coal. Subsequently, natural gas has become the main fuel for electricity generation in the U.S., while the global gas power generation share has reached over 22 percent. How domestic production shapes U.S. natural gas prices The combination of hydraulic fracturing (“fracking”) and horizontal drilling can be regarded as one of the oil and gas industry’s biggest breakthroughs in decades, with the U.S. being the largest beneficiary. This technology has helped the industry release unprecedented quantities of gas from deposits, mainly shale and tar sands that were previously thought either inaccessible or uneconomic. It is forecast that U.S. shale gas production could reach 36 trillion cubic feet in 2050, up from 1.77 trillion cubic feet in 2000.

  17. Biggest ETFs listed in Europe based on net inflows as of August 2024

    • statista.com
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Biggest ETFs listed in Europe based on net inflows as of August 2024 [Dataset]. https://www.statista.com/topics/2365/exchange-traded-funds/
    Explore at:
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    As of August 2024, the exchanged traded fund listed in Europe with the highest net inflow was the iShares Core S&P 500 UCITS ETF. From the start of the year up until this point, the ETF recorded more than 10.4 billion U.S. dollars of net inflows, being the difference between investors who purchase shares in the fund and investors who redeem shares in the fund.

  18. m

    Covivio SA - Net-Borrowings

    • macro-rankings.com
    csv, excel
    Updated Aug 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Covivio SA - Net-Borrowings [Dataset]. https://www.macro-rankings.com/Markets/Stocks/COV-PA/Cashflow-Statement/Net-Borrowings
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Aug 24, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    france
    Description

    Net-Borrowings Time Series for Covivio SA. Thanks to its partnering history, its real estate expertise and its European culture, Covivio is inventing today's user experience and designing tomorrow's city. A preferred real estate player at the European level, Covivio is close to its end users, capturing their aspirations, combining work, travel, living, and co-inventing vibrant spaces. A benchmark in the European real estate market with "23.6 bn in assets, Covivio offers support to companies, hotel brands and territories in their pursuit for attractiveness, transformation and responsible performance. Build sustainable relationships and well-being, is the Covivio's Purpose who expresses its role as a responsible real estate operator to all its stakeholders: customers, shareholders and financial partners, internal teams, local authorities but also to future generations and the planet. Furthermore, its living, dynamic approach opens up exciting projects and career prospects for its teams. Covivio's shares are listed in the Euronext Paris A compartment (FR0000064578 - COV), are admitted to trading on the SRD, and are included in the composition of the MSCI, SBF 120, Euronext IEIF "SIIC France" and CAC Mid100 indices, in the "EPRA" and "GPR 250" benchmark European real estate indices, and in the ESG FTSE4 Good, CAC SBT 1.5°C, DJSI World & Europe, Euronext Vigeo (World 120, Eurozone 120, Europe 120 and France 20), Euronext® CDP Environment France EW, ISS ESG, Ethibel and Gaïa ethical indices and also holds the following awards and ratings: CDP (A-), GRESB (88/100, 5-Star, 100% public disclosure), ISSESG (B-) and MSCI (AAA).

  19. m

    Aedifica - Liabilities-and-Stockholders-Equity

    • macro-rankings.com
    csv, excel
    Updated Nov 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Aedifica - Liabilities-and-Stockholders-Equity [Dataset]. https://www.macro-rankings.com/markets/stocks/aed-br/balance-sheet/liabilities-and-stockholders-equity
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Nov 22, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    belgium
    Description

    Liabilities-and-Stockholders-Equity Time Series for Aedifica. Aedifica is a Regulated Real Estate Company under Belgian law specialised in European healthcare real estate, particularly in elderly care. Aedifica has developed a portfolio of approx. 615 sites in Belgium, Germany, the Netherlands, the United Kingdom, Finland, Ireland and Spain, worth approx. 6.2 billion. Aedifica has been quoted on Euronext Brussels (regulated market) since 2006 and is identified by the following ticker symbols: AED; AED:BB (Bloomberg); AOO.BR (Reuters). Since 2020, Aedifica has been part of the BEL 20, Euronext Brussels leading share index. Moreover, since 2023, Aedifica has been part of the BEL ESG, the index tracking companies that perform best on ESG criteria. It is also included in the EPRA, Stoxx Europe 600 and GPR indices. Its market capitalisation was approx. 3.0 billion as at 31 October 2025.

  20. Leading European cosmetics markets in value 2014-2023

    • statista.com
    • de.statista.com
    Updated Sep 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Leading European cosmetics markets in value 2014-2023 [Dataset]. https://www.statista.com/topics/3137/cosmetics-industry/
    Explore at:
    Dataset updated
    Sep 19, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    This chart shows a ranking of the top European cosmetics markets between 2014 and 2023, based on their market value in billion euros. According to the source, Germany was the leader of the European market in 2023, with a market value of about 16 billion euros. From 2015 to 2020, the value of the French market remained relatively stable, fluctuating between a market value of 11.3 and 11.5 billion euros, reaching nearly 14 billion euros in 2022.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). Euro Area Stock Market Index (EU50) Data [Dataset]. https://tradingeconomics.com/euro-area/stock-market

Euro Area Stock Market Index (EU50) Data

Euro Area Stock Market Index (EU50) - Historical Dataset (1986-12-31/2025-12-02)

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
excel, json, csv, xmlAvailable download formats
Dataset updated
Dec 2, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 31, 1986 - Dec 2, 2025
Area covered
Euro Area
Description

Euro Area's main stock market index, the EU50, rose to 5684 points on December 2, 2025, gaining 0.27% from the previous session. Over the past month, the index has climbed 0.09% and is up 16.52% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Euro Area. Euro Area Stock Market Index (EU50) - values, historical data, forecasts and news - updated on December of 2025.

Search
Clear search
Close search
Google apps
Main menu