28 datasets found
  1. f

    Scaling factors for the EPD corresponding to each equation and dataset.

    • plos.figshare.com
    xls
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hyeontae Jo; Sung Woong Cho; Hyung Ju Hwang (2025). Scaling factors for the EPD corresponding to each equation and dataset. [Dataset]. http://doi.org/10.1371/journal.pcbi.1012696.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset provided by
    PLOS Computational Biology
    Authors
    Hyeontae Jo; Sung Woong Cho; Hyung Ju Hwang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The scaling factor C was selected within the range of 100 to 300 across the five different types of equation, to estimate distribution that closely matches the true distribution. For the real-world dataset, the scaling factor was determined based on the most prevalent value observed in the simulation datasets.

  2. Southern California Earthquake Center (SCEC) Community Geodetic Model (CGM)

    • zenodo.org
    zip
    Updated Dec 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Floyd; Michael Floyd; Ekaterina Tymofyeyeva; Ekaterina Tymofyeyeva; Kathryn Materna; Kathryn Materna; David Bekaert; David Bekaert; Eric Fielding; Eric Fielding; Gareth Funning; Gareth Funning; Alejandro González Ortega; Marin Govorcin; Marin Govorcin; Katherine Guns; Katherine Guns; Thomas Herring; Thomas Herring; Zhen Liu; Zhen Liu; Simran Sangha; Simran Sangha; Zheng-Kang Shen; Zheng-Kang Shen; Kang Wang; Kang Wang; Xiaohua Xu; Xiaohua Xu; Alejandro González Ortega (2023). Southern California Earthquake Center (SCEC) Community Geodetic Model (CGM) [Dataset]. http://doi.org/10.5281/zenodo.10076838
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 7, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Michael Floyd; Michael Floyd; Ekaterina Tymofyeyeva; Ekaterina Tymofyeyeva; Kathryn Materna; Kathryn Materna; David Bekaert; David Bekaert; Eric Fielding; Eric Fielding; Gareth Funning; Gareth Funning; Alejandro González Ortega; Marin Govorcin; Marin Govorcin; Katherine Guns; Katherine Guns; Thomas Herring; Thomas Herring; Zhen Liu; Zhen Liu; Simran Sangha; Simran Sangha; Zheng-Kang Shen; Zheng-Kang Shen; Kang Wang; Kang Wang; Xiaohua Xu; Xiaohua Xu; Alejandro González Ortega
    License

    https://opensource.org/licenses/BSD-3-Clausehttps://opensource.org/licenses/BSD-3-Clause

    Area covered
    California
    Description

    Overview

    Measuring accurately the relative movement of the surface of the Earth is a critical constraint on the slow and broad tectonic loading and unloading to which faults respond, and is one of the few observations of the solid Earth that may be made directly without inference. High-precision geodetic observations, such as from Global Navigation Satellite Systems (GNSS), which includes the Global Positioning System (GPS), and interferometric synthetic aperture radar (InSAR), allow measurement of fault motions between, during and in the aftermath of earthquakes and other related tectonic phenomena, densely in both space and time.

    The Community Geodetic Model (CGM) provides velocities and time series of observed points on the Earth's surface over Southern California using data from a number of contributing researchers, institutions and analysis centers. The GNSS products provide high temporal resolution (nominally daily measurement points for continuous stations) in three dimensions at specific observation sites and the InSAR products provide high spatial resolution (approximately one point per tens of m on the ground, depending on exact specifications of data and processing). Combined, they provide the ability to study crustal deformation over a wide range of distances and periods.

    The CGM differs from other SCEC Community Models in that it is constantly extending with time as new data are acquired daily, so it is not static.

    The CGM version 1 (2016; doi:10.5281/zenodo.4926528) was a collection of time-independent (velocity-only) geodetic products gathered from published papers. The GNSS velocities were then combined and modeled by a Working Group researching methods and contributing interpolated deformation fields. The main goal of the CGM version 2 is to add time-dependent (time series) products to both the GNSS and InSAR products. For the GNSS, this is done by ingesting survey and (mostly) continuous time series from five analysis centers in the U.S.: the Geodetic Facility for the Advancement of Geoscience (GAGE); the Nevada Geodetic Laboratory (NGL) at the University of Nevada, Reno (UNR); the NASA Jet Propulsion Laboratory (JPL) and Scripps Orbital and Permanent Array Center (SOPAC) contributions to the MEaSUREs ESESES project; and the U.S. Geological Survey (USGS). Like the various contributions to the CGMv1 GNSS velocities, these time series are rigorously adjusted to be self-consistent, before a weighted mean is calculated to produce the consensus products. Much of the InSAR contribution is a consensus from research by the SCEC community within the CGM (InSAR) Working Group, whose individual contributions are listed below and in more detail in the README.txt file in the top directory of the archive. The CGMv2 is therefore a "union" or "superset" of survey and continuous GNSS and InSAR time series.

    Please see https://www.scec.org/research/cgm for more information.

    Version: CGMv2.0.0

    This is the second major release of the CGM (version 2.0.0) and is distributed as a zip-file. See below and in the README.txt file for information about the directory structure and contents of the entire zipped archive. Much of the SCEC5 activity was focused on the assembly of GNSS and InSAR time series for measuring temporally variable motions, expanding the CGMv1 with the time dimension. The CGMv2.0.0 is a time-dependent set of products, consisting of time series and velocities of the Earth's surface measured by GNSS and InSAR.

    Directory Structure and Contents

    data/gnss/pos/
    The CGMv2.0.0 GNSS time series in "pos" format (plain text), relative to various reference frames described below. Header lines in each file provide information about the nominal reference coordinates and data columns. Files named "*.wmrss_*" are the continuous stations (weighted mean with rescaled sigma) and files named "*.final_" are the survey sites.

    data/gnss/pos/igb14/ The International GNSS Service's (IGS's) revised realization of ITRF2014

    data/gnss/pos/nam14/ North America defined by Altamimi et al.'s (2017) ITRF2014 plate motion model

    data/gnss/pos/pcf14/ The Pacific defined by Altamimi et al.'s (2017) ITRF2014 plate motion model

    data/gnss/pos/nam17/ North America defined by Kreemer et al. (2018)

    data/gnss/vel/
    The CGMv2.0.0 GNSS velocities in a CSV file similar to GAGE's "vel" format (plain text), relative to the same reference frames described above. Header lines in each file provide information about the data columns.

    data/insar/
    The CGMv2.0.0 InSAR line-of-sight consensus time series and velocities for four ESA Sentinel-1 tracks (ascending tracks 64 and 166, and descending tracks 71 and 173) over Southern California, in an HDF5 format designed for the CGM. A description of and reader for the HDF5 files may be found here.

    data/insar/contrib/
    Individual contributions to the InSAR time series and velocity products, as described below and in more detail in the top-level README.txt file.

    Contributors

    The GNSS time series are a weighted mean, after restoration of global scale if processed using Gipsy (JPL, NGL/UNR and USGS) and self-consistent alignment of reference frame, of the following GNSS analysis centers, whose products are publicly available at the embedded hyperlinks:

    Z.-K. Shen processed the raw data from the SCEC survey-mode GPS data archive to provide the corresponding time series and velocities. A. Gonzalez Ortega provided processed time series from CICESE's REGNOM network of continuous GNSS stations. M. Floyd and T. Herring designed the download, alignment and combination of the publicly available continuous GNSS archives, listed above, in various reference frames.

    Contributions from individuals and institutions within the SCEC community to the CGM (InSAR) products are:

    • K. Wang contributed time series and velocity solutions
    • K. Guns and X. Xu contributed time series and velocity solutions
    • Z. Liu contributed time series and velocity solutions
    • S. Sangha, M. Govorcin and D. Bekaert contributed time series and velocity solutions
    • G. Funning contributed time series and velocity solutions
    • E. Tymofyeyeva calculated the combination of contributed solutions to generate the consensus product
    • K. Materna contributed time series and velocity solutions, and wrote the translation tools for converting to and from HDF5 format, as designed by all InSAR contributors listed immediately above plus M. Floyd

    Three groups (K. Guns and X. Xu; Z. Liu; and S. Sangha, M. Govorcin and D. Bekaert) independently processed interferograms from common raw datasets using different processing approaches.

    E. Tymofyeyeva coordinated and led the InSAR Working Group.

    M. Floyd coordinated and led the wider CGM Working Group.

    All contributed to the design of the HDF5 format in which the InSAR products are distributed.

  3. Poverty (by Atlanta Neighborhood Statistical Areas) 2019

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Poverty (by Atlanta Neighborhood Statistical Areas) 2019 [Dataset]. https://gisdata.fultoncountyga.gov/datasets/GARC::poverty-by-atlanta-neighborhood-statistical-areas-2019
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  4. Linguistic Isolation 2021 (all geographies, statewide)

    • opendata.atlantaregional.com
    • hub.arcgis.com
    Updated Mar 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2023). Linguistic Isolation 2021 (all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/2ee44de5ab8f44d7b230b7f3cb19d65b
    Explore at:
    Dataset updated
    Mar 11, 2023
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data

  5. Unemployment (by Census Tract) 2019

    • fultoncountyopendata-fulcogis.opendata.arcgis.com
    • opendata.atlantaregional.com
    • +2more
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Unemployment (by Census Tract) 2019 [Dataset]. https://fultoncountyopendata-fulcogis.opendata.arcgis.com/datasets/GARC::unemployment-by-census-tract-2019
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  6. Grandparents (by Atlanta Neighborhood Statistical Areas) 2019

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Mar 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Grandparents (by Atlanta Neighborhood Statistical Areas) 2019 [Dataset]. https://opendata.atlantaregional.com/items/fbc86ec39d724990b49b6022d88d6891
    Explore at:
    Dataset updated
    Mar 3, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  7. Housing Rent (by Atlanta Neighborhood Statistical Areas) 2019

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    • +2more
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Housing Rent (by Atlanta Neighborhood Statistical Areas) 2019 [Dataset]. https://opendata.atlantaregional.com/datasets/housing-rent-by-atlanta-neighborhood-statistical-areas-2019
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  8. Veterans (By ZIP Code) 2019

    • opendata.atlantaregional.com
    • hub.arcgis.com
    Updated Feb 24, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Veterans (By ZIP Code) 2019 [Dataset]. https://opendata.atlantaregional.com/maps/veterans-by-zip-code-2019
    Explore at:
    Dataset updated
    Feb 24, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  9. Industry (by City) 2019

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Industry (by City) 2019 [Dataset]. https://opendata.atlantaregional.com/datasets/GARC::industry-by-city-2019/about
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  10. ACS 2020 Poverty

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    Updated Apr 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2022). ACS 2020 Poverty [Dataset]. https://opendata.atlantaregional.com/maps/e2a12cad189449699acae6dba84b8906
    Explore at:
    Dataset updated
    Apr 20, 2022
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.

    For a deep dive into the data model including every specific metric, see the ACS 2016-2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e20

    Estimate from 2016-20 ACS

    _m20

    Margin of Error from 2016-20 ACS

    _e10

    2006-10 ACS, re-estimated to 2020 geography

    _m10

    Margin of Error from 2006-10 ACS, re-estimated to 2020 geography

    _e10_20

    Change, 2010-20 (holding constant at 2020 geography)

    Geographies

    AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)

    ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)

    Census Tracts (statewide)

    CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)

    City (statewide)

    City of Atlanta Council Districts (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit STV (subarea of City of Atlanta)

    City of Atlanta Neighborhood Statistical Areas (City of Atlanta)

    County (statewide)

    Georgia House (statewide)

    Georgia Senate (statewide)

    MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)

    Regional Commissions (statewide)

    State of Georgia (statewide)

    Superdistrict (ARC region)

    US Congress (statewide)

    UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)

    WFF = Westside Future Fund (subarea of City of Atlanta)

    ZIP Code Tabulation Areas (statewide)

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2016-2020). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Source: U.S. Census Bureau, Atlanta Regional Commission Date: 2016-2020 Data License: Creative Commons Attribution 4.0 International (CC by 4.0)

    Link to the manifest: https://opendata.atlantaregional.com/documents/GARC::acs-2020-data-manifest/about

  11. Worker Type (by City) 2019

    • gisdata.fultoncountyga.gov
    • fultoncountyopendata-fulcogis.opendata.arcgis.com
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Worker Type (by City) 2019 [Dataset]. https://gisdata.fultoncountyga.gov/datasets/GARC::worker-type-by-city-2019
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  12. Voting Age (by Beltline) 2019

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Voting Age (by Beltline) 2019 [Dataset]. https://opendata.atlantaregional.com/datasets/voting-age-by-beltline-2019
    Explore at:
    Dataset updated
    Feb 25, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  13. ACS 2020 Race Ethnicity

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    • +1more
    Updated Apr 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2022). ACS 2020 Race Ethnicity [Dataset]. https://gisdata.fultoncountyga.gov/maps/a2a9562f602e419e9a52bd9c6297b26c
    Explore at:
    Dataset updated
    Apr 20, 2022
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.

    For a deep dive into the data model including every specific metric, see the ACS 2016-2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e20

    Estimate from 2016-20 ACS

    _m20

    Margin of Error from 2016-20 ACS

    _e10

    2006-10 ACS, re-estimated to 2020 geography

    _m10

    Margin of Error from 2006-10 ACS, re-estimated to 2020 geography

    _e10_20

    Change, 2010-20 (holding constant at 2020 geography)

    Geographies

    AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)

    ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)

    Census Tracts (statewide)

    CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)

    City (statewide)

    City of Atlanta Council Districts (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit STV (subarea of City of Atlanta)

    City of Atlanta Neighborhood Statistical Areas (City of Atlanta)

    County (statewide)

    Georgia House (statewide)

    Georgia Senate (statewide)

    MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)

    Regional Commissions (statewide)

    State of Georgia (statewide)

    Superdistrict (ARC region)

    US Congress (statewide)

    UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)

    WFF = Westside Future Fund (subarea of City of Atlanta)

    ZIP Code Tabulation Areas (statewide)

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2016-2020). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Source: U.S. Census Bureau, Atlanta Regional Commission Date: 2016-2020 Data License: Creative Commons Attribution 4.0 International (CC by 4.0)

    Link to the manifest: https://opendata.atlantaregional.com/documents/GARC::acs-2020-data-manifest/about

  14. ERA5 hourly time-series data on single levels from 1940 to present

    • cds.climate.copernicus.eu
    netcdf
    Updated Apr 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 hourly time-series data on single levels from 1940 to present [Dataset]. https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-timeseries
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1940 - Dec 6, 2024
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The dataset presented here is a regridded subset of the full ERA5 data set on native resolution that is stored in a format designed for retrieving long time-series for a single point. When the requested location does not match the exact location of a grid point then the nearest grid point is used instead. It is this source of ERA5 data that is used by the ERA-Explorer to ensure response times required for the interactive web-application. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines.

  15. ACS 2020 Change Since 2010

    • gisdata.fultoncountyga.gov
    Updated Apr 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2022). ACS 2020 Change Since 2010 [Dataset]. https://gisdata.fultoncountyga.gov/maps/GARC::acs2020-changesince2010-wff
    Explore at:
    Dataset updated
    Apr 19, 2022
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.

    For a deep dive into the data model including every specific metric, see the ACS 2016-2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e20

    Estimate from 2016-20 ACS

    _m20

    Margin of Error from 2016-20 ACS

    _e10

    2006-10 ACS, re-estimated to 2020 geography

    _m10

    Margin of Error from 2006-10 ACS, re-estimated to 2020 geography

    _e10_20

    Change, 2010-20 (holding constant at 2020 geography)

    Geographies

    AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)

    ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)

    Census Tracts (statewide)

    CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)

    City (statewide)

    City of Atlanta Council Districts (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit STV (subarea of City of Atlanta)

    City of Atlanta Neighborhood Statistical Areas (City of Atlanta)

    County (statewide)

    Georgia House (statewide)

    Georgia Senate (statewide)

    MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)

    Regional Commissions (statewide)

    State of Georgia (statewide)

    Superdistrict (ARC region)

    US Congress (statewide)

    UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)

    WFF = Westside Future Fund (subarea of City of Atlanta)

    ZIP Code Tabulation Areas (statewide)

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2016-2020). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Source: U.S. Census Bureau, Atlanta Regional Commission Date: 2016-2020 Data License: Creative Commons Attribution 4.0 International (CC by 4.0)

    Link to the manifest: https://opendata.atlantaregional.com/documents/GARC::acs-2020-data-manifest/about

  16. ACS2020 Social Disability ARWDB7

    • opendata.atlantaregional.com
    Updated Apr 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2022). ACS2020 Social Disability ARWDB7 [Dataset]. https://opendata.atlantaregional.com/maps/acs2020-social-disability-arwdb7
    Explore at:
    Dataset updated
    Apr 22, 2022
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.

    For a deep dive into the data model including every specific metric, see the ACS 2016-2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e20

    Estimate from 2016-20 ACS

    _m20

    Margin of Error from 2016-20 ACS

    _e10

    2006-10 ACS, re-estimated to 2020 geography

    _m10

    Margin of Error from 2006-10 ACS, re-estimated to 2020 geography

    _e10_20

    Change, 2010-20 (holding constant at 2020 geography)

    Geographies

    AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)

    ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)

    Census Tracts (statewide)

    CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)

    City (statewide)

    City of Atlanta Council Districts (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit STV (subarea of City of Atlanta)

    City of Atlanta Neighborhood Statistical Areas (City of Atlanta)

    County (statewide)

    Georgia House (statewide)

    Georgia Senate (statewide)

    MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)

    Regional Commissions (statewide)

    State of Georgia (statewide)

    Superdistrict (ARC region)

    US Congress (statewide)

    UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)

    WFF = Westside Future Fund (subarea of City of Atlanta)

    ZIP Code Tabulation Areas (statewide)

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2016-2020). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Source: U.S. Census Bureau, Atlanta Regional Commission Date: 2016-2020 Data License: Creative Commons Attribution 4.0 International (CC by 4.0)

    Link to the manifest: https://opendata.atlantaregional.com/documents/GARC::acs-2020-data-manifest/about

  17. f

    Comparison of clustering effects.

    • plos.figshare.com
    xls
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaoxia Mou; Heming Zhang (2023). Comparison of clustering effects. [Dataset]. http://doi.org/10.1371/journal.pone.0288140.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 7, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Shaoxia Mou; Heming Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Due to the inherent characteristics of accumulation sequence of unbalanced data, the mining results of this kind of data are often affected by a large number of categories, resulting in the decline of mining performance. To solve the above problems, the performance of data cumulative sequence mining is optimized. The algorithm for mining cumulative sequence of unbalanced data based on probability matrix decomposition is studied. The natural nearest neighbor of a few samples in the unbalanced data cumulative sequence is determined, and the few samples in the unbalanced data cumulative sequence are clustered according to the natural nearest neighbor relationship. In the same cluster, new samples are generated from the core points of dense regions and non core points of sparse regions, and then new samples are added to the original data accumulation sequence to balance the data accumulation sequence. The probability matrix decomposition method is used to generate two random number matrices with Gaussian distribution in the cumulative sequence of balanced data, and the linear combination of low dimensional eigenvectors is used to explain the preference of specific users for the data sequence; At the same time, from a global perspective, the AdaBoost idea is used to adaptively adjust the sample weight and optimize the probability matrix decomposition algorithm. Experimental results show that the algorithm can effectively generate new samples, improve the imbalance of data accumulation sequence, and obtain more accurate mining results. Optimizing global errors as well as more efficient single-sample errors. When the decomposition dimension is 5, the minimum RMSE is obtained. The proposed algorithm has good classification performance for the cumulative sequence of balanced data, and the average ranking of index F value, G mean and AUC is the best.

  18. Population by Sex and Age (by Atlanta Neighborhood Planning Unit) 2019

    • arc-garc.opendata.arcgis.com
    • opendata.atlantaregional.com
    • +2more
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Population by Sex and Age (by Atlanta Neighborhood Planning Unit) 2019 [Dataset]. https://arc-garc.opendata.arcgis.com/datasets/population-by-sex-and-age-by-atlanta-neighborhood-planning-unit-2019/about
    Explore at:
    Dataset updated
    Feb 25, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  19. a

    Race/Ethnicity (by Atlanta Neighborhood Planning Unit) 2019

    • hub.arcgis.com
    • opendata.atlantaregional.com
    • +1more
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Race/Ethnicity (by Atlanta Neighborhood Planning Unit) 2019 [Dataset]. https://hub.arcgis.com/datasets/55b8f5080a4b4c8ba5d1627b2bc8e64f
    Explore at:
    Dataset updated
    Feb 25, 2021
    Dataset authored and provided by
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  20. Computer and Broadband Internet Access (by BeltLine Areas) 2019

    • hub.arcgis.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Computer and Broadband Internet Access (by BeltLine Areas) 2019 [Dataset]. https://hub.arcgis.com/maps/GARC::computer-and-broadband-internet-access-by-beltline-areas-2019
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Hyeontae Jo; Sung Woong Cho; Hyung Ju Hwang (2025). Scaling factors for the EPD corresponding to each equation and dataset. [Dataset]. http://doi.org/10.1371/journal.pcbi.1012696.t002

Scaling factors for the EPD corresponding to each equation and dataset.

Related Article
Explore at:
xlsAvailable download formats
Dataset updated
Jan 7, 2025
Dataset provided by
PLOS Computational Biology
Authors
Hyeontae Jo; Sung Woong Cho; Hyung Ju Hwang
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The scaling factor C was selected within the range of 100 to 300 across the five different types of equation, to estimate distribution that closely matches the true distribution. For the real-world dataset, the scaling factor was determined based on the most prevalent value observed in the simulation datasets.

Search
Clear search
Close search
Google apps
Main menu