Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below.
These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country.
They can also be visualised and explored through the woprVision App.
The remaining datasets in the links below are produced using the "top-down" method,
with either the unconstrained or constrained top-down disaggregation method used.
Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):
- Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
-Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
-Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
-Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020.
-Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national
population estimates (UN 2019).
Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
This is dataset of all cricket world cup. Dataset contains details of each of of every world cup.There are total 12 csv file, each containing details of every world cup.
This dataset contains each world of record. Date=Match of date. Countries=Opponent. Ground/Location=Venue of match. Result=Margin of winning the match.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Will all children be able to read by 2030? The ability to read with comprehension is a foundational skill that every education system around the world strives to impart by late in primary school—generally by age 10. Moreover, attaining the ambitious Sustainable Development Goals (SDGs) in education requires first achieving this basic building block, and so does improving countries’ Human Capital Index scores. Yet past evidence from many low- and middle-income countries has shown that many children are not learning to read with comprehension in primary school. To understand the global picture better, we have worked with the UNESCO Institute for Statistics (UIS) to assemble a new dataset with the most comprehensive measures of this foundational skill yet developed, by linking together data from credible cross-national and national assessments of reading. This dataset covers 115 countries, accounting for 81% of children worldwide and 79% of children in low- and middle-income countries. The new data allow us to estimate the reading proficiency of late-primary-age children, and we also provide what are among the first estimates (and the most comprehensive, for low- and middle-income countries) of the historical rate of progress in improving reading proficiency globally (for the 2000-17 period). The results show that 53% of all children in low- and middle-income countries cannot read age-appropriate material by age 10, and that at current rates of improvement, this “learning poverty” rate will have fallen only to 43% by 2030. Indeed, we find that the goal of all children reading by 2030 will be attainable only with historically unprecedented progress. The high rate of “learning poverty” and slow progress in low- and middle-income countries is an early warning that all the ambitious SDG targets in education (and likely of social progress) are at risk. Based on this evidence, we suggest a new medium-term target to guide the World Bank’s work in low- and middle- income countries: cut learning poverty by at least half by 2030. This target, together with improved measurement of learning, can be as an evidence-based tool to accelerate progress to get all children reading by age 10.
For further details, please refer to https://thedocs.worldbank.org/en/doc/e52f55322528903b27f1b7e61238e416-0200022022/original/Learning-poverty-report-2022-06-21-final-V7-0-conferenceEdition.pdf
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Global Government Expenditure on R&D in All Fields by Country, 2023 Discover more data with ReportLinker!
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below.
These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country.
They can also be visualised and explored through the woprVision App.
The remaining datasets in the links below are produced using the "top-down" method,
with either the unconstrained or constrained top-down disaggregation method used.
Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):
- Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
-Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
-Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
-Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020.
-Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national
population estimates (UN 2019).
Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
https://data.bis.org/help/legalhttps://data.bis.org/help/legal
Global total (all risk categories) (net - net), for total (all instruments), total (all currencies), total (all currencies), total (all maturities), total (all counterparties), All countries (total), All countries (total), total (all ratings), total (all sectors), total (all methods), outstanding - gross market values
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
It is estimated that more than 8 billion people live on Earth and the population is likely to hit more than 9 billion by 2050. Approximately 55 percent of Earth’s human population currently live in areas classified as urban. That number is expected to grow by 2050 to 68 percent, according to the United Nations (UN).The largest cities in the world include Tōkyō, Japan; New Delhi, India; Shanghai, China; México City, Mexico; and São Paulo, Brazil. Each of these cities classifies as a megacity, a city with more than 10 million people. The UN estimates the world will have 43 megacities by 2030.Most cities' populations are growing as people move in for greater economic, educational, and healthcare opportunities. But not all cities are expanding. Those cities whose populations are declining may be experiencing declining fertility rates (the number of births is lower than the number of deaths), shrinking economies, emigration, or have experienced a natural disaster that resulted in fatalities or forced people to leave the region.This Global Cities map layer contains data published in 2018 by the Population Division of the United Nations Department of Economic and Social Affairs (UN DESA). It shows urban agglomerations. The UN DESA defines an urban agglomeration as a continuous area where population is classified at urban levels (by the country in which the city resides) regardless of what local government systems manage the area. Since not all places record data the same way, some populations may be calculated using the city population as defined by its boundary and the metropolitan area. If a reliable estimate for the urban agglomeration was unable to be determined, the population of the city or metropolitan area is used.Data Citation: United Nations Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision. Statistical Papers - United Nations (ser. A), Population and Vital Statistics Report, 2019, https://doi.org/10.18356/b9e995fe-en.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2022 based on 78 countries was 437.426 index points. The highest value was in Singapore: 542.553 index points and the lowest value was in Cambodia: 328.843 index points. The indicator is available from 2000 to 2022. Below is a chart for all countries where data are available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>World crime rate per 100K population for 2019 was <strong>5.56</strong>, a <strong>3.65% decline</strong> from 2018.</li>
<li>World crime rate per 100K population for 2018 was <strong>5.77</strong>, a <strong>2.24% decline</strong> from 2017.</li>
<li>World crime rate per 100K population for 2017 was <strong>5.91</strong>, a <strong>0.69% decline</strong> from 2016.</li>
</ul>Intentional homicides are estimates of unlawful homicides purposely inflicted as a result of domestic disputes, interpersonal violence, violent conflicts over land resources, intergang violence over turf or control, and predatory violence and killing by armed groups. Intentional homicide does not include all intentional killing; the difference is usually in the organization of the killing. Individuals or small groups usually commit homicide, whereas killing in armed conflict is usually committed by fairly cohesive groups of up to several hundred members and is thus usually excluded.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Global Total Support on Coal for All Beneficiaries or Sectors Share by Country (Million US Dollars), 2023 Discover more data with ReportLinker!
https://www.thebusinessresearchcompany.com/privacy-policyhttps://www.thebusinessresearchcompany.com/privacy-policy
Global Everything as a Service market size is expected to reach $1660.21 billion by 2029 at 21.2%, increase in demand for subscription-based pricing models drives the growth of everything-as-a-service market
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
All Flash Array Market size was valued at USD 10.83 Billion in 2023 and is projected to reach USD 52.42 Billion by 2031, growing at a CAGR of 24.04% from 2024 to 2031.
Global All Flash Array Market Dynamics
The key market dynamics that are shaping the global All Flash Array Market include:
Key Market Drivers: Data Generation and Storage Needs: Data generation and storage needs are growing at an exponential rate, which is a primary driver of the All-Flash Array industry. According to the International Data Corporation (IDC), the global datasphere is expected to rise from 64.2 zettabytes in 2020 to 175 zettabytes by 2025, with a compound annual growth rate (CAGR) of 61%. This increase in data volume is prompting enterprises to implement high-performance storage systems such as All Flash Arrays. Performance Demands: The growing requirement for high-speed data processing and low-latency applications is driving the introduction of All Flash Arrays (AFAs).
https://data.bis.org/help/legalhttps://data.bis.org/help/legal
Global interest rate (gross - gross), for options bought, total (all currencies), euro, total (all maturities), central counterparties, All countries (total), All countries (total), total (all ratings), total (all sectors), total (all methods), outstanding - gross market values
The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.
The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.
The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.
National coverage
Individual
Observation data/ratings [obs]
In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.
The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).
For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.
Sample size for Germany is 1000.
Landline and mobile telephone
Questionnaires are available on the website.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Share of Tariff Lines with International Peaks: All Products data was reported at 5.609 % in 2016. This records a decrease from the previous number of 5.628 % for 2015. United States US: Share of Tariff Lines with International Peaks: All Products data is updated yearly, averaging 8.007 % from Dec 1989 (Median) to 2016, with 27 observations. The data reached an all-time high of 10.631 % in 1992 and a record low of 5.469 % in 2010. United States US: Share of Tariff Lines with International Peaks: All Products data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Trade Tariffs. Share of tariff lines with international peaks is the share of lines in the tariff schedule with tariff rates that exceed 15 percent. It provides an indication of how selectively tariffs are applied.; ; World Bank staff estimates using the World Integrated Trade Solution system, based on data from United Nations Conference on Trade and Development's Trade Analysis and Information System (TRAINS) database.; ;
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Stay updated with Market Research Intellect's All Season Tire Market Report, valued at USD 92.5 billion in 2024, projected to reach USD 135.8 billion by 2033 with a CAGR of 5.4% (2026-2033).
https://fred.stlouisfed.org/legal/https://fred.stlouisfed.org/legal/
Graph and download economic data for Harmonized Index of Consumer Prices: All Items Excluding Fully Administered Prices for Euro Area (20 Countries) (TOTAPFEA20MI15XM086NEST) from Dec 2000 to May 2025 about administered prices, Euro Area, World, Europe, and all items.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: All Education Staff Compensation: Tertiary: % of Total Expenditure in Tertiary Public Institutions data was reported at 58.752 % in 2014. This records a decrease from the previous number of 59.374 % for 2013. United States US: All Education Staff Compensation: Tertiary: % of Total Expenditure in Tertiary Public Institutions data is updated yearly, averaging 58.752 % from Dec 2010 (Median) to 2014, with 5 observations. The data reached an all-time high of 59.386 % in 2010 and a record low of 56.081 % in 2012. United States US: All Education Staff Compensation: Tertiary: % of Total Expenditure in Tertiary Public Institutions data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Education Statistics. All staff (teacher and non-teachers) compensation is expressed as a percentage of direct expenditure in public educational institutions (instructional and non-instructional) of the specified level of education. Financial aid to students and other transfers are excluded from direct expenditure. Staff compensation includes salaries, contributions by employers for staff retirement programs, and other allowances and benefits.; ; United Nations Educational, Scientific, and Cultural Organization (UNESCO) Institute for Statistics.; Median;
https://data.bis.org/help/legalhttps://data.bis.org/help/legal
Global foreign exchange (gross - gross), for options bought, total (all currencies), total (all currencies), over 1 year and up to 5 years, other financial institutions, All countries (total), All countries (total), total (all ratings), total (all sectors), total (all methods), outstanding - notional amounts
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name