Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Sofia Ashraf
Released under Apache 2.0
Facebook
TwitterCompany Datasets for valuable business insights!
Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.
These datasets are sourced from top industry providers, ensuring you have access to high-quality information:
We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:
You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.
Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.
With Oxylabs Datasets, you can count on:
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!
Facebook
TwitterThis data set contains example data for exploration of the theory of regression based regionalization. The 90th percentile of annual maximum streamflow is provided as an example response variable for 293 streamgages in the conterminous United States. Several explanatory variables are drawn from the GAGES-II data base in order to demonstrate how multiple linear regression is applied. Example scripts demonstrate how to collect the original streamflow data provided and how to recreate the figures from the associated Techniques and Methods chapter.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Description: - This dataset includes all 22 built-in datasets from the Seaborn library, a widely used Python data visualization tool. Seaborn's built-in datasets are essential resources for anyone interested in practicing data analysis, visualization, and machine learning. They span a wide range of topics, from classic datasets like the Iris flower classification to real-world data such as Titanic survival records and diamond characteristics.
This complete collection serves as an excellent starting point for anyone looking to improve their data science skills, offering a wide array of datasets suitable for both beginners and advanced users.
Facebook
TwitterThis is an auto-generated index table corresponding to a folder of files in this dataset with the same name. This table can be used to extract a subset of files based on their metadata, which can then be used for further analysis. You can view the contents of specific files by navigating to the "cells" tab and clicking on an individual file_kd.
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Access our extensive Facebook datasets that provide detailed information on public posts, pages, and user engagement. Gain insights into post performance, audience interactions, page details, and content trends with our ethically sourced data. Free samples are available for evaluation. Over 940M records available Price starts at $250/100K records Data formats are available in JSON, NDJSON, CSV, XLSX and Parquet. 100% ethical and compliant data collection Included datapoints:
Post ID Post Content & URL Date Posted Hashtags Number of Comments Number of Shares Likes & Reaction Counts (by type) Video View Count Page Name & Category Page Followers & Likes Page Verification Status Page Website & Contact Info Is Sponsored Post Attachments (Images/Videos) External Link Data And much more
Facebook
TwitterDemo to save data from a Space to a Dataset. Goal is to provide reusable snippets of code.
Documentation: https://huggingface.co/docs/huggingface_hub/main/en/guides/upload#scheduled-uploads Space: https://huggingface.co/spaces/Wauplin/space_to_dataset_saver/ JSON dataset: https://huggingface.co/datasets/Wauplin/example-space-to-dataset-json Image dataset: https://huggingface.co/datasets/Wauplin/example-space-to-dataset-image Image (zipped) dataset:… See the full description on the dataset page: https://huggingface.co/datasets/Wauplin/example-space-to-dataset-json.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.
Facebook
TwitterThis is an auto-generated index table corresponding to a folder of files in this dataset with the same name. This table can be used to extract a subset of files based on their metadata, which can then be used for further analysis. You can view the contents of specific files by navigating to the "cells" tab and clicking on an individual file_id.
Facebook
TwitterThese data contain the results of GC-MS, LC-MS and immunochemistry analyses of mask sample extracts. The data include tentatively identified compounds through library searches and compound abundance. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: The data can not be accessed. Format: The dataset contains the identification of compounds found in the mask samples as well as the abundance of those compounds for individuals who participated in the trial. This dataset is associated with the following publication: Pleil, J., M. Wallace, J. McCord, M. Madden, J. Sobus, and G. Ferguson. How do cancer-sniffing dogs sort biological samples? Exploring case-control samples with non-targeted LC-Orbitrap, GC-MS, and immunochemistry methods. Journal of Breath Research. Institute of Physics Publishing, Bristol, UK, 14(1): 016006, (2019).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.
Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A diverse selection of 1000 empirical time series, along with results of an hctsa feature extraction, using v1.06 of hctsa and Matlab 2019b, computed on a server at The University of Sydney.
Facebook
TwitterThese datasets contain reviews from the Steam video game platform, and information about which games were bundled together.
Metadata includes
reviews
purchases, plays, recommends (likes)
product bundles
pricing information
Basic Statistics:
Reviews: 7,793,069
Users: 2,567,538
Items: 15,474
Bundles: 615
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset containing the images and labels for the Language data used in the CVPR NAS workshop Unseen-data challenge under the codename "LaMelo"The Language dataset is a constructed dataset using words from aspell dictionaries. The intention of this dataset is to require machine learning models to not only perform image classification but also linguistic analysis to figure out which letter frequency is associated with each language. For each Language image we selected four six-letter words using the standard latin alphabet and removed any words with letters that used diacritics (such as ́e or ̈u) or included ‘y’ or ‘z’.We encode these words on a graph with one axis representing the index of the 24 character long string (the four words joined together) and the other representing the letter (going A-X).The data is in a channels-first format with a shape of (n, 1, 24, 24) where n is the number of samples in the corresponding set (50,000 for training, 10,000 for validation, and 10,000 for testing).There are ten classes in the dataset, with 7,000 examples of each, distributed evenly between the three subsets.The ten classes and corresponding numerical label are as follows:English: 0,Dutch: 1,German: 2,Spanish: 3,French: 4,Portuguese: 5,Swahili: 6,Zulu: 7,Finnish: 8,Swedish: 9
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
N.B. This is not real data. Only here for an example for project templates.
Project Title: Add title here
Project Team: Add contact information for research project team members
Summary: Provide a descriptive summary of the nature of your research project and its aims/focal research questions.
Relevant publications/outputs: When available, add links to the related publications/outputs from this data.
Data availability statement: If your data is not linked on figshare directly, provide links to where it is being hosted here (i.e., Open Science Framework, Github, etc.). If your data is not going to be made publicly available, please provide details here as to the conditions under which interested individuals could gain access to the data and how to go about doing so.
Data collection details: 1. When was your data collected? 2. How were your participants sampled/recruited?
Sample information: How many and who are your participants? Demographic summaries are helpful additions to this section.
Research Project Materials: What materials are necessary to fully reproduce your the contents of your dataset? Include a list of all relevant materials (e.g., surveys, interview questions) with a brief description of what is included in each file that should be uploaded alongside your datasets.
List of relevant datafile(s): If your project produces data that cannot be contained in a single file, list the names of each of the files here with a brief description of what parts of your research project each file is related to.
Data codebook: What is in each column of your dataset? Provide variable names as they are encoded in your data files, verbatim question associated with each response, response options, details of any post-collection coding that has been done on the raw-response (and whether that's encoded in a separate column).
Examples available at: https://www.thearda.com/data-archive?fid=PEWMU17 https://www.thearda.com/data-archive?fid=RELLAND14
Facebook
TwitterSupply chain analytics is a valuable part of data-driven decision-making in various industries such as manufacturing, retail, healthcare, and logistics. It is the process of collecting, analyzing and interpreting data related to the movement of products and services from suppliers to customers.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Each R script replicates all of the example code from one chapter from the book. All required data for each script are also uploaded, as are all data used in the practice problems at the end of each chapter. The data are drawn from a wide array of sources, so please cite the original work if you ever use any of these data sets for research purposes.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data repository contains sample datasets of raw DInSAR time series (NSBAS_PARAMS.h5), raw, interpolated GNSS time series maps (GPS_East/North/Up.h5) , errors associated with the GNSS data (GPS_East/North/Up_sigma.h5), and integrated DInSAR + GNSS time series (fused.h5). Details about the data can be read about in the following publication: [Corsa, B. "Integration of DInSAR Time Series and GNSS data for Continuous Volcanic Deformation Monitoring and Eruption Early Warning Applications" Remote Sens. 2022, 14(3), 784; https://doi.org/10.3390/rs14030784]. The raw DInSAR time series spans 245 dates between 2015-11-11 to 2021-04-13 over the Big Island of Hawaii. The current raw GPS data and fused time series used 22 data points between those same dates.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Sofia Ashraf
Released under Apache 2.0